
Towards Paravirtualized Network File Systems

Raja Appuswamy, Sergey Legtchenko, Antony Rowstron
Microsoft Research, Cambridge

Abstract
The virtualized storage stack used in enterprise data cen-
ters provides two mechanisms to enable virtualized ap-
plications to store and retrieve data, namely, virtual disks
and network file systems. In this paper, we examine the
pros and cons of using these two mechanisms to inte-
grate emerging non-volatile memory devices, and show
how neither of them provide low-overhead access to
data without sacrificing compatibility with other popular
virtualization-enabled features. In doing so, we present
paravirtualized NFS, an alternate mechanism for access-
ing data, highlight its benefits, and outline research chal-
lenges involved in realizing it in practice.

1 Introduction
All modern enterprise data centers use virtualization-
driven server consolidation to improve resource utiliza-
tion. In order to meet the ever-increasing storage de-
mands of virtualized applications, these data centers have
long migrated from using node-local, direct-attached
storage to consolidated, shared Network-Attached Stor-
age (NAS) servers [12]. The virtualized storage stack
used in these VM-NAS installations provides two mech-
anisms by which applications can access data stored
on the remote NAS server, namely, virtual hard disks
(VHD), and network file systems (NFS).

In this paper, we investigate these pros and cons of us-
ing these two mechanisms to access data stored in emerg-
ing non-volatile memory devices. In doing so, we show
that there exists a performance–flexibility trade off in
using these mechanisms, as one could either opt to use
the overhead-free NFS mechanism while giving up com-
patibility with features like live migration, and client-
side caching, or adopt the VHD mechanism and trade
off performance for compatibility. Given this trade off,
we present paravirtualized NFS, an alternate data access
mechanism that offers the benefits of both VHD and NFS
mechanisms without any of their associated disadvan-
tages.

2 VM-NAS Data Access Mechanisms
Figure 1 shows the layers that constitute the I/O stack in a
VHD-based VM-NAS setup. As can be seen, requests is-
sued by application servers running within a guest OS are

V
M

1

V
M

2

V
M

3

Application

V
M

4

SMBc

Physical NIC

Network driver

Physical NIC

 

SMBs

File
system

Network 
driver

Disk
driver

Compute Server Storage Server

Guest
OS

Hypervisor

File
system

Block
device

VHD

SMBc

vNIC

Figure 1: Data access alternatives in the VM-NAS stack

first mapped from files to blocks by the guest file system.
Then, the guest block subsystem schedules, queues and
issues these block requests to the virtual disk. These re-
quests are intercepted by the virtual disk emulation sub-
system in the hypervisor and routed to the network file
system client (SMBc in Figure 1) which, in turn, for-
wards the requests across the data center network to the
SMB server running within a NAS server. The SMB
server converts these block request into file requests to
the server-local file system which finally satisfies the re-
quests using the server-local block subsystem.

An unintended side effect of using the VHD abstrac-
tion with NAS file servers is that I/Os issued by a virtual-
ized application undergo a series of file–block–file trans-
formations due to redundant nesting of file systems and
block schedulers in the guest OS and the storage server.
Recent studies have shown that this mutilayered transfor-
mation process increases the amount of random I/O on
the server side causing performance issues in disk-based
VM NAS servers [12].

An alternative to the VHD mechanism involves map-
ping file systems stored on remote NAS servers directly
into the guest OS. In this VM-NAS setup, the file I/O re-
quests issued by the virtualized application are handled
by the network file system client in the guest OS which,

1



0.85

0.9

0.95

1

1.05

1.1

1.15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of Workers

Database Worker Scaling (10GE-SSD)

VHD Wins

NFS Wins

Figure 2: Performance of VHD configuration normalized
by that of NFS in a test setup where data is stored in a
SSD RAID array and accessed over a 1 GE network.

in turn, forwards it directly to the network file system
server running on the remote NAS server (SMBs in Fig-
ure 1). The SMB server handles these file requests using
server-local file systems as before. Thus, this approach
completely side steps the performance issues inherent to
the VHD mechanism by using NFS clients within the
guest OS to bypass the guest file system and block layers.

2.1 VHD versus NFS: 1 Gigabit Ethernet-
SSD

Despite the performance benefits offered by the NFS
mechanism, it has not been widely adopted as the pre-
ferred data access approach due to two reasons. First,
the approach of using NFS clients within the guest OS is
incompatible with the other virtualization-enabled fea-
tures like second-level SSD caching. Second, the soft-
ware overheads inherent to use of VHDs are typically
masked by high network access latencies in today’s en-
terprise data centers that use 1 Gbps to connect compute
servers with HDD/SSD-based storage servers. We will
now present results from our experimental evaluation
that quantifies this overhead using a hardware testbed
that resembles a contemporary data center installation.

