
Hub Labels: Theory and Practice

Daniel Delling1, Andrew V. Goldberg1, Ruslan Savchenko2?, and Renato
F. Werneck1

1 Microsoft Research, 1065 La Avenida, Mountain View CA 94043, USA
{dadellin,goldberg,renatow}@microsoft.com

2 Department of Mech. and Math., Moscow State University
1 Leninskiye Gory, Moscow 119991, Russia

ruslan.savchenko@gmail.com

Abstract. The Hub Labeling algorithm (HL) is an exact shortest path
algorithm with excellent query performance on some classes of problems.
It precomputes some auxiliary information (stored as a label) for each
vertex, and its query performance depends only on the label size. While
there are polynomial-time approximation algorithms to find labels of ap-
proximately optimal size, practical solutions use hierarchical hub labels
(HHL), which are faster to compute but offer no guarantee on the la-
bel size. We improve the theoretical and practical performance of the
HL approximation algorithms, enabling us to compute such labels for
moderately large problems. Our comparison shows that HHL algorithms
scale much better and find labels that usually are not much bigger than
the theoretically justified HL labels.

1 Introduction

In this paper we study the hub labeling (HL) algorithm [12], a powerful technique
to answer exact point-to-point shortest path queries with excellent performance
on some real-world networks. Although HL has been studied both theoretically
and experimentally [2–6, 8, 21], in practice one uses fast heuristics instead of the
algorithms with theoretical solution quality guarantee. Since the heuristics are
used on real-life networks [2–5], it is important to gauge their solution quality
and their potential for improvement.

The theoretically justified algorithms have escaped extensive experimental
studies in the past because, although polynomial, they do not scale well. Our
goal is to speed up the algorithms without losing the theoretical guarantees.
Even if the algorithms do not scale as well as the heuristics, experiments on
moderate-size problems give a useful measure of solution quality. A small gap
would justify the heuristics, while a large gap would motivate their improvement.

During preprocessing, labeling algorithms [19] compute a label for every ver-
tex of the graph and answer s–t shortest path queries using only the labels of s
and t (and not the graph itself). HL is a labeling algorithm where the label L(v)
of v is a collection of vertices (hubs of v) with distances between v and the hubs.

? Part of this work done while at Microsoft Research

2 Delling, Goldberg, Savchenko, and Werneck

The label L(v) consists of two parts, the forward label Lf (v) and the backward
label Lb(v). The labels must obey the cover property : for any two vertices s and
t, the set Lf (s)∩Lb(t) must contain at least one hub v that is on the shortest s–t
path. Given the labels, HL queries are straightforward: to find dist(s, t), simply
find the hub v ∈ Lf (s) ∩ Lb(t) that minimizes dist(s, v) + dist(v, t). The size
of the label is its number of hubs. The memory footprint of the algorithm is
dominated by the sum of all label sizes, while query times are determined by
the maximum label size. To measure solution quality, we mostly use the average
label size, which is equivalent to the sum of all forward and backward label sizes;
in practice, the maximum label size is not much higher than the average.

Finding the smallest HL for general graphs is NP-hard. Cohen et al. [8] give
an O(n5)-time O(log n)-approximation algorithm for minimizing the size of the
labeling. Babenko et al. [6] generalize this result to an O(log n)-approximation
algorithm for general p-norms (as defined in Section 2); we refer to their algo-
rithm as GHLp.

A special case of HL is hierarchical hub labeling (HHL), where vertices are
globally ranked by “importance” and the label for a vertex can only have more
important hubs than itself. HHL labels can be polynomially bigger than HL
labels for some graph classes [14], but small HHL labels exist for other classes,
such as trees. For general graphs, finding the smallest HHL is NP-hard [15], and
no polylog-approximation algorithm is known. Practical heuristics for computing
HHL have been studied in [3, 5, 9].

Known approximation algorithms for HL [1, 6, 8], although polynomial, have
high time bounds. Cohen et al. [8] describe an implementation of their algorithm
with a speedup based on lazy evaluation, but it is still slow and can only handle
small problems. For reachability queries (a special case with zero arc lengths),
Schenkel et al. [21] implement this algorithm with a different variant of lazy
evaluation, and use divide-and-conquer to handle larger problems. Other imple-
mentations focus on HHL and have no theoretical guarantees. The implementa-
tions of Abraham et al. [2, 3] work well on large road networks and some other
networks of moderate size. The implementation of Akiba et al. [5] scales to large
complex networks. Delling et al. [9] produce small labels for a wider range of
inputs than either method.

Our Contributions. In this paper, we improve the GHLp algorithm and study its
practical performance. First, we propose a refinement of GHLp that achieves an
O(n3 min(p, log n) log n) time bound and is more efficient in practice; for p = 1,
this improves the bound of Cohen et al. from O(n5) to O(n3 log n). Second,
we investigate the tradeoff between average and maximum sizes for the labels
computed by GHLp for different values of p. Finally, our detailed experimental
analysis confirms that GHL1 produces smaller labels than HHL.

