
Verification Modulo Versions: Towards Usable Verification

Francesco Logozzo,
Shuvendu K. Lahiri, Manuel Fähndrich

Microsoft Research
{logozzo, shuvendu}@microsoft.com,

manuel@fahndrich.com

Sam Blackshear
University of Colorado Boulder

samuel.blackshear@colorado.edu

Abstract
We introduce Verification Modulo Versions (VMV), a new static
analysis technique for reducing the number of alarms reported by
static verifiers while providing sound semantic guarantees. First,
VMV extracts semantic environment conditions from a base pro-
gram P. Environmental conditions can either be sufficient condi-
tions (implying the safety of P) or necessary conditions (implied
by the safety of P). Then, VMV instruments a new version of the
program, P′, with the inferred conditions. We prove that we can use
(i) sufficient conditions to identify abstract regressions of P′ w.r.t.
P; and (ii) necessary conditions to prove the relative correctness
of P′ w.r.t. P. We show that the extraction of environmental condi-
tions can be performed at a hierarchy of abstraction levels (history,
state, or call conditions) with each subsequent level requiring a less
sophisticated matching of the syntactic changes between P′ and P.
Call conditions are particularly useful because they only require the
syntactic matching of entry points and callee names across program
versions. We have implemented VMV in a widely used static anal-
ysis and verification tool. We report our experience on two large
code bases and demonstrate a substantial reduction in alarms while
additionally providing relative correctness guarantees.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams; F.3.2 [Logics and Meanings of Programs]: Semantics of
Programming Languages

General Terms Experimentation, Languages, Reliability, Verifi-
cation.

Keywords Abstract interpretation, Specification inference, Static
analysis.

1. Introduction
Program verification is traditionally version un-aware: it focuses on
the verification of a particular version of a program, independent of
past versions of the same code base. Consider the typical verifica-
tion scenario. The user has a program P′ that she wants to verify.
She runs the static verification tool, which produces a long list of
alarms. Ideally, she will go over the list, addressing all the issues—

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’14, June 9–11, 2014, Edinburgh, UK
Copyright c© 2014 ACM [to be supplied]. . . $15.00

fixing these alarms could involve repairing the program or provid-
ing additional annotations or contracts. In practice, such a process
is too expensive to be realistic—easily requiring several weeks of
work on medium-scale projects. Furthermore, she is more inter-
ested in fixing the new defects, i.e., the ones introduced since the
last release P of the same project. In fact her confidence in the “old”
code is much higher (because of extensive tests, deployments, code
reviews and reuse) than her confidence in the new code. Further-
more, even if a bug is found in P, it may be the case that she will
not choose not to fix it to avoid compatibility issues [4].

Most industrial-strength static analysis tools provide a syntac-
tic baselining feature to tackle this issue—e.g., the Polyspace Ver-
ifier [31], Coverity SAVE [14], Grammatech CodeSonar [19], and
CodeContracts static checker [17]. Syntax-based baselining can be
roughly sketched as follows. The tool first creates a database with
all unresolved warnings for a base program P. In the database,
warnings are indexed by source position, type, message, and some
other syntactic information. The resulting database is the analysis
baseline. When the source program P is changed to create program
P′, each warning generated for P′ is compared against the warnings
in the analysis baseline. If the warning is matched, it is automati-
cally hidden; if not, it is reported as a new warning.

By nature, syntactic matching is unreliable and unsound. It
can both re-report old warnings and suppress warnings that are
genuinely new. For example, let us consider a simple line-based
suppression strategy that suppresses all warnings about an assertion
failure at line i. Say a warning based on an assertion a0 at line iwas
suppressed in the original program. Assume the user inserts a new
and potentially failing assertion a1 at line i in the new program,
shifting a0 back to line i + 1. Now, the analyzer will (wrongly)
suppress the warning about the failure of a1, and (wrongly) re-
report the warning about the failure of a0. This is exactly the
opposite of the desired behavior! Though this example represents
the worst case behavior of an overly simplistic syntactic baselining
scheme, our point is that syntactic approaches to baselining will
always fall short of correct behavior in some cases because the
baseline lacks semantic information about why a warning should be
suppressed. More importantly, it does not provide any guarantees in
cases where it suppresses an “old” alarm or shows a “new” alarm.

Motivated by these deficiencies in verification tools—too many
warnings for version-unaware verification vs. unreliable and un-
sound baseline—we seek to provide a new verification technique
which delivers most of the benefits of a baseline while additionally
providing semantic correctness guarantees.

Contributions. We introduce Verification Modulo Versions (VMV),
a technique for automatically inferring and maintaining semantic
information across program versions. In VMV, the database corre-
sponding to the analysis baseline is populated with semantic envi-
ronmental conditions E extracted from the base program P. When

Sufficient():
0: y = g()
1: if *
2: assert y > 0

(a) An example with no necessary condition
other than true and a sufficient condition y >
0. The expression * denotes non-deterministic
choice.

Sufficient’():
0: y = g()

// assume y > 0
// read from baseline

1: y = y - 2
2: if *
3: assert y > 0

(b) An evolved version of the program from
Fig. 1a. Though the assertion is unchanged syn-
tactically, VMV(S) will report a regression be-
cause the baseline condition y > 0 is no longer
sufficient to ensure the safety of the assertion.

Sufficient’’():
0: y = g()

// assume y > 0
// read from baseline

1: z = y - 2
2: if *
3: assert z > -12

(c) A different evolved version of the pro-
gram from Fig. 1a. Though the assertion
has changed syntactically and semantically,
VMV(S) proves it by using the sufficient con-
dition y > 0 from the baseline.

Figure 1: VMV(S): Verification Modulo Versions with sufficient conditions.

the static verifier analyzes P′, it reads the semantic information E
from the baseline, instruments P′ with E , and analyzes the instru-
mented program P′E . Since P′E makes more assumptions than P′, a
monotonic analyzer will report fewer warnings for P′E than for P′.
In order to make VMV practical, we must address three main ques-
tions: (i) What semantic information E should be extracted from
P and saved in the baseline? (ii) Where do we insert E in P′, that
is, how do we obtain P′E? (iii) Which semantic guarantees do we
have on P′E? We answer these questions by making the following
contributions:

• We formally characterize the optimal extracted environment
information E as an abstraction of the trace semantics of P.
We consider abstractions such that the extracted information is
(i) sufficient for the absence of errors, or (ii) necessary for the
presence of good runs. We consider observing and injecting the
extracted information at different levels of abstraction, namely:
(i) the history-level as a sequence of states, (ii) the program
point-level as sets of states reaching a program point, or (iii)
the call-level, as sets of states after method calls.
• We show that if E is sufficient to remove the errors in P and
P′E has an error, then P′ introduced a regression w.r.t. P—
i.e., under the same environmental assumptions ensuring P was
correct, P′ leads to an error. Otherwise stated, P′ requires more
assumptions from the external environment than P did.
• We show that if E is necessary for the presence of good runs

in P and P′E has no errors, then P′ is correct relative to P—i.e.,
under the same environmental assumptions holding in all good
P runs, P′ is correct.
• We show how the concepts above interplay with the abstractions

necessary to make the approach practical: (i) the underlying
static analyzer or the program verifier; (ii) the inference of
the sufficient/necessary conditions; and (iii) the mapping of
environment conditions to new versions.
• We have implemented VMV with necessary conditions and call

matching in the cccheck tool and validate its effectiveness on
a sizable suite of real-world C# projects. For the three largest
projects in the open source ActorFx code base, VMV reduces
the number of alarms to investigate by 72.6% while providing
relative correctness guarantees. We only needed to add few
contracts to bring the number of false alarms to 0. We applied
the technique to a larger production-quality code base and we
found similar results.