Test Setup: For these tests, we used two 4-socket Dell
PowerEdge 910 servers, both equipped with four 8-core
Intel Xeon E7-4820 2 GHz processors, connected using
a 1 Gbps switch. Our compute server runs a VM that is
assigned 16 vCPUs and 4 GB of memory (we chose 16
vCPUs to compare the performance of this setup with
the one described in Section 3.) The storage server
is equipped with eight 240 GB Intel 520 Series SSDs
grouped in a RAID-0 configuration. A directory created
on the SSD-based RAID array was exported as an SMB
3.0 share (with caching turned off) and was used as the
data store. Windows Server 2012 is the guest OS within
the VM as well as the host OS on both servers. Hyper-V
is used as the hypervisor on the compute server.

Benchmark: We configured IOMeter to generate a
workload that resembles a typical database server (100%
random accesses, 67% reads, 8 KB block size, queue
depth of 8) and used this workload to benchmark the per-
formance of VHD and NFS configurations. In all cases,
IOMeter operates on a single 10 GB file and runs within
a VM as a virtualized application. In the first configu-
ration, IOMeter operates on a file stored within a VHD,
with the VHD itself being stored as a file on the stor-
age server. In the second configuration (NFS), the SMB
network share is directly mapped into the guest VM and
IOMeter operates on a file stored on the network share.
All tests were run three times and as the variation was
less than 5%, we report only the median IOPS.

Result: Figure 2 shows the performance achieved by
using by the VHD configuration normalized by the per-
formance of the NFS configuration under the database
workload while scaling the number of workers. As can
be seen, despite the file–block–file translation, VHDs in-
cur a negligible overhead. This is due to the fact that
the 1 Gbps network dictates the observed performance
in this hardware setup, as high network access latencies
(300 µs average) dominate the observed response time
when there are few workers, and the network bandwidth
becomes the limiting factor when more than three work-
ers are used under the database workload.

Thus, given that VHDs are capable of providing full-
system virtualization with moderate overhead, they are
certainly the right data access mechanism for today’s
VM-NAS installations.

3 NVM Data Access Options:
Virtual Disk or Network File System?

Over the past few years, flash-based solid state storage
devices have evolved from being used as SATA-based
HDD accelerators to DIMM-slot-resident non-volatile
memory devices [4]. Emerging non-volatile memory
technologies, like Phase Change Memory (PCM), are
expected to scale to capacities much larger than flash,
while, at the same time, offering latencies and bandwidth
guarantees comparable to DRAM [9].

Rivalling the rate of growth of these non-volatile stor-
age devices are recent advances in data center network-
ing. With the emergence of Converged Enhanced Ether-
net (CEE), features like Remote Direct Memory Access
(RDMA), which were once limited to low-latency net-
works like InifiBand and HPC clusters, have started to
appear even over Ethernet (RoCE) [6]. Accordingly, net-
work file system protocols have been extended to provide
low-latency file access over RDMA [11].

Given these trends, there are two ways in which NVM
devices can be used in VM-NAS installations, namely, as
a persistent, client-side cache device in a compute server,

2



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of Workers

Database Worker Scaling (RoCE-RAM)

NFS Wins

Figure 3: Performance of VHD configuration normalized
by that of NFS in a test setup where data is stored in a
RAM disk and accessed over a RoCE network.

or as a primary data storage device in NAS-based storage
server. Ideally, the data access interface provided by the
virtualized storage stack should provide low-overhead,
high-performance access to NVM-based storage devices
irrespective of the type of NVM integration used.

The NFS interface is capable of providing such low-
overhead data access to virtualized applications. For in-
stance, using DirectPath I/O (or SR-IOV), a NFS client
running within a guest OS could issue RDMA requests
directly to the physical NIC completely bypassing both
the guest-OS’s storage stack and the hypervisor. How-
ever, such hypervisor bypass makes it impossible to inte-
grate NVM as a hypervisor-managed second-level cache.
The VHD mechanism, on the other hand, is integration-
independent, can be used in both types of VM-NAS in-
stallations, and does not impose any compatibility limita-
tions. However, as we will show in this section, it suffers
from a significant performance penalty due to overheads
inherent to the file–block–file translation.