The preprocessing algorithms we study require Ω(n2) memory and compute
shortest path distances between all pairs of vertices. In principle, one could in-
stead compute and store a distance table and answer queries by table lookup.
For graphs for which HL queries work well, however, the labels are small. Thus
one can run preprocessing on a large server, but run queries on a less powerful

Hub Labels: Theory and Practice 3

device. Furthermore, studying more sophisticated algorithms with large mem-
ory footprint allows us to judge the quality of more practical heuristics and
potentially improve them.

2 Preliminaries

The input to the point-to-point shortest path problem is a directed graph G =
(V,A), a length function ` : A→ R, and a pair s, t of vertices. Let n = |V | and
m = |A|. The goal is to find dist(s, t), the length of the shortest s–t path in G,
where the length of a path is the sum of the lengths of its arcs. We assume that
the length function is non-negative and that there are no zero-length cycles.

The size of a forward (backward) label, |Lf (v)| (|Lb(v)|), is the number of
hubs it contains. We define the size of the full label L(v) = (Lf (v), Lb(v)) as
|L(v)| = (|Lf (v)| + |Lb(v)|)/2. We generalize this definition as follows. Sup-
pose vertex IDs are 1, 2, . . . , n. Define a (2n)-dimensional vector L by L2i−1 =
|Lf (i)| and L2i = |Lb(i)|. We consider the `p norm of L, defined as ‖L‖p =

(
∑2n−1
i=0 L

p
i)

1/p, where p is a natural number or∞; ‖L‖∞ = maxi Li. The hub la-
beling algorithm uses O(‖L‖1) memory and has worst-case query time O(‖L‖∞).

3 Approximation Algorithms

We now discuss existing O(log n)-approximation algorithms for ‖L‖p. We start
with Cohen et al.’s algorithm [8] for p = 1; Section 3.1 deals with arbitrary p.

Starting with an empty labeling, the algorithm in each iteration adds a vertex
to some labels, until the labeling satisfies the cover property. The algorithm also
maintains the set U of uncovered vertex pairs: (u,w) ∈ U if Lf (u) ∩ Lb(w)
does not contain a vertex on a shortest u–w path. Initially U contains all vertex
pairs u,w such that w is reachable from u. The algorithm terminates when U
becomes empty. In each iteration, the algorithm adds a vertex v to forward labels
of u ∈ S′ ⊆ V and to backward labels of w ∈ S′′ ⊆ V such that ratio of the
number of newly-covered paths over the total increase in the size of the labeling
is (approximately) maximized. Formally, let U(v, S′, S′′) be the set of pairs in U
which become covered if v is added to Lf (u) : u ∈ S′ and Lb(w) : w ∈ S′′. The
algorithm maximizes |U(v, S′, S′′)|/(|S′|+ |S′′|) over all v ∈ V and S′, S′′ ⊆ V .

A center graph of v, Gv = (X,Y,Av), is a bipartite graph with X = V ,
Y = V , and an arc (u,w) ∈ Av if some shortest path from u to w goes through
v. To do the maximization, the algorithm finds densest subgraphs of center
graphs. The density of a graph G = (V,A) is |A|/|V |. The maximum density
subgraph (MDS) problem can be solved in polynomial time using maximum
flows (e.g., [11]). For a vertex v, arcs of a subgraph of Gv induced by S′ ⊆ X
and S′′ ⊆ Y correspond to the pairs of vertices in U that become covered if
v is added to Lf (u) : u ∈ S′ and Lb(w) : w ∈ S′′. Therefore, the MDS of Gv
maximizes |U(v, S′, S′′)|/(|S′|+ |S′′|) over all S′, S′′.

Cohen et al. [8] show that the use of a linear-time 2-approximation algo-
rithm [18] instead of an exact MDS algorithm results in a faster algorithm while

4 Delling, Goldberg, Savchenko, and Werneck

preserving the O(log n) approximation ratio. We refer to the approximate MDS
problem as AMDS. The 2-AMDS algorithm works by iteratively deleting the
minimum-degree vertex from the current graph, starting from the input graph
and ending in a single-vertex graph. Kortsarz and Peleg [18] show that the sub-
graph of maximum density in the resulting sequence of subgraphs is a 2-AMDS.
To find the desired triple (v, S′, S′′), Cohen et al. solve the AMDS problem for
all Gv : v ∈ V , and take v that gives the approximately densest subgraph.