2. Overview of the Solution
The problem Suppose we have two versions of a program: the
original program P and an updated version P′. Assume also that we

Necessary():
0: y = g()
1: if *
2: assert y > 0
3: else
4: assert false

(a) An example with a necessary
condition (y > 0), but no sufficient
condition other than false.

Necessary’():
0: y = g();
// assume y > 0
// read from the baseline

1: if (y % 2 == 1)
2: assert y > 0
3: else
4: assert y > 1

(b) An evolved version of the pro-
gram from Fig. 2a where the nec-
essary condition (y > 0) from the
previous program implies the safety
of both assertions in the new pro-
gram.

Figure 2: VMV(N): Verification Modulo Versions with necessary
conditions.

have some static analyzer or deductive verifier whose internals are
opaque to us. The goal of traditional alarm masking (baselining)
is to emit the set of alarms for P′ not in P using some syntactic
context matching to identify alarms both in P and P′. The goal of
VMV is to provide a robust verification technique which exploits
semantic information present in a prior version P to produce a
semantically sound set of alarms for P′. By robust, we mean that
the technique should require minimal syntactic matching among
program versions. By semantically sound, we mean that VMV
provides actual guarantees on its output.

VMV has three main phases: (i) extraction of semantic environ-
mental conditions E from the base program P; (ii) installation of E
in P′ to obtain an instrumented program P′E ; and (iii) verification
of P′E . VMV is only useful if the set of alarms P′E is significantly
smaller than that of P′. In this paper we systematically study the
(orthogonal) choices for extraction and installation of correctness
conditions, the semantic guarantees provided in the concrete and in
the abstract, and justifying a particular point of the design space in
VMV that we have adopted in the tool cccheck.

Extraction VMV extracts semantic conditions from P, i.e., con-
straints on the environment to ensure good executions. We must
be careful to differentiate two kinds of assumptions, sufficient vs.
necessary. A sufficient condition guarantees that the program al-
ways reaches a good state. A necessary condition holds whenever
the program reaches a good state. Otherwise stated, if a sufficient
condition does not hold, the program may or may not reach a bad
state. If a necessary condition does not hold, then the program will
definitely reach a bad state. We will see that installing sufficient or

necessary conditions will provide different semantic guarantees on
the instrumented program P′E .

The difference between sufficient vs. necessary conditions is
exemplified in Fig. 1a and Fig. 2a. In the first case, the condition
y > 0 (at program point 0) is sufficient for the correctness of
the program: When y is positive, the program will always reach
a good state no matter which non-deterministic choice is made.
However, the condition is not necessary because the program may
still reach a good state even if y is not positive. In the second
case (Fig. 2a), the condition y > 0 is necessary for the correctness
of the program, but not sufficient. If y is not positive, then the
assertion at line 2 will always fail. Since there is no condition
that we can impose on y to ensure that the second assertion will
not fail, the program has no sufficient correctness condition other
than false. In general, finding a sufficient condition requires an
under-approximation while finding a necessary one requires an
over-approximation.

The diagram in Fig. 3 summarizes our framework for extracting
correctness conditions from a program P. At the lowest level is the
trace semantics τ+

P , which capture all finite executions of P (Sec. 3).
By abstracting away all traces in τ+

P that lead to an error state via
the abstraction function αG , we obtain the success semantics GJPK
(Sec. 3). Necessary and sufficient conditions for a program are suit-
able abstractions of the success semantics. As our diagram illus-
trates, we can extract correctness conditions at increasing levels of
abstraction. One option (Sec. 4) is to extract correctness conditions
for sequences of function calls (history conditions ~S, ~N). More ab-
stract options (Sec. 5) are: (i) to extract correctness conditions for
each program point where a function call appears, i.e., different oc-
currences of the same function invocation are kept separate (state
conditions SΣ, NΣ); or, (ii) to merge together calls to the same
function (call conditions, S,N). The intuition behind this hierar-
chy of conditions is that the more abstract the condition, the easier
it is to inject into P′. In the following we will let VMV(S) (resp.
VMV(N)) denote VMV instantiated with sufficient (resp. neces-
sary) conditions.

Insertion In order to build the instrumented program P′E , we need
to inject the conditions E into P′ (Sec. 6). The insertion step de-
pends on the abstraction level of the extracted conditions. For in-
stance, history conditions require the exact matching of program
points, whereas call conditions require only the matching of entry
points and callees among program versions. In our theoretical treat-
ment we assume that we are given a function δ mapping each cor-
rectness condition from its program point in P to the corresponding
program point(s) in P′. Our theoretical results are parametric w.r.t.
δ. In practice, we cannot ask the user to provide such a map, there-
fore we pick a function δ requiring a minimal syntactic matching
that is easy to compute. Our pragmatic choice is to use call condi-
tions (S,N) where δ only needs to match entry points and callee
functions among program versions. Our hypothesis is that such a
matching is much more reliable than mapping arbitrary program
points.

Concrete semantic guarantees The next question is: what se-
mantic guarantees do we have on P′E? We will see that if the ex-
tracted correctness conditions E are sufficient and P′E has a bad
run, then P′ introduced a δ-regression, i.e., P′ is not correct when
the same hypotheses under which P was correct are mapped to P′

via δ (Th. 1). Intuitively, this means that the correctness of P′ re-
lies on stronger assumptions than the correctness of P. Conversely,
if the extracted correctness conditions are necessary and there are
no errors in P′E , then P′ is δ-correct with respect to the same en-
vironment assumptions in P (Th. 2). Otherwise stated, sufficient
conditions are useful to find new bugs, while necessary conditions
are useful to prove relative correctness (the absence of new bugs).

δ Sufficient Necessary

Call conditions S N

State conditions SΣ

αS

OO

NΣ

αN

OO

History conditions ~S

αΣ

OO

~N

αΣ

OO

Success Semantics GJPK
αs

gg

αn

77

Concrete Semantics τ+
P

αG
OO

Underapproximate
oo

Overapproximate
//

Figure 3: The hierarchy of environmental conditions extraction.
The success semantics abstracts the concrete semantics. The cor-
rectness conditions (sufficient—ensuring the program is always
correct; or necessary—required for all the correct executions) ab-
stract the success semantics. Correctness conditions can be ob-
served at increasing levels of abstraction (history, program point,
and calls).