3.1 VHD versus NFS: RoCE - RAM Disk
Test Setup: For these tests, we used two servers, both
equipped with 16 Intel Xeon E5-2665 2.4 GHz cores,
384 GB of RAM and a 40 Gbps RDMA-capable Mel-
lanox ConnectX-3 NIC with a full-duplex port. The
servers are connected to a Mellanox MSX1036B-1SFR
switch using RoCE at the link layer. The hypervisor uses
SMB 3.0 protocol over the SMB Direct RDMA trans-
port. On the storage server, we use a 20 GB RAM disk
to represent a NVM device. As before, a directory cre-
ated on the RAM disk is exported over SMB.

Benchmark: In the VHD configuration, we run IOMe-
ter in a single VM on the compute server as before
using an identical setup (16 vCPUs, 4 GB memory).
IOMeter reads/writes data from a file stored in a VHD,
with the VHD itself being stored as a file on the RAM
disk-based network share. Supporting the NFS mech-

anism requires using DirectPath I/O (SR-IOV) to pro-
vide a direct communication channel between RDMA-
capable NFS clients and physical NICs. Unfortunately,
the RDMA-based SMB Direct protocol currently sup-
ported by Hyper-V only works in the non-virtualized
host environment, and hence, it is not possible for SMB
clients in Hyper-V guest VMs to directly participate in
RDMA-based data exchange with NAS servers.

For this work, we simulate the NFS setup by run-
ning IOMeter directly on the host as a non-virtualized
application. Recent studies using other hypervisors,
like VMWare ESX Server, have shown that applica-
tions running inside VMs empowered with DirectPath
I/O are capable of achieving performance on par with
non-virtualized case [3]. Thus, we believe that the re-
sults we obtain from using an SMB client in the host OS
would be a close approximation of the performance of a
NFS configuration.

Result: Figure 3 presents the normalized performance
of the VHD configuration in our new test setup. Com-
paring this to Figure 2, one can clearly see that bene-
fits offered by using the virtual disk abstraction are no
longer free. Unlike the 1 Gbps setup, the VHD con-
figuration consistently suffer from a significant perfor-
mance penalty (3x in the worst case) when compared to
the NFS configuration. This deterioration stems from
several sources including file systems and block sched-
ulers in the guest OS, translation from VHD blocks to
network file requests in the virtual disk emulation layer,
etc. Compare to VHD, the NFS approach side steps all
these sources of overhead.

To summarize, the current VM-NAS storage stack
presents a performance–flexibility trade off, as one could
either use low-overhead NFS mechanism while sacrific-
ing compatibility with several other hypervisor features,
or use integration-independent, feature-compatible VHD
mechanism while sacrificing performance.

4 The Case for Paravirtualized NFS
Given the drawbacks of VHD and NFS, it is obvious that
a new mechanism that provides low-overhead access to
data while enabling guest I/O interpositioning by the hy-
pervisor is necessary. In this section, we will introduce
paravirtualized NFS, highlight its advantages, and iden-
tify potential challenges that require further research.

4.1 Paravirtualized NFS
Conceptually, the paravirtualized NFS (PV-NFS) ap-
proach can be seen as extending the traditional NFS
approach to support hypervisor interpositioning. Thus,
similar to a traditional NFS client, a paravirtualized NFS
client operates within the guest OS and provides a stan-
dardized network file system interface to virtualized ap-

3



plications. However, unlike the traditional NFS client, a
paravirtualized client uses explicit guest–host communi-
cation mechanism provided by the hypervisor to forward
all application file I/O requests to the hypervisor. Thus,
the paravirtualized client would, in effect, act as a pass-
through, request-forwarding proxy that delegates the task
of communicating with the remote NAS server to the hy-
pervisor.

As the hypervisor now intercepts all file I/O requests
initiated by the application, it can perform various trans-
formations on these requests to implement the file-level
equivalent of all features traditionally supported using
VHDs at the block level. Thus, the hypervisor would
snapshot and clone file systems (instead of VHDs), cache
files (rather than VHD blocks), and implement whole-file
or subfile deduplication (rather than block-level dedupli-
cation).

4.2 Paravirtualized NFS: Advantages
The PV-NFS mechanism possesses the advantages of
both VHD and NFS mechanisms without suffering from
any of their associated drawbacks. Similar to VHDs, all
guest I/O requests are intercepted and serviced by the
hypervisor. Thus, the PV-NFS mechanism can be used
to implement hypervisor-based features like second-level
caching. However, unlike the VHD mechanism, and
similar to the NFs mechanism, the paravirtualized NFS
mechanism does not incur any translation overhead, as
file I/O requests made by the application completely by-
pass the guest OS’s storage stack.