Zero-Weight Vertex Heuristic. Cohen et al. [8] note that Gv can have arcs (u,w)
such that the label of one endpoint contains v but the other does not. In this
case, if u is included in a subgraph, it contributes to the denominator of its den-
sity, even though we do not need to add v to Lf (u). They propose an intuitive
modification of the algorithm that maintains the O(log n) approximation guar-
antee but performs better in practice. They assign zero weight to a vertex u ∈ X
if v ∈ Lf (u) and to a vertex w ∈ Y if v ∈ Lb(w) and unit weights to all other
vertices. They also modify the 2-AMDS algorithm to repeatedly delete vertices
minimizing the ratio of degree over weight, where x/0 =∞. Zero-weight vertices
will be removed last; in fact, the algorithm can stop as soon as it reaches such a
vertex.

3.1 Optimizing Arbitrary Norms

The ‖L‖p algorithm for p > 1 by Babenko et al. [6] is similar to the case p = 1,
but uses weighted MDS, with vertex weights determined by the current labeling.
The maximum weighted densest subgraph problem, takes as input a graph with
vertex weights c(v) ≥ 0. The goal is to find a subgraph of maximum weighted
density, defined as the number of arcs divided by the total weight of the vertices.
The 2-AMDS algorithm generalizes to this case: instead of choosing a vertex
with minimum degree, each iteration chooses a vertex v that minimizes the ratio
between the degree and the weight c(v).

Consider an iteration of GHLp with labels Lf and Lb. For the center graphs,
we define the weight of a vertex u ∈ X by cp(u) := (|Lf (u)|+ 1)p−|Lf (u)|p and
for w ∈ Y , cp(w) := (|Lb(w)| + 1)p − |Lb(w)|p. For p = 1 we get the standard
(unweighted) MDS problem. The O(log n)-approximation algorithm for ‖L‖p is
similar to the algorithm for ‖L‖1, except that each iteration finds the triple
(v, S′, S′′) that maximizes |U(v, S′, S′′)|/(cp(S′) + cp(S

′′)). A 2-approximation
for such triple (v, S′, S′′) is sufficient, and can be found by running a weighted
2-AMDS algorithm for all center graphs Gv.

The observation that for p ≥ log n, the `∞ norm is within a constant factor
of the `p norm yields a log(n)-approximation algorithm for `∞.

4 Improved Time Bound

The time bound for the Cohen et al. [8] algorithm (GHL1) isO(n5): each iteration
computes n AMDSes on graphs with O(n2) arcs, and the number of iterations is

Hub Labels: Theory and Practice 5

bounded by O(n2), the worst-case size of the labeling. A naive implementation of
GHL1 maintains all center graphs and uses O(n3) space, but this can be reduced
to O(n2). We propose an eager-lazy variant of GHL1 that runs in O(n3 log n)
time and O(n2) space, and still achieves an O(log n) approximation ratio. It also
extends to an O(n3 min(p, log n) log n) implementation of GHLp.

First we describe our data structures. We precompute, in O(nDij(n,m)) time,
a table of all pairs of shortest path distances. (Dij(n,m) denotes the running
time of Dijkstra’s algorithm [10] on a network with n vertices and m arcs.) We
maintain an n× n Boolean array, with bit (i, j) indicating whether the current
labeling covers the pair i, j. These data structures use O(n2) space.

Eager evaluation is a variant of the 2-AMDS algorithm that guarantees that
deleting the edges of an approximate densest subgraph reduces the MDS bound
for the remaining graph. We use this fact to bound the number of times the
algorithm selects the center graph of a vertex. Consider a graph G, let µ be
an upper bound on its MDS value, and fix α ≥ 1. The α-eager evaluation re-
peatedly deletes the minimum degree vertex of G while the density of G is less
than µ/(2α). If we use the zero-weight heuristic, we do not remove zero-weight
vertices. Let G′ be the subgraph that remains at the end of this procedure. Let
Gα be the subgraph of G induced by the vertices deleted during this process.
Let G̃ be the graph G with all edges from G′ deleted; if we use the zero-weight
heuristic, we also change the weight of vertices of G′ from one to zero.

Lemma 1. During the algorithm, (1) the density of G′ is at least µ/(2α) and
(2) the MDS value of G̃ is at most µ/α.

Proof. By construction, we stop when the density of G is at least µ/(2α), which
implies (1). For a vertex v in Gα, let mv be the number of edges adjacent to v
when v was deleted from G. We have mv < µ/α, since v is the smallest-degree
vertex before the deletion and mv ≥ µ/α would imply a µ/(2α) lower bound on
the graph density. Consider a subgraph H of G̃ and let Hα be H with G′ deleted.
Let mh and nh be the number of edges in H and vertices in Hα respectively. If
we use zero-weight heuristic, mh/nh is the density of H; otherwise, it is an upper
bound. We have mh ≤

∑
v∈Hα

mv < nh · µ/α. Therefore mh/nh < µ/α. ut

Note that G′ may be empty, in which case (µ/α) is an improved bound on the
MDS value of G = Gα.