As an example of bug finding, let us consider the code in Fig. 1b.
VMV(S) reads the (sufficient) condition y > 0 from the analysis
baseline and installs it as an assumption about the return value of
g(). It emits a new alarm because the sufficient condition y > 0
from Sufficient is no longer strong enough to prove the cor-
rectness of the assertion in the new version of the program: the
correctness of Sufficient’ requires more environmental assump-
tions than the correctness of Sufficient. Note that a syntactic
baselining technique matching asserted expressions might wrongly
suppress the alarm, since the expression is y > 0 in both versions
of the program. In Fig. 1c, a syntactic baselining technique also
would likely fail to match the alarm from Sufficient with the
alarm in Sufficient’’ because the line numbers have shifted
and the expression being asserted has changed. Under the carried-
over assumption y > 0, the assertion at line (3) holds. Note that
any under-approximation of y > 0 (e.g., false) would allow us to
make the same guarantee, whereas an over-approximation would
be incorrect. For instance, using true would cause VMV(S) to
(wrongly) report a regression for Sufficient’’. Finally, note
that the condition read from the baseline is stronger than (i.e.,
is an under-approximation of) the condition we can extract from
Sufficient’’: ret > -10.

As an example of relative verification consider the evolved pro-
gram Necessary’ in Fig. 2b. VMV(N) proves that under the nec-
essary correctness assumption y > 0 inherited from Necessary,
Necessary’ is correct. Furthermore, we deduce that Necessary’
fixes Necessary since the condition that was only necessary but
not sufficient for the correctness of Necessary is now sufficient
for the correctness of Necessary’.

Abstraction In practice, we need to instantiate our VMV frame-
work with a real static analysis/verification tool and an effective
method for semantic condition inference. We require approxima-
tion to make program analysis and condition inference tractable
(Sec. 7). The analysis tool should over-approximate the concrete
trace semantics (i.e., τ+

P in Fig. 3), whilst the inference tool should
under-approximate the sufficient conditions (S ≤ S) and over-
approximate the necessary conditions (N ≤ N). It is well-known

that the abstraction may lose some of the concrete guarantees, so it
is natural to ask what happens to VMV in the abstract.

For sufficient conditions (i.e., VMV(S)), if the analysis is com-
plete [18], then the alarms for P′S are still concrete regressions (e.g.
as in Fig. 1b). However, if the tool is incomplete, i.e., it fails to
prove every fact that is true, then the alarms are abstract regres-
sions. An abstract regression denotes an environment s ∈ S for
which the tool can prove P correct, but cannot prove the correctness
of P′. Orthogonally if S < S then P′S may suppress real alarms,
i.e., some regression may be missed—think for instance of a naive
extraction algorithm always suggesting false. In general, no guar-
antee can be given on the assertions not shown in the list of raised
alarms.

For necessary conditions (i.e., VMV(N)), if the analysis is
incomplete or N < N , then some of the reported alarms may be
false alarms—the analysis failed to prove the relative correctness
either because the inferred condition is too weak (at worst true), or
the tool is too imprecise. Nevertheless, all the assertions not shown
as alarms are correct or relatively correct.

Motivated by the observations above, and the fact that all practi-
cal verification and analysis tools are incomplete, and that comput-
ing “good” sufficient conditions is harder than computing “good”
necessary conditions, and that (relative) verification is more inter-
esting than bug finding, we instantiate VMV with state-based nec-
essary precondition inference (Sec. 8).

3. Concrete Semantics and Background
We formalize VMV using Abstract Interpretation [8]. Abstract In-
terpretation is a theory of semantic approximations which is very
well suited to describing (under/over) approximations. In formaliz-
ing VMV, we will need to consider four orthogonal axes of approxi-
mation: (i) the extracted semantic conditions (history, state, or call);
(ii) whether they are sufficient or necessary; (iii) the approximation
induced by the inference tool (under-approximation of sufficient,
over-approximation of necessary); and (iv) the over-approximation
induced by the static analysis/verification tool.

Syntax We consider a simple imperative block language with
“holes.” Blocks are sequences of basic statements. Basic statements
are assignments, assertions, assumptions, and function calls. For
our theoretical treatment: (i) holes are input values and calls to
unknown external functions; (ii) non-deterministic choices (*) can
only appear in assignments (i.e., assert * and assume * are dis-
allowed); (iii) all contracts (if any) for function calls are explicitly
expanded. A program is a directed graph whose nodes are blocks.
We assume that a program has a single exit block. The special pro-
gram points entry and exit denote function entry and exit points.
We use the BeforeCall (resp. AfterCall) set to denote the set of
program points before (resp. after) some method call.

Concrete states A program state maps variables x, y · · · ∈
V to values in V . We assume some reserved variable names:
arg0, arg1, . . . are the actual arguments for function calls and ret
is the value returned by a function call. Program states s, s0 . . .
belong to a given set of states Σ. The function π ∈ Σ → PC
maps a state to the corresponding program point, and the function
πs ∈ Σ → Stm maps states to the corresponding statements. The
function |=∈ (Σ × Exp) → {true, false} returns the Boolean
value of an expression in a given state.

Small-step operational semantics The non-deterministic transi-
tion relation τP ∈ ℘(Σ × Σ) associates a state with its possible
successors in the program P. When the program P is clear from the
context, we write τ instead of τP. We often write τ(s, s′) instead
of 〈s, s′〉 ∈ τ . The definition of τ for our block language is mostly
straightforward, hence we omit it here. Function calls are the only

interesting case for our exposition. We use function calls to model
unknowns from the environment and imprecision in the static anal-
ysis. To simplify the theoretical development, we assume that func-
tion calls are (i) black boxes – we cannot inspect their bodies, so
they can return any value, and (ii) side effect-free, otherwise do as
in [13]. If s ∈ Σ is the state corresponding to a function call (that
is, πs(s) = ret = f(arg0 . . . argn−1)), then the transition rela-
tion is such that ∀s′ ∈ Σ. τ(s, s′) ⇔ ∃v ∈ V. s′ = s[ret 7→ v].
In general, side effect-free functions need not be deterministic. Our
model of functions accounts for the possibility that a function can
be invoked with the same parameters and return a different value.
The set of initial states is I ⊆ Σ. The final (or blocking) states
have no successors: F = {s ∈ Σ | ∀s′. ¬τ(s, s′)}. The bad
states B ⊆ F are final states corresponding to assertion failures,
i.e., B = {s ∈ Σ | πs(s) = assert e ∧ s |= ¬e}. The good
states G ⊆ F are non-failing final states: G = F \ B.