Further, like the NFS mechanism, client applications
can use file servers to not just store files but also share
them with other clients. Virtual disks, on the other hand,
force applications to adopt other means of sharing, as
data stored in a virtual disk is private to the client (and
the client’s guest file system). In addition, as file servers
store files with the PV-NFS approach, there is no need
for using complex virtual-disk introspection techniques
to extract semantic information. Rather, network file
servers can use optimizations based on file typing infor-
mation or file access patterns to improve the performance
of even virtualized data center workloads.

4.3 Paravirtualized NFS:Challenges
The performance results presented in this paper both
highlight the overhead of using VHD as a storage virtual-
ization mechanism, and demonstrate the potential bene-
fits of using the PV-NFS mechanism. However, more re-
search is required to understand 1) the overhead of guest–
host file I/O bypass mechanism, 2) the scalability of file-
based client-side functionalities, and 3) usability compli-
cations due to lack of full-system virtualization. We will
elaborate on these topics in this section.

One way of implementing the guest-NFS proxy is to
not use paravirtualization at all; one could simply host
a NFS server in the hypervisor and use unmodified NFS
clients within the guest OS to forward file I/O requests to
the hypervisor. Although the results are not shown here
due to lack of space, we did evaluate the performance of
this approach and we found that using SMB-based file
I/O bypass incurs a 4x performance penalty compared
to VHDs due to network virtualization and SMB proto-
col overheads. This clearly demonstrates the need for
a low-overhead paravirtualization-based communication
channel between the guest OS and the hypervisor. Re-
cent research has shown how block I/O paravirtualization
techniques can achieve performance comparable to that
of DirectPath I/O (SR-IOV). Thus, an important area that
requires further research is understanding whether these
techniques can be extended to implement a paravirtual-
ized NFS client [5].

Traditionally, hypervisors have exploited the block ab-
straction provided by the VHD mechanism to implement
various features like snapshotting, caching etc. As we
mentioned earlier, with a PV-NFS client, the hypervi-
sor could implement semantically-aware, file-based ver-
sions of these features as it services file I/O requests, not
just VHD block requests. For instance, consider second-
level caching. An obvious approach to integrating NVM
as a second-level cache is to have the NFS client resi-
dent in the hypervisor perform second-level data caching
using NVM similar to the way SSDs are used today.
The PV-NFS client operating within each guest performs
first-level caching in DRAM similar to file system buffer
caches.

Such an integration raises several important questions.
First, can caching (and other client-side functionalities
like deduplication) be implemented efficiently at the file
level? How do we integrate such functionalities with
other NVM-specific tasks like wear-leveling for PCM?
How do we preserve the ordering of writes issued by the
PV-NFS client? What is the right division of labor be-
tween hypervisors and NAS servers? Most modern NAS
servers support snapshotting and cloning of multiple file
volumes. Should the hypervisor exploit these features or
should it reimplement them on the client side?

Despite several advantages, the PV-NFS mechanism
does have one disadvantage compared to the VHD mech-
anism, namely, its inability to offer full-system virtual-
ization. Unlike the VHD mechanism, where a single vir-
tualized device can integrate both system and data vol-
umes into a single unit of administration, the PV-NFS
mechanism requires separate management of boot vol-
umes (stored in VHDs) and application data volumes
(stored as file systems in NAS servers). We believe that
this limitation would not be an issue in the server con-
solidation scenario, as server VMs already use shared,

4



master VHD boot images that are not updated frequently,
and rely on the scalability and reliability of NAS servers
to store large amounts of data. However, more investiga-
tion is required to understand the impact of this limitation
on usability and administration in VDI installations.

5 Related Work
While the work presented in this paper is, to our knowl-
edge, the first study that examines the overhead of us-
ing current data access mechanisms in data centers with
network-attached NVM, researchers have identified var-
ious issues associated with the usage of VHDs in other
contexts.

Le et al. [8] measured the performance impact of file
system nesting in installations where virtual disks are
stored on local file systems. They observed that the use
of two file systems, one in the guest and the other in
the host, can cause unpredictable I/O performance and
significant increase in end-to-end access latency. Sim-
ilarly, Boutcher and Chandra [1] investigate the effect
of nested I/O schedulers and show how the worst-case
scenario could cause 40% throughput degradation. Re-
cently, researchers also investigated the impact of storing
virtual disks on NAS servers from a workload distortion
point of view and have made the case for creating new
NAS benchmarks explicitly targeted at VM-NAS deploy-
ments [12].