Next we discuss lazy evaluation. Cohen et al. [8] observed that the MDS
value of a center graph does not increase when edges are removed. They thus
propose keeping a priority queue of AMDS values and processing the center
graph corresponding to the maximum value. In addition, they maintain a marker
for each center graph indicating whether it has changed since its last AMDS
computation. Each iteration processes the subgraph with maximum value. If the
AMDS value is invalid (outdated), they recompute it. Otherwise they augment
the labeling according to this subgraph, delete the AMDS of the center graph
used in this iteration, and mark the affected AMDS values as invalid.

Schenkel et al. [21] use a variant of lazy evaluation. Instead of maintaining
the AMDSes, they maintain their density values. An iteration considers the

6 Delling, Goldberg, Savchenko, and Werneck

maximum value, dv, and recomputes an AMDS of Gv. If the density of this
AMDS is at least dv,

3 this subgraph is used to update the labels and the center
graphs. Otherwise dv is updated.

Combining the second variant of lazy evaluation with eager evaluation, we
get our eager-lazy labeling version of GHL1. Let α > 1 be a constant. During
initialization, the algorithm computes upper bounds µv on the MDS values of the
center graphs using the 2-AMDS algorithm and keeps the values in a max-heap
Q. At each iteration, the algorithm extracts the maximum µv from the heap and
applies α-eager evaluation to Gv. If eager evaluation finds a non-empty subgraph
G′, it adds v to the labels of the vertices of G′. Then it updates U (the set of
uncovered pairs) by iterating over all uncovered pairs of vertices (u,w) and, if
v ∈ Lf (u), v ∈ Lb(w) and dist(u, v) + dist(v, w) = dist(u,w), it marks (u,w) as
covered. By Lemma 1 we know that after the update the MDS value of Gv is at
most µv/α. The same bound holds if G′ is empty. Finally, we set µv = µv/α and
add µv back to Q. (One can use the bound found by the 2-AMDS algorithm, if
it is smaller.)

Theorem 1. The eager-lazy variant of GHL1 is an O(log n) approximation al-
gorithm running in O(n3 log n) time and O(n2) space.

Proof. The results of [8] imply that, for an O(log n) approximation, one can use
constant factor approximations of the maximum density subgraph instead of the
exact solutions. When the algorithm adds v to the labels, G′ is a 2α approxima-
tion. The space bound is O(n2), since it is dominated by the distance table and
the coverage matrix U . For the time bound, note that each iteration performs
eager evaluation. In addition, if we find a non-empty G′, we iterate over all ver-
tex pairs to mark the newly covered ones, taking O(n2) time overall. To bound
the number of iterations, note that each iteration that considers Gv decreases
µv by a factor of α. For a graph with at least one edge, the maximum subgraph
density is between 1/2 and n. Therefore each Gv can be selected O(log n) times,
yielding an O(n log n) bound on the number of iterations. ut

Now consider GHLp for p > 1. The MDSes of the center graphs are mono-
tonically non-increasing, so we can use lazy evaluation. To use eager evaluation,
we generalize the α-eager evaluation algorithm to the weighted case. Let µ be
an upper bound on the weighted density and fix α > 1. Define the score of a
vertex to be its degree divided by its weight. The algorithm repeatedly deletes
the minimum-score vertex from the graph while the graph density if less than
µ/α. As before, let G′ be the graph left when the α-eager evaluation terminates,
and let G̃ be G with the edges from G′ deleted and the weights of vertices from
G′ adjusted if we use zero-weight heuristic. We generalize Lemma 1 as follows:

Lemma 2. During the algorithm, (1) the weighed density of G′ is at least µ/(2α)
and (2) the weighted MDS value of G̃ is at most µ/α.

3 Although the MDS value of Gv is monotonically decreasing, an approximate com-
putation may find a subgraph with higher value than the previous one.

Hub Labels: Theory and Practice 7

We defined the weight of a vertex u ∈ X by cp(u) = (|Lf (u)|+ 1)p−|Lf (u)|p
and for w ∈ Y , cp(w) = (|Lb(w)| + 1)p − |Lb(w)|p. The maximum weighted
subgraph density is O(n) and the minimum non-zero density is Ω(1/np), so the
density range is O(np+1). If an iteration of GHLp chooses Gv, the density of Gv
is reduced by a factor of α, yielding an O(p log n) bound on the number of times
Gv is chosen. For p > log n, ‖L‖p = O(‖L‖logn), and we get an O(log2 n) bound.

Theorem 2. The eager-lazy variant of GHLp is an O(log n) approximation al-
gorithm runs in O(n3 min(p, log n) log n) time and O(n2) space.

The implementation of GHLp does not assume shortest path uniqueness. We
could apply an a-priori length function perturbation to make the paths unique
and center graphs less dense. We do not know how to improve theoretical bounds
in this case; experimental results appear in Section 5.

4.1 Practical Improvement

The main bottlenecks of an iteration of our algorithm are updating the set U
after adding a vertex to the labels and determining the set of center graph arcs
adjacent to a vertex in the eager evaluation and AMDS subroutines. We propose
a shortest path graph heuristic to speed up these operations in practice.