Maximal trace semantics The concrete semantics of a program
P is a set of execution traces. Various choices are possible for the
trace semantics. Here, for simplicity, we will simply consider finite
maximal finite traces, e.g., we ignore non-termination. Traces are
sequences of states in Σ. The empty trace ε has length 0. A trace
~s = s0s1 . . . sn−1 has length n. We will often write si to refer to
the i-th state of the trace ~s. The set of traces of length n ≥ 0 is Σn.
The set of finite traces is Σ∗ = {ε} ∪

⋃
n>0 Σn. The good traces

are G∗ = {~s ∈ Σ∗ | sn−1 ∈ G}. Similarly, the bad traces are
B∗ = {~s ∈ Σ∗ | sn−1 ∈ B}. We define trace concatenation as
sequence juxtaposition. We can easily extend trace concatenation
and composition to sets of traces. The execution prefixes define the
partial execution trace semantics. The partial runs of P of length
n are those partial executions such that ~τnP = {~s ∈ Σn | ∀i ∈
[0, n − 1). τP(si, si+1)}. The complete or maximal runs of P are
those partial runs ending with a blocking state:

~τ+
P =

⋃
n>0

{~s ∈ ~τnP | s0 ∈ I ∧ sn−1 ∈ F}.

Please note that while each trace in ~τ+
P is finite, the set ~τ+

P is in
general infinite. This means that while we do not capture infinite
executions, we do capture unbounded non-determinism from data
sources like input variables and values returned from a function.
Finally, we let ~τ+

P (I) denote the set maximal partial traces starting
with a state in I.

Recall: Abstract Interpretation In this paper, we use Abstract In-
terpretation to approximate a concrete semantics consisting of the
maximal trace semantics defined above over a concrete domain de-
fined by the complete Boolean lattice 〈℘(Σ∗),⊆, ∅,Σ∗,∪,∩,¬〉.
The concrete semantics can be either over-approximated or under-
approximated.

Let 〈C,≤〉 and 〈A,v〉 be two partial orders. If there exists an
abstraction function α ∈ C → A and a concretization function
γ ∈ A → C such that ∀c ∈ C, a ∈ A. α(c) v a ⇔ c ≤ γ(a)
we say that 〈α, γ〉 is a Galois connection, and we note that by
〈C,≤〉 −−→←−−α

γ
〈A,v〉. The composition of Galois connections is

a Galois connection. The composition enables the step-wise con-
struction of abstract semantics, and it is the theoretical justification
to our construction. Sometimes, we may need a relaxed form of
the Abstract Interpretation framework in which we only require the
abstraction function α function to be monotonic [9].

Success Semantics The good execution (or success) semantics
of P considers only the traces in the maximal execution traces
of P that terminate in a non-error state. To formalize this, we
first define a Galois connection 〈℘(Σ∗),⊆〉 −−−→←−−−

αG

γG
〈℘(Σ∗),⊆〉

with the abstraction αG = λT. T ∩ G∗ and the concretization

γG = λT. T ∪ B∗. Then we define the good execution trace
semantics as GJPK , αG(~τ+

P).

4. History Environment Conditions
We want to extract from GJPK the sufficient and necessary condi-
tions for correct executions. Roughly, a sufficient condition ensures
that all the executions exhibiting the condition are good executions.
A necessary condition holds for all good executions. In this section
we unify and generalize concepts from [7, 12] to define the optimal
sufficient and necessary history conditions as suitable abstractions
of the success semantics. First, let us define the Galois connection
〈℘(Σ∗),⊆〉 −−−→←−−−

αn

γn 〈℘(Σ∗),⊆〉 where the abstraction

αn = λT. {s0~e | ~s ∈ T ∧ ~e = α′(~s)}
uses the commodity function α′ defined as

α′(~s) =

 ε if ~s = ε
s1α
′(s2 . . . sn−1) if πs(s0) = ret = f(...)

α′(s1 . . . sn−1) otherwise.

Intuitively, αn captures sequences of environment choices from a
set of traces T . The abstraction function records the entry state for
the function and the state after each method call.

Weakest sufficient environment conditions The weakest suffi-
cient environmental conditions capture the largest set of sequences
of environment choices (initial states and return states) that guar-
antee that the program execution always reaches a good state. We
define them via a parameterized Galois connection [7] 〈℘(Σ∗),⊆ 〉

−−−−−→←−−−−−
αs[S]

γs[S]
〈℘(Σ∗),⊆〉. Informally, given a base set of traces S, the

abstraction αs[S] first selects the traces in T that terminate in a
good state (~s ∈ αn(G(T))) such that their environmental choices
(αn({~s})) are different from the choices of all the traces in S that
may lead to a bad state (~sB ∈ S ∩ B∗). Then, out of the selected
traces, the abstraction retains only the environmental choices. For-
mally, the parameterized abstraction is

αs[S] = λT.{αn({~s}) |~s ∈ αG(T)∧
∀ ~sB ∈ S ∩ B∗ ⇒ αn({~s}) 6= αn({ ~sB})}

and the (parameterized) concretization is

γs[S] = λT.{~s | ~s ∈ γG(T) ∨ ∃ ~sB ∈ S. αn({~s}) = αn({ ~sB})}.
Note that our definition of αs[S] generalizes the trace-based wlp
of [12]. The largest set of environment choices guaranteeing that
the program P is always correct is ~S , αs[τ

+
P](GJPK).

As an example, let us consider Fig. 1a. The weakest sufficient
condition is ~S = {〈y 7→ y0〉〈y 7→ y1〉 | y0 ∈ V, 0 < y1}. i.e.,
when g returns a positive number, the program is correct; that is,
it will never reach any bad state. The program is correct even if g
ensures a stronger property, e.g., the return value is 42 or a positive
even number.

Strongest necessary environment conditions We want the set ~N
of sequences of environment choices characterizing good execu-
tions. The intuition is that if we have a sequence of environment
choices not in ~N , then an execution compatible with those choices
will definitely lead to a bad state. In particular, we want the small-
est such set ~N , which we can get by abstracting GJPK. Therefore
~N , αn(GJPK) is the strongest environment property satisfied by
good executions of P. If an environment does not make one of the
choices admitted by ~N , then the program P will fail for sure. If an
environment does make a choice allowed by ~N , then we know (by
construction) that there is at least one concrete execution of P that
terminates in a good state. However, there may also be concrete

TwoCallSites(y, z):
0: if *
1: ret = f(y)
2: x = ret + 1
3: else
4: ret = f(z)
5: x = ret - 1
6: assert x > 100

(a) Two distinct invocations of the
same function. The sufficient and
necessary state conditions coincide,
but the call conditions are different.

TwoCallSites’(w):
0: ret = f(w)
1: x = ret
2: assert x > 100

(b) Evolved version where ex-
act syntactic matching of program
points is ambiguous, but function
calls matching is well-defined.

Figure 4: An example where the sufficient and necessary call con-
ditions are different (resp. ret>101 and ret>99).

executions that terminate in a bad state. In the example of Fig. 2a:
~N = {〈y 7→ y0〉〈y 7→ y1〉 | y0 ∈ V, y1 > 0}. That is, in all the
good executions, the value returned by f is positive. If f is negative
then the program will fail for sure. Otherwise, the program may or
may not fail, depending on the non-deterministic choice.