Based on the observation that virtualization is of-
ten used to achieve application compatibility, Jannen et
al. [7] propose Zoochory, a redesign of the virtualized
storage stack that changes the division of labor between
guest and host file systems by isolating media manage-
ment to host file systems and reducing guest file systems
to mere API implementations. One could also achieve
such a division of labor by abandoning traditional block
abstraction in favor of a semantically richer alternative.
For instance, one could use the Object Storage Device
(OSD) abstraction and have the hypervisor provide each
guest VM with an OSD, rather than a traditional block
device. However, we believe that such an approach is too
invasive as it either requires end-to-end support (at both
client and server) for the OSD protocol, or forces the hy-
pervisor to implement the mapping of objects to blocks
(OSDFS), effectively relocating file system functionality
from the guest to the hypervisor similar to Zoochory. The
PV-NFS mechanism, in contrast, provides all the benefits
of using the OSD abstraction while building on existing
network file system protocols.

In contrast to Zoochory, Ventana [10] showed how
a virtualization-aware distributed file system can solve
several usability, management, and security issues as-
sociated with virtual disks. However, as the focus
of that work was on proving that all VHD features
could be implemented using distributed file systems,

they used guest-resident NFS client to communicate with
hypervisor-resident NFS server–an approach, which, as
we demonstrated in our paper, possess a 4x performance
penalty when used to access data stored in low-latency
NVM.

A huge body of related research focuses on designing
file systems for NVM devices [2]. As our focus is on
integrating NVM devices in the virtualized storage stack,
our work is orthogonal to this topic.

6 Conclusion
Fully exploiting the performance benefits of emerging
NVM storage devices requires eliminating unnecessary
software overhead in the virtualized storage stack. In this
paper, we demonstrated the overhead of using VHDs as
the primary data access mechanism in NVM-based VM-
NAS installations. We showed how NFS offers a low-
overhead alternative to VHD but is incompatible with
other popular virtualization-enabled features. Given this
performance–flexibility trade off, we made the case for
using PV-NFS as a new data access mechanism, high-
lighted its benefits, and outlined issues that warrant fur-
ther research.

References
[1] BOUTCHER, D., AND CHANDRA, A. Does Virtualization Make

Disk Scheduling Passé. SIGOPS Oper. Syst. Rev. 44, 1 (2010).
[2] CONDIT, J., NIGHTINGALE, E. B., FROST, C., IPEK, E., LEE,

B., BURGER, D., AND COETZEE, D. Better I/O Through Byte-
addressable, Persistent Memory. In Proc. of the 22nd ACM
SIGOPS Symp. on Oper. Syst. Prin. (2009).

[3] DAVDA, B. Ultra-Low Latency on vSphere with RDMA. In
VMWorld (2012).

[4] DIABLO TECHNOLOGIES. Memory Channel Storage.
[5] HAR’EL, N., GORDON, A., LANDAU, A., BEN-YEHUDA, M.,

TRAEGER, A., AND LADELSKY, R. Efficient and Scalable Par-
avirtual I/O System. In Proc. of the USENIX Ann. Tech. Conf.
(2013).

[6] INFINIBAND TRADE ASSOCIATION. Supplement to Infiniband
Architecture Specification Volume 2 Release 1.2.2 Annex A16:
RDMA over Converged Ethernet (RoCE), 2010.

[7] JANNEN, W., TSAI, C.-C., AND PORTER, D. E. Virtualize Stor-
age, Not Disks. In Proc. of the 14th USENIX Work. on Hot Topics
in Oper. Syst. (2013).

[8] LE, D., HUANG, H., AND WANG, H. Understanding Perfor-
mance Implications of Nested File Systems in a Virtualized Envi-
ronment. In Proc. of the 10th USENIX Conf. on File and Storage
Tech. (2012).

[9] LEE, B. C., IPEK, E., MUTLU, O., AND BURGER, D. Archi-
tecting phase change memory as a scalable dram alternative. In
Proc. of the 36th Ann. Intl. Symp. on Comp. Arch. (2009).

[10] PFAFF, B., GARFINKEL, T., AND ROSENBLUM, M. Virtual-
ization Aware File Systems: Getting Beyond the Limitations of
Virtual Disks. In Proc. of the Third Conf. on Networked Syst.
Design and Impl. (2006).

[11] TALPEY, T., AND KAMER, G. High Performance File Serving
With SMB3 and RDMA via SMB Direct. In Storage Developers
Conference (2012).

[12] TARASOV, V., HILDEBRAND, D., KUENNING, G., AND
ZADOK, E. Virtual Machine Workloads: The Case for New
Benchmarks for NAS. In Proc. of the USENIX Conf. on File and
Storage Tech. (2013).

5