Let SPOv be the graph induced by the arcs on shortest paths out of v.
Similarly, SPI v is induced by the arcs on shortest paths into v. Both SPOv and
SPI v are acyclic (we assume no zero cycles). If shortest paths are unique, SPOv

and SPI v are trees. We maintain these graphs implicitly: arc (u,w) is in SPOv

if dist(v, u)+`(u,w) = dist(v, w), and in SPI v if `(u,w)+dist(w, v) = dist(u, v).
Suppose we add v to Lf (u) : u ∈ S′ and to Lb(w) : w ∈ S′′. Then a pair

(u,w) : u ∈ S′, w ∈ S′′ is covered if v is on a u–w shortest path. So we can iterate
over all u ∈ S′ and perform a DFS of SPOu starting at v. For each vertex w
visited by the DFS, if w ∈ S′′ we mark the pair (u,w) as covered.

We also use the SPO graphs to find the set of outgoing arcs from a vertex
u in Gv (the case of incoming arcs is similar, using the SPI graphs). Again, we
perform a DFS on SPOu starting at v. When visiting a vertex w, we know that
(u,w) is an arc of Gv if the pair u,w is not covered.

Although a DFS takes O(m) time in the worst case, it tends to visit a small
fraction of the graph, leading to a speedup in practice.

5 Experiments

We implemented all algorithms in this paper in C++ and compiled them with
Microsoft Visual C++ 2012. We conducted our experiments on a machine run-
ning Windows Server 2008 R2. It has 96 GiB of DDR3-1333 RAM and two 6-core
Intel Xeon X5680 3.33 GHz CPUs, each with 6×64 KB of L1, 6×256 KB of L2,
and 12 MB of shared L3 cache. All our executions are single-threaded.

We test our algorithm on a wide range of realistic and synthetic instances.
We test road networks from the 9th DIMACS Implementation Challenge [13]:

8 Delling, Goldberg, Savchenko, and Werneck

Table 1. Running times and label sizes for GHL1 with α = 1.0, 1.1, 1.5 and HHL.

time (s) average label
instance |V | |A| G1.0 G1.1 G1.5 HHL G1.0 G1.1 G1.5 HHL
PGPgiant 10680 48632 19113.8 3338.9 1721.2 969.4 19.1 19.4 20.3 20.5
alue5067 3524 11120 2970.8 2486.1 1796.0 158.6 23.4 24.5 25.4 24.1
beethoven 2521 15090 607.5 336.4 219.8 39.3 25.4 26.0 27.9 26.4
berlin10k 10370 24789 16026.8 8648.8 6168.2 1102.7 20.5 21.3 23.4 25.7
berlin5k 5307 12640 2475.1 1494.6 1082.7 191.5 18.0 18.6 20.2 21.6
email 1133 10902 108.8 46.9 22.6 4.4 30.0 30.4 31.4 36.8
grid10 961 3720 77.5 68.2 46.7 3.9 18.6 19.2 20.0 18.2
grid12 3969 15624 7191.2 5861.7 4038.8 276.3 27.9 28.7 29.6 27.6
hep-th 5835 27630 6374.6 1479.4 716.1 344.3 38.7 39.2 41.2 47.3
ksw-32-1 1024 6118 47.9 26.1 14.8 2.8 42.8 43.5 45.3 58.6
ksw-45-1 2025 12090 320.3 154.7 87.9 17.7 59.1 59.6 62.0 84.9
ksw-64-1 4096 24482 2319.4 900.9 489.3 124.2 81.4 82.3 84.9 126.0
polblogs 1222 33428 375.5 144.9 74.4 8.2 25.2 25.5 26.4 29.1
power 4941 13188 696.2 387.8 318.3 69.8 13.7 13.9 14.9 14.0
rgg10u 993 6162 42.5 32.4 24.6 4.0 14.0 14.4 15.0 14.6
rgg10w 993 6162 27.6 18.6 14.1 3.5 15.4 15.9 17.4 17.2
rgg12u 4088 31746 3494.6 2599.5 1853.5 300.2 24.3 25.2 27.2 26.3
rgg12w 4088 31746 1959.9 1182.2 795.8 103.1 29.9 31.0 34.5 36.7
rome99 3353 8859 587.6 399.6 269.2 41.2 23.8 24.9 27.3 28.4
venus 2838 17016 977.9 557.7 365.8 57.9 27.3 28.0 29.9 28.1

rome99, berlin5k, and berlin10k (the latter two are subgraphs from the West-
ern Europe network). From the 10th DIMACS Implementation Challenge [7],
we consider various complex networks: PGPgiant (communication), email (so-
cial), hep-th (collaboration), polblogs (links), and power (power grid). From
the SteinLib [17], we take a grid graph with holes from VLSI applications
(alue5067). We also consider triangulations from Computer Graphics applica-
tions [20] (beethoven and venus). Finally, we generated synthetic instances rep-
resenting random geometric graphs with unit (rgg-u) and Euclidean (rgg-w) edge
lengths, square grids (grid), and Kleinberg’s small world graphs [16] (ksw). A ksw
graph with parameter N consists of an N×N toroidal grid with additional long-
distance edges: for each vertex, we add an edge to a random vertex at Manhattan
distance d in the grid, where the probability of picking a particular value of d is
proportional to d−2.