Relation between the two concepts It follows from the definitions
above that ~S ⊆ ~N . In general, it is sound to under-approximate
~S, but not to over-approximate it: ~S characterizes the largest set
of concrete executions that always terminate in a good state and
any under-approximation of ~S yields a smaller set of concrete
executions that always terminate in a good state. Dually, it is sound
to over-approximate ~N , but not to under-approximate it. Though
sufficient and necessary conditions are not new concepts, we take
the novel step of using both kinds of conditions to get different
guarantees about the warnings reported by our VMV technique—
as we will see in Sec. 6.

5. State-Based Environment Conditions
The trace-based environment conditions capture the sequence of
environment choices that are necessary or sufficient for program
correctness. However, in some cases we may be interested in the
set of environments that are possible at a given program point re-
gardless of the sequence of environment choices made previously.
In such cases, we can abstract the trace-properties of the section
above to state properties by collecting all the states observed at
each program point and discarding the environment choices made
along the way.

State conditions Given a set of traces T , the reachable states
abstraction αΣ collects the set of states that reach each program
point. Formally, we have the Galois connection 〈℘(Σ∗),⊆〉 −−−→←−−−

αΣ

γΣ

〈PC → ℘(Σ),⊆〉, where the abstraction function αΣ is αΣ =
λT. λpc. {si | ∃~s ∈ T.~s = s0 . . . si . . . sn−1 ∧ π(si) = pc}
and the concretization γΣ is the expected one.

The weakest state-based sufficient conditions on the environ-
ment are the set of states SΣ , αΣ(~S). The strongest state-based
necessary conditions on the environment are the set of statesNΣ ,
αΣ(~N). If entry denotes the entry point of P, then (i) SΣ(entry)
is the weakest sufficient precondition of [15] and (ii)NΣ(entry) is
the strongest necessary precondition of [10]. It follows from Sec. 4
that SΣ⊆̇NΣ, where ⊆̇ is the pointwise functional extension of ⊆.
In the example of Fig. 4a, the sufficient and necessary state-based
conditions coincide: SΣ(1) = NΣ(1) = {s | s(ret) > 99} and
SΣ(4) = NΣ(4) = {s | s(ret) > 101}.
Method call conditions The state-based environment conditions
collect the possible environments at each program point. In some

cases, we are only interested in the environment conditions at
certain program points. For example, we may only be interested
in the environment conditions following a method call. We call
this abstraction the method call conditions. Let Callees be the
set of invoked functions. Then the weakest sufficient condition
on function calls (i.e., the largest set of states that guarantees the
program always terminates in a good state) is the intersection of
all the sufficient states at return points. Formally, we need the
monotonic abstraction function:

αS = λr. λf.
⋂

pc∈Callees(f)

r(pc).

Therefore, S , αS(SΣ) are the weakest sufficient conditions on
callees. They are an under-approximation of ~S. In the example
of Fig. 4a, the weakest sufficient condition on f is S(f) = {s |
s(ret) > 101}. No matter which branch is taken, if f returns a
value larger than 101, the assertion holds.

The necessary call conditions are given by the Galois connec-
tion 〈PC → ℘(Σ),⊆〉 −−−→←−−−

αΣ

γΣ 〈Callees → ℘(Σ),⊆〉. The ab-
straction function αΣ merges the states after all invocations of a
given callee f. Formally, the abstraction function is

αN = λr. λf.
⋃

pc∈Callees(f)

r(pc)

and the concretization function is

γN = λn. λpc.

{
n(f) pc ∈ AfterCall ∧ pc ∈ Callees(f)
Σ otherwise

Therefore, N , αN (NΣ) are the strongest conditions on the
callees which are necessary for the program to be correct. They
are an over-approximation of ~N . In the example of Fig. 4a, the
strongest necessary condition on f is N (f) = {s | s(ret) > 99},
i.e., if the assertion holds then f returns a value larger than 99.

6. Semantic Conditions Injection
Our goal now is to apply the extracted environmental conditions
to a new version of the program P′. The idea is that the previous
conditions provide a semantic baseline that allow us to report only
errors which are new in the modified program P′, or to prove its
correctness under the same environmental assumptions made in the
good runs of P.

Syntactic differences We call P the base program and P′ the new
program. We do not impose any constraint on how much P and P′

control flow graphs differ. For the moment, and for the theoretical
treatment, we assume we are given a function δ ∈ PC(P) →
PC(P′) ∪ {⊥} that captures the syntactic changes between P and
P′. The δ function maps a program point from the base program to
its corresponding point in the new version or to ⊥ if the program
point has been removed. For simplicity, we assume: (i) P and P′

have the same variables, otherwise a further projection function
mapping variables of P into P′ should be introduced; and (ii) each
program point of P corresponds at most to one program point in
P′, otherwise we need to lift the co-domain of δ to sets of program
points, and add a pair-wise disjunction hypothesis on its image.

We define the image of a trace w.r.t. δ:

αδ = λ~s.

ε if ~s = ε

sα(~s′) if ~s = s~s′ ∧ δ(π(s)) 6= ⊥
α(~s′) if ~s = s~s′ ∧ δ(π(s)) = ⊥

that is, αδ(~s) abstracts away all the states in ~s which do not refer to
a program point in P′.

Semantic filtering Intuitively, applying the trace environmental
conditions ~E to P′ means restricting the traces in the concrete

semantics of P′ to those which are compatible with ~E . Formally,
the δ-filtered maximal trace semantics of P′ is

~τ+
P′ bδ ~E = {~s ∈ ~τ+

P′ | ∃~t ∈ ~E . αδ(~t) = α′(~s)},

i.e., we keep only those traces in ~τ+
P′ such that the sequence of

choices made by the environment is compatible with the trace
condition ~E . It follows trivially from the definition that this filtering
yields a subset of the concrete traces, i.e., ~τ+

P′ bδ ~E ⊆ ~τ
+
P′ .

VMV(S): VMV with sufficient conditions Say that we choose to
inject sufficient conditions ~S from P into P′. What can we deduce
on P′ ~S? Intuitively, if P′ ~S has a bad trace, then a new error has
been introduced. We know by construction that, if id denotes the
identity function, (~τ+

P bid ~S) ∩ B∗ = ∅—the history conditions ~S
were sufficient to eliminate all the bad runs for P.

We say that a program P′ has a δ-regression w.r.t. a mapping
function δ if there exists a sufficient condition s for P which is no
more sufficient to eliminate all the bad runs. More formally, there
exists a trace s ∈ ~S such that ~τ+

P′ bδ{s}∩B
∗ 6= ∅. From the previous

definitions and basic set theory it immediately follows:

THEOREM 1. If ~S ⊆ ~S and (~τ+
P′ bδ~S) ∩ B∗ 6= ∅ then P′ has a

δ-regression.

An immediate consequence of the theorem is that we can use, e.g.,
call-based sufficient conditions S (which under-approximate ~S) to
prove δ-regressions.

VMV(N): Semantic baselining with necessary conditions Now,
let us inject the extracted necessary conditions ~N into P′, and let us
suppose that we find no bad execution—formally, (~τ+

P′ bδ ~N)∩B∗ =
∅. Intuitively, we can conclude that under the same environment
conditions that hold for all the good runs (and maybe some of
the bad runs) of P opportunely injected via δ, P′ has no bad runs.
As a consequence: (i) P′ does not require stronger environmental
hypotheses than P to avoid bad runs, and (ii) if ~S ⊂ ~N , i.e., ~N
is strictly not sufficient for the absence of bad runs in P, then P′

fixed the errors in P for which ~N was insufficient. We call the first
property relative δ-correctness (or simply relative correctness) and
the latter δ-fixing. What said is summarized by:

THEOREM 2. Let ~N ⊆ ~N and (~τ+
P′ bδ ~N)∩B∗ = ∅. Then P′ is rel-

atively δ-correct with respect to P. Furthermore, if also (~τ+
P bδ ~N)∩

B∗ 6= ∅ then P′ δ-fixed a bug in P.

An immediate consequence is that we can use call-based nec-
essary conditions N , which over-approximate ~N , to prove relative
correctness. Note that in general the strongest necessary conditions
for P may not be necessary conditions for P′ anymore. For instance,
if P′ removes an assertion from P, the necessary conditions for P
may preclude some good runs in P′.

Combining VMV(S) and VMV(N) The results above inspire
an immediate algorithm combining VMV(S) and VMV(N) to
prioritize the reported alarms. First, extract S andN from P. Since
the extraction routines are completely independent, this can be done
in parallel. Second, analyze P′S and P′N (in parallel) and collect
the reported alarms (say respectively AS and AN). Third, report
the alarms AS , as we know they are δ-regressions. Fourth, report
the set of alarms AN \ AS—which may include real bugs masked
by S. Fixing all the alarms accomplishes full (relative) verification.

7. Abstraction(s)
The semantic filtering and the two theorems above give us the best
theoretical solution to the problem of cross-version semantic con-
dition injection and, correspondingly, to the problem of verification

modulo versions. Unfortunately, such a theoretical, concrete solu-
tion is not practical for many reasons. First, the exact computation
of the success semantics and history conditions is infeasible—the
exact inference of ~S and ~N is impossible in general. Second, the
theoretical results are parameterized by the cross-versions mapping
function δ—we certainly cannot require a user to provide δ. Third,
every static analyzer, deductive verifier, model checker, or type sys-
tem performs some over-approximation of ~τ : do the results above
still hold when an abstract semantics is used? In this section we
will address these orthogonal topics.

Abstraction of sufficient conditions Our use of the weakest
sufficient conditions ~S is sound and complete for detecting δ-
regressions: it guarantees that we capture all the regressions of P′

w.r.t. P for the changes encoded by δ. If we consider some under-
approximation S ⊂ ~S, then all the regressions we capture are
definite δ-regressions w.r.t. P but we may miss some. For instance,
consider again the example in Fig. 1a, but now suppose that the tool
extracted the sufficient condition ret > 10, under-approximating
ret > 0. When such a condition is injected in Sufficient’, the
analyzer proves the assertion, and no alarm is raised. Therefore,
it failed to spot the δ-regression. Overall, when analyzing P′S , we
may suppress too many warnings both because of the nature of suf-
ficient conditions and because of approximation. We judge that if
the goal is to provide an advanced bug-finding tool then one should
use VMV(S).

Abstraction of necessary conditions Our use of the strongest
necessary conditions is sound and complete for proving relative
δ-correctness. However, if we consider an over-approximation ~N
⊃ ~N , we may fail in proving relative completeness. For instance,
consider the example in Fig. 2a. Suppose we extract the condi-
tion ret > -10 from the base program. Then we cannot prove
that Necessary’ fixed Necessary. As a consequence, when an-
alyzing P′N we may not suppress all the warnings from P. In
general, necessary conditions are more practical as it is easier to
craft useful over-approximations than it is to craft useful under-
approximations, though our framework can use either approach.
Overall, we judge that VMV(N) is useful when the goal is ver-
ification. The assumptions carried over from the previous version
of the program will significantly reduce the number of alarms to
consider, while providing (relative) correctness guarantees. We will
see in Sec. 8 that, in our setting, for 77% of the alarms the neces-
sary conditions are also sufficient. The programmer can then focus
her efforts on fixing or suppressing the remaining alarms until the
number is reduced to zero. The resulting warning-free program can
be used as the baseline for future versions of the program. Any
warnings reported will represent either definite regressions or new
warnings.

Computing δ in practice Thus far, we have assumed that we
are given the syntactic change map δ. In general, automatically
computing δ in a meaningful way is impossible because several
different δ’s can characterize the transformation from P to P′. For
example, consider the program change shown in Fig. 4. The base
program contains two invocations of f: one at program point 1,
the other at program point 4. The new program contains only one
invocation of f. Which (if either) of the two calls in the base
program corresponds to the call in the new program? In other
words, which is the correct δ: 〈1 7→ 0, 4 7→ ⊥〉, 〈1 7→ ⊥, 4 7→ 0〉,
or 〈1 7→ ⊥, 4 7→ ⊥〉? For this program, it is ambiguous which
δ is the correct choice. However, this arbitrary choice will have
semantic ramifications because each state corresponding to a call
to f in the base program has a different correctness condition
associated with it. That is, each (equally valid) choice of δ will

result in a different correctness condition being ported to P′. This
is undesirable.

Fortunately, we found that we can avoid many of the problems
associated with computing δ by using the call condition semantics
S,N . Unlike the state condition semantics or any scheme based
on syntactically matching assertions, which require computing a δ
that matches all program points, using call conditions only requires
syntactically matching callee names across program versions. As
long as methods are not renamed, this approach is quite reliable.
For example, in Fig. 4, the method f is called in both versions of
the program. Since we merge the call conditions for all invocations
of a function, changing the number of calls to a particular function
across program versions presents no difficulty. Contrast this with
the ambiguity introduced by changing the number of calls to f
during our (previous) attempt to construct a δ to port the state
conditions across versions.

Therefore, for each function f that is called in both P and P′,
we simply assume the semantic condition after all calls to f in P′.
Essentially, we treat the correctness conditions as if they were post-
conditions for f that f’s body does not need to prove. We should
be careful on how to merge semantic conditions from multiple oc-
currences of f in P. The theory developed in the previous sec-
tions guides us. In the example of Fig. 4a suppose S1,N 1

and
S4,N 4

are the inferred sufficient and necessary conditions at pro-
gram points 1 and 4. Then, after line 0 in Fig. 4b we will inject an
under-approximation of S1 ∧ S4 and/or an over-approximation of
N 1 ∨ N 4

. The injected program PE can be readily analyzed, and
the results of this analysis can be reported to the user.