Road networks are weighted and directed; rgg-w are weighted and undirected;
all others are unweighted and undirected. All instances are (strongly) connected,
although all algorithms still work otherwise.

Table 1 gives preprocessing times and average label sizes for our GHL1 algo-
rithm for α = 1.0, 1.1, 1.5 (denoted by Gα). For comparison, we also include the
HHL implementation of Delling et al. [9] that produces the best label quality;
it uses on-line tie-breaking and runs in O(n3) time. Although there are much
faster variants of HHL [9, 3], they produce slightly worse labels. For example,

Hub Labels: Theory and Practice 9

vertices

re
la

tiv
e

la
be

l s
iz

e

1000 2000 3000 4000 5000

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

● ● ● ● ● ● ● ● ●+ + + + + + + + +

+
●

HHL
G1.5
G1.1
G1.0

vertices

re
la

tiv
e

tim
e

1000 2000 3000 4000 5000

0.
2

0.
4

0.
6

0.
8

1.
0

0.
2

0.
4

0.
6

0.
8

1.
0

● ● ● ● ● ● ● ● ●

+ + + + + + + + +

+
●

HHL
G1.5
G1.1
G1.0

Fig. 1. Label size and running time (relative to G1.0) on small-world (ksw) problems
as a function of input size.

the default algorithm of Delling et al. [9] takes less than 4 seconds to find labels
for a road network with 32 413 vertices representing a bigger region of Berlin.

The table shows that increasing α from 1.0 (which produces the same results
of Cohen et al.’s algorithm) to 1.1 barely degrades label quality and results
in speedups ranging from less than two (for most graphs tested) to more than
six (for complex networks such as hep-th). Increasing α to 1.5 leads to further
speedups with more noticeable degradation of solution quality. In fact, G1.5
labels are sometimes bigger than HHL labels. Better approximations of the
maximum density subgraph lead to smaller labels, as the theory predicts.

HHL is much faster than GHL1, but usually produces worse labels. The
difference is negligible for some graph classes (such as grids and triangulations),
but HHL labels are larger by 20% for road networks and up to 50% for larger
small-world instances (ksw).

Figure 1 analyzes the ksw family in more detail. It reports the average label
sizes and running times of HHL, G1.1, and G1.5 relative to G1.0. Each data
point represents five instances with different random seeds. The figure shows
that HHL produces asymptotically worse labels than GHL1. Similarly, G1.1
and G1.5 have slight asymptotic advantage over G1.0 in terms of running times.
Although the version of HHL we test has very similar asymptotic complexity
to G1.0, recall that much faster (often asymptotically so in practice) versions of
HHL [9] (with slightly worse labels) exist.

Figure 2 examines the tradeoff between preprocessing time and quality for
GHL1 in more detail. Each instance is represented by 6 points, each correspond-
ing (from left to right) to a distinct value of α: 1.0, 1.05, 1.1, 1.2, 1.5, and
2.0. For each instance, all results are relative to α = 1.0: increasing α leads to
higher speedups but larger labels. For complex networks, such as email, hep-th,
and PGPgiant, the tradeoff is favorable: speedups of an order of magnitude lead
to labels that are bigger by less than 15%. For other classes, the tradeoff is
not as good, with even small speedups leading to non-trivial losses in quality.
Given that, we use α = 1.1 (a relatively small value) for the remainder of the
experiments.

We now compare the quality of the labels computed by the GHLp algorithm
for different values of p: we use p = 1, 2, 4, dlog ne. Recall that GHLp approxi-

10 Delling, Goldberg, Savchenko, and Werneck

speedup

la
be

l s
iz

e

2 4 6 8 10 12 14

1.
00

1.
05

1.
10

1.
15

1.
20

1.
25

1.
00

1.
05

1.
10

1.
15

1.
20

1.
25

●

+ x
●

+

alue5067
email
hep−th
ksw−45−1
PGPgiant

power
rgg12u
rgg12w
rome99
venus

●

●

●

●

●

●

+
+ +

+

+

+

x

x
x

x

x

x

●

●

●

●

●

●

+
+

+

+

+

+

Fig. 2. Tradeoff between label size and running time. Each curve considers six values of
α (1.0, 1.05, 1.1, 1.2, 1.5, and 2.0, from left to right); all values are relative to α = 1.0.

mates the `p norm, and for p = dlog ne it also approximates the `∞-norm. For
select instances, Table 2 shows the average time as well as the average and max-
imum label sizes for each norm. The L1L∞ problems were designed by Babenko
et al. [6] to show that there can be a large gap between the best labelings ac-
cording to `1 and `∞ norms, and indeed we see a big difference between GHL1

and GHLdlogne labels. For other problems, `1 and `2 labels have similar average
and maximum sizes, with no clear winner. As p increases further, the average
label size increases and the maximum size decreases. Intuitively, this is because
large labels contribute more to the p-norm when p increases. Overall, however,
the difference in either measure is not overwhelming. GHLp is slower for larger p
values, often by a large amount. These results suggest that, except in pathological
cases, using p > 1 will increase running time but will not result in substantially
different label norms.