Approximation introduced by the tool All sound automatic ver-
ifiers and static analyzers over-approximate the concrete seman-
tics τ+. When over-approximation adds execution traces that end
in an error state, analyzers will report false alarms. Therefore, the
analysis is bound to be incomplete—cannot prove every fact that
holds. What guarantees does VMV provide when using a tool T
over-approximating τ+? The answer depends on whether we are
considering sufficient or necessary conditions.
Sufficient conditions. Suppose we use an inference tool generating
a sufficient condition S. In this case, we require that the inference
of sufficient conditions generates a condition S that is provable
under T . The condition false can always be used as a default
in the absence of non-trivial conditions. We define an abstract δ-
regression if T does not prove P′S . An abstract regression is spuri-
ous if ~τ+

P′ bδγ(S)∩B∗ = ∅, for an appropriate γ, but T cannot prove
it. For instance, suppose that in Fig. 1 we instantiate T with the sign
abstract domain [8]. In Fig. 1a, the condition y = positive is a
sufficient one—γ(positive) = {n ∈ N | n > 0}. When us-
ing this abstraction in the evolved programs of Fig. 1b and Fig. 1c,
at line 1, positive − positive = >, therefore T reports an
abstract δ−regression for both cases. For Fig. 1c, however, it is
a spurious abstract δ-regression. The spurious abstract regression
can be eliminated if: (i) we use the most precise transfer function
for signs [18]; or, (ii) we use a more precise numerical domain, e.g.,
intervals [8]. We believe abstract δ-regressions (even the spurious
ones) may be of interest to the user as they occur not only due to the
analysis imprecision, but rather due to a change that can make ex-
isting analysis more imprecise. We plan to investigate the concept
of (spurious) abstract regressions in the future.
Necessary conditions. Now suppose our inference tool generates
a necessary condition N . In this case, there is no need to use
T to prove that N is necessary for P. When using T on the
instrumented program P′N , all the proven assertions are δ−correct,
but because of incompleteness T may fail to prove some δ-correct
assertion. If N is a good approximation and T is precise enough,
then the alarms generated for P′N should be far fewer than those

generated for P′ alone. Therefore VMV(N) is suitable for relative
verification—prove assertions of P′ under the same environmental
assumptions that hold in the good runs of P.
Non-Monotonicity. Orthogonal to what has been said above, a sub-
tle problem can arise due to the (often forgotten) fact that practical
analysis tools are not monotonic. That is, it is possible for an an-
alyzer to compute a less precise result given more precise inputs
(e.g., more assumptions). This can happen for many reasons: the
use of widening, timeouts, non-monotonic state space finitization,
etc. In the context of VMV, this can result in an odd case where an-
alyzing the new program P′ yields fewer warnings than analyzing
the refined program P′E . An easy way to solve this (very obscure)
problem is to consider the intersection of the warnings generated by
the analyses of P and PE . Note that computing this intersection does
not pose any problems with respect to syntactic matching because
the only syntactic differences between P′ and P′E are the addition
of our correctness conditions E .

8. Experience
Tool We implemented VMV on top of the industrial-strength
static analyzer cccheck [17]. cccheck is a modular static ana-
lyzer and contract verifier with inter-method inference: it builds an
approximation of the call-graph, visits it bottom-up, implements
assume/guarantee reasoning for function calls, and infers con-
tracts to reduce the annotation burden. Intra-procedurally, cccheck
uses abstract interpretation [8] to infer invariants at each program
point. It includes abstract domains to model the heap, array con-
tents [11], nullness, integer values [26, 29], floating points [30],
enums, among others. It leverages the inferred invariants to prove
the assertions in the code. Assertions can be either explicit (con-
tracts) or implicit (null-pointer dereferences, buffer overrun, divi-
sion by zero, etc.). cccheck uses the CPPA algorithm from [12]
to infer necessary preconditions. The main source of imprecision
(and of false warnings) of cccheck is the handling of external
code: when no contract is available to describe an API behav-
ior, cccheck soundly assumes the worst case. As a consequence,
it may report many alarms that appear “dumb” to a programmer
who has internalized implicit assumptions about API behavior. A
starting point for the development of VMV was to automatically
identify these assumptions and inject them into future versions of
the code base to suppress “dumb” warnings.

We picked one particular point in the design space enabled by
VMV (Fig. 3): VMV(N) with call conditions insertion for δ and
CPPA for (over-)approximation ofN . There are several reasons for
this choice: (i) we are interested in understanding the capabilities of
cccheck as a relative verifier (that is, for proving the correctness of
P′ w.r.t P); (ii) the CPPA implementation in cccheck is very robust,
whereas the tool lacks algorithms to infer sufficient conditions; (iii)
designing a sufficient condition inference algorithm good enough
to be useful in practice is difficult [10].

We have modified cccheck’s CPPA implementation to compute
necessary conditions on method entry (entry-assumptions) and at
called method return points (callee-assumptions) — i.e., for each
function call f, we infer a necessary conditionN f. We extended the
cccheck caching mechanism to store the extracted conditions in a
SQL database for retrieval on subsequent analysis runs. We build
the instrumented program P′N by reading those conditions from
the database and injecting them as opportune assume statements
in P′. Entry-assumptions are extra-assumptions at the method entry
point. Callee-assumptions are extra-assumptions after method calls
— i.e., we add an assumeN f statement after each call to f.

Code under analysis We consider two code bases: the open-
source ActorFx framework and the non-public CB framework.
We chose ActorFx to enable reproducibility of our results and

CB to test VMV on complex code bases. ActorFx provides a
language-independent model of dynamic and distributed objects
for Windows Azure. It is available as open-source project at
actorfx.codeplex.com. The base changeset is 86788 (randomly
picked) and the new one is 87786 (the latest available at the time
of this writeup, roughly three months later). CB is a large, complex,
and high-quality production code base at Microsoft, made up of 57
C# projects. It includes (among other things) a parser, a compiler, a
tracer, a distributed file system and a distributed runtime. The code
base interacts with the file system, network, underlying operating
system, etc., and it heavily uses the .NET serialization/deserial-
ization mechanism. As a consequence, the correctness of many
assertions in the code base rely on implicit assumptions about API
behavior which are unknown to cccheck. The base version is snap-
shot 12833 of the code (randomly picked) and the new version is
snapshot 13311 (three weeks later). Both projects have a few Code-
Contracts [16] annotations. Contracts range from simple non-null
assertions or arithmetic relationships between variables to complex
algebraic properties between the entry and exit states of a method.

ActorFx Results We report in Fig. 5 the results of applying
VMV(N) to the three largest projects of the ActorFx framework.
The first column is the name of the project, the second column
reports the fraction of the number of external libraries over the total
number of libraries referenced by the project. We define a library as
external if it is not part of .NET nor of ActorFx. External libraries
are unknown to cccheck, which soundly assumes the worst case
for them. The columns 3 − 6 report respectively the total number
of methods analyzed, proof obligations, raised alarms, and inferred
necessary conditions for the base program P. The raised alarms
(warnings) are the assertions that the tool could not prove safe.
Columns 7 − 9 contain the total number of methods analyzed,
checks, and warnings emitted by cccheck on the new program P′.
The next two columns indicate the total number of warnings raised
on P′N and the number of relative verified assertions. Finally,
the last three columns report our experience of annotating P′N to
reduce the number of warnings to zero.