Table 2. GHLp performance for different p values (α = 1.1)

time (s) average label maximum label
instance L1 L2 L4 L∞ L1 L2 L4 L∞ L1 L2 L4 L∞
L1L∞-13 8.8 21.6 30.7 28.6 3.8 7.5 13.7 14.1 171 171 33 21
L1L∞-16 30.9 88.3 122.9 123.5 3.8 9.0 16.6 17.2 258 258 42 25
alue5067 2486.1 3930.6 6398.1 9415.8 24.5 24.4 24.4 25.9 41 39 37 37
berlin5k 1494.6 2661.6 4597.0 6697.7 18.6 18.6 19.0 20.1 40 37 36 34
email 46.9 93.3 159.3 222.5 30.4 30.5 31.6 32.9 59 52 49 46
grid10 68.2 147.9 191.1 298.9 19.2 19.3 19.7 20.2 29 27 29 27
hep-th 1479.4 2607.9 5939.2 7609.9 39.2 39.4 40.7 43.6 88 85 72 67
ksw-45-1 154.7 337.2 716.2 1110.4 59.6 59.4 60.1 61.0 82 76 74 70
polblogs 144.9 281.4 442.7 614.5 25.5 25.7 27.0 28.0 86 62 54 52
power 387.8 602.2 977.8 1491.9 13.9 14.0 14.3 15.1 28 30 29 29
rgg12u 2599.5 4440.9 7876.7 11976.3 25.2 25.1 25.7 26.9 45 45 42 42
rgg12w 1182.2 2234.8 3965.4 6226.2 31.0 30.8 31.0 32.2 56 50 51 48
rome99 399.6 769.5 1620.2 2534.8 24.9 24.7 25.4 26.8 50 47 43 44
venus 557.7 945.7 1725.4 2602.4 28.0 27.8 28.3 29.3 46 44 40 41

Hub Labels: Theory and Practice 11

Table 3. Results on perturbed instances; all values are relative to the corresponding
unperturbed instance.

speedup relative label size
Instance G1.0 G1.1 G1.5 HHL G1.0 G1.1 G1.5 HHL
alue5067 4.63 5.27 5.51 3.17 1.30 1.29 1.34 1.38
berlin5k 0.99 1.01 1.00 1.00 1.00 1.00 1.00 1.00
email 3.12 2.96 2.84 1.77 1.61 1.60 1.61 1.61
grid10 4.93 5.61 5.50 2.21 1.25 1.24 1.28 1.35
hep-th 1.94 1.86 1.83 1.99 1.40 1.40 1.40 1.44
ksw-45-1 1.70 1.84 1.88 1.88 1.33 1.34 1.33 1.29
polblogs 4.98 5.00 5.41 1.94 1.89 1.89 1.88 2.06
power 1.03 1.16 1.29 1.13 1.08 1.09 1.06 1.09
rgg12u 1.91 2.36 2.51 2.35 1.19 1.19 1.22 1.32
rgg12w 1.01 1.02 1.01 1.01 1.00 1.00 1.00 1.00
rome99 1.01 1.00 1.00 0.99 1.00 1.00 1.00 1.00
venus 1.64 2.04 2.27 2.21 1.34 1.34 1.35 1.41

The algorithms we have tested so far perform on-line tie-breaking: they con-
sider that a vertex v covers a pair s, t if there exists at least one shortest s–t
path that contains v. To confirm that this leads to better labels than commit-
ting to one specific s–t path in advance, we ran the same algorithms on perturbed
versions of some instances, with arc lengths increased by up to 1% at random,
independently and uniformly. This mostly preserves the shortest path structure,
but makes ties much less likely.

For each perturbed instance and algorithm, Table 3 shows the speedup (in
terms of label generation time) and the average label size relative to the orig-
inal instance. For graphs that were originally weighted (berlin5k, rgg12w, and
rome99), all algorithms behave almost exactly as before. For the remaining in-
puts (in which ties are much more common), all algorithms become consistently
faster, but produce worse labels. For example, all algorithms become about twice
as fast on hep-th, but labels become 40% larger; for email, labels increase by as
much as 50%. This confirms that, for best label quality, HL should be used with
on-line tie-breaking.

6 Concluding Remarks

Our improvements to the running time and our compact data structures for the
theoretically justified HL algorithm allow us to solve bigger problems than previ-
ously possible: instances with about 10 000 vertices can be solved in an hour. Our
results provide some justification for using hierarchical labels (HHL) in practice:
on real-world instances, HHL labels are not much bigger than those found by the
theoretically justified (non-hierarchical) algorithms, and HHL is usually much
faster. That said, the difference in quality (sometimes higher than 20%) is not
negligible; faster approximation algorithms would still be quite useful.

12 Delling, Goldberg, Savchenko, and Werneck

References

1. Abraham, I., Delling, D., Fiat, A., Goldberg, A.V., Werneck, R.F.: VC-dimension
and shortest path algorithms. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP
2011. LNCS, vol. 6755, pp. 690–699. Springer, Heidelberg (2011)

2. Abraham, I., Delling, D., Goldberg, A.V., Werneck, R.F.: A hub-based labeling
algorithm for shortest paths on road networks. In: Pardalos, P.M., Rebennack,
S.(eds.) SEA 2011. LNCS, vol. 6630, pp. 230–241. Springer, Heidelberg (2011)

3. Abraham, I., Delling, D., Goldberg, A.V., Werneck, R.F.: Hierarchical hub label-
ings for shortest paths. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol.
7501, pp. 24–35. Springer, Heidelberg (2012)

4. Akiba, T., Iwata, Y., Kawarabayashi, K.I., Kawata, Y.: Fast shortest path distance
queries on road networks by pruned highway labeling. In: ALENEX 2014, pp. 147–
154, SIAM, Philadelphia (2014).

5. Akiba, T., Iwata, Y., Yoshida, Y.: Fast exact shortest-path distance queries on
large networks by pruned landmark labeling. In: SIGMOD 2013. pp. 349–360.
ACM, New York (2013)

6. Babenko, M., Goldberg, A.V., Gupta, A., Nagarajan, V.: Angorithms for hub label
optimization. In: Fomin, F., Freivalds, R., M., K., Peleg, D. (eds.) ICALP 2013.
pp. 69–80. LNCS vol. 7965, Springer, Heidelberg (2013)

7. Bader, D., Meyerhenke, H., Sanders, P., Wagner, D. (eds.): Graph Partitioning and
Graph Clustering. AMS, Boston (2013)

8. Cohen, E., Halperin, E., Kaplan, H., Zwick, U.: Reachability and distance queries
via 2-hop labels. SIAM J. Comput. 32(5), 1338–1355 (2003)

9. Delling, D., Goldberg, A.V., Pajor, T., Werneck, R.F.: Robust exact distance
queries on massive networks. TR MSR-TR-2014-12, Microsoft Research (2014)

10. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math.
1, 269–271 (1959)

11. Gallo, G., Grigoriadis, M.D., Tarjan, R.E.: A fast parametric maximum flow algo-
rithm and applications. SIAM J. Comput. 18, 30–55 (1989)

12. Gavoille, C., Peleg, D., Pérennes, S., Raz, R.: Distance labeling in graphs. J. Al-
gorithms 53(1), 85–112 (2004)

13. Goldberg, A.V., Kaplan, H., Werneck, R.F.: Reach for A*: shortest path algorithms
with preprocessing. In: The Shortest Path Problem: Ninth DIMACS Implementa-
tion Challenge, DIMACS Book, vol. 74, pp. 93–139. AMS, Boston (2009)

14. Goldberg, A.V., Razenshteyn, I., Savchenko, R.: Separating hierarchical and gen-
eral hub labelings. In: Chatterjee, K., Sgall, J. (eds.) MFCS 2013, LNCS, vol. 8087,
pp. 469–479. Springer, Heidelberg (2013)

15. Kaplan, H.: Personal communication (2013)
16. Kleinberg, J.M.: The small-world phenomenon: An algorithmic perspective. In:

STOC 2000. pp. 163–170, ACM, New York (2000)
17. Koch, T., Martin, A., Voß, S.: SteinLib: An updated library on Steiner tree prob-

lems in graphs. Tech. Rep. ZIB-Report 00-37, Konrad-Zuse-Zentrum für Informa-
tionstechnik Heidelberg (2000), http://elib.zib.de/steinlib

18. Kortsarz, G., Peleg, D.: Generating sparse 2-spanners. J. Alg. 17, 222–236 (1994)
19. Peleg, D.: Proximity-preserving labeling schemes. J. Gr. Th. 33(3), 167–176 (2000)
20. Sander, P.V., Nehab, D., Chlamtac, E., Hoppe, H.: Efficient traversal of mesh edges

using adjacency primitives. ACM Trans. Graphics 27(5), 144:1–144:9 (2008)
21. Schenkel, R., Theobald, A., Weikum, G.: HOPI: An efficient connection index

for complex XML document collections. In: Bertino, E. et al. (eds.) Advances in
Database Technology — EDBT 2004. pp. 237–255. Springer, Heidelberg (2004)