The first observation is that VMV(N) dramatically reduces the
number of alarms to inspect in P′N , while still providing semantic
guarantees on the proven assertions. For the ActorLib’, cccheck
proves 2099 assertions absolutely correct and 316 assertions rel-
atively correct when using VMV(N), leaving only 137 warns to
inspect—roughly reducing the number of warnings by 70%. For
ActorCore’, 1146 assertions are proven independently of the pre-
vious versions and 70 more carrying over hypotheses on the good
runs of ActorCore, so that the user is left a mere 37 warns to look
at. The best results are on System.Cloud, where VMV(N) en-
ables the relative proof of 214 more assertions on top of the 1178
cccheck proved on P′ on its own, lowering the number of warnings
by more than 80%. Overall, VMV(N) proved the relative correct-
ness of 72.6% of the warnings in P′.

Next, we focused on the alarms in P′N , evaluating how much ef-
fort is needed to go to zero warnings. It turns out that, as expected,
VMV(N) eliminated the largest majority of warnings originating
from the use of external APIs, allowing the developer to focus only
on “interesting” warnings. We added several contracts (mainly ob-
ject invariants) to the source code, and we found some bugs in the
code that we reported to the developers. It is worth observing that:
(i) often a contract was enough to prove more than one assertion at
the time, i.e., we added fewer annotations than there were warnings;
(ii) the total number of checks in the annotated program signifi-
cantly increased with respect to P′. Overall, the annotation process
for the three libraries took us just a couple of hours.

CB Results. In the next experiment, we continued our investiga-
tion into VMV(N) by quantifying how far from sufficient condi-

Original code base P New code base P′ P′N Annotated P′N
Project Ext. libs Meth. Checks Warns inf.N Meth. Checks Warns Warns Rel. proofs Checks Warns Contracts
ActorLib 7 / 15 303 2182 407 324 320 2552 453 137 316 2861 0 86
ActorCore 4 / 5 149 1284 162 66 159 1253 107 37 70 1383 0 32
System.Cloud 4 / 12 176 1418 273 226 179 1444 266 52 214 1524 0 35

Figure 5: Results of analysis of ActorFx, with cccheck and VMV(N). In bold the number of relatively verified assertions.

tions the inferred necessary conditions are. We also performed a
qualitative analysis to find anecdotes of relative verification, and
conversely, where relative verification failed. Fig. 6 shows the re-
sult of applying VMV(N) to CB. The first column is the name of
the project—we removed projects that did not change at all be-
tween the two snapshots. The next three columns report, for P, the
total number of methods, assertions, and issued warnings.

Necessary conditions, in general, are not sufficient, i.e., they
may not prove all assertions in the code. To get an idea of how far
from sufficient the inferred conditions are, the 5th column reports
the number of warnings issued when applying the inferred neces-
sary conditions N to the base program P itself. It is worth noting
that in general, the warnings emitted for PN are substantially lower
than for the analysis of P alone (col. 5 vs col. 4). In three projects,
the inferred necessary conditions are sufficient to prove all asser-
tions correct, and in six additional projects, there were fewer than
10 warnings remaining. The results were particularly dramatic for
project DF, where the number of warnings was reduced by 480.
Overall, PN has 77.2% fewer warnings than P.

The next three columns report the total number of methods,
assertions, and warnings issued for P′ with no condition injection.
The next group of columns list the number of new methods in
P′, their assertions, and the number of warnings issued for these
methods. We classify a method as new if we found no entry for it in
the cache when looking up necessary conditions of P. This happens
both when the method is genuinely new or when the method’s
name or signature changed from P to P′. We separate new methods
because VMV does not have any way to add assumptions for them.

The last five columns are the most interesting for our evalua-
tion of VMV. These columns show the number of methods C’ that
we consider changed between P and P′. The way we identify if
a method has changed is via a semantic hash of the method’s in-
structions, including all pre/post conditions and invariants of the
method as well as the methods called from it. If a method’s hash is
the same as before, then the method did not change between ver-
sions, and for those methods VMV(N) boils down to just check-
ing that the extracted necessary conditions are also sufficient (i.e.,
col.5). Therefore, we focus on those methods whose semantic hash
changed; these are the cases where the semantic assumptions car-
ried over from previous versions should enable the proof of the
modified code. The last three columns show the warnings for C’,
C’N , and the consequent number of relatively verified assertions.
The results of the analysis of C′N are encouraging. In 10 projects
all the code changes have been relatively verified. In 16 additional
projects, there are less than 15 warnings issued for the changed
methods. The remaining 7 projects have a large number of remain-
ing warnings (21–127). Note the large number of warnings issued
on the PN configuration for projects such as CM. This indicates that
the computed N is sometimes too weak to prove assertions even
in the unchanged version of the code base. Since we use (approxi-
mations of) necessary conditions, there is always a possibility that
the conditions will not be sufficient to prove assertions even in the
original version of the program.

Qualitative analysis of remaining warnings. We find that our
technique is quite effective at (relatively) proving the correctness
of assertions and hence at reducing the number of warnings issued.

Overall, VMV(N) enabled the relative proof of 568 more asser-
tions, reducing the alarms by more than 50%. However, in order
to reduce the number further we must improve the approximations
we use to compute necessary conditions. We manually examined
the 53 combined warnings of projects BS, MC, TTR, and U and de-
termined why each warning was emitted. We found that 13 warn-
ings were emitted properly as they resulted from new assumptions
being made in the code, such as additional fields being assumed
to be non-null. In one case, a field that was previously initialized
in the method was now initialized in the constructor instead, then
later used in the same method under the assumption that it was still
non-null. In other cases, the warnings originated either from in-
completeness in the inference ofN or from limitations in using a δ
map exclusively based on call-conditions. For instance, a warning
occurred inside a for-loop iterating over array elements that are as-
sumed to be non-null. We currently don’t infer conditions for loop
heads, so there was no program point to attach the necessary condi-
tion to. Our measurements indicate that adding loop-heads match-
ing would improve the effectiveness of VMV. Nevertheless, match-
ing loop-heads between programs P and P′ will introduce some in-
evitable brittleness induced by the loop-head matching algorithm.
Overall, it’s worth noting that most of the failures in proving rel-
ative correctness we observed during the experiments are related
to tool limitations rather than to problems with VMV(N) itself.
Whenever cccheck succeeded in inferring necessary conditions,
the conditions were typically installed correctly and used effec-
tively to mask warnings in the later version of the project.

Qualitative analysis of relative verification. We manually inves-
tigated the list of assertions in C’ for which our approach provides
relative verification (last column of Fig. 6). We can classify the rea-
sons into one of the following categories: (i) the lines containing
the assertions were deleted in the new version; (ii) the assertion ap-
pears prior to any changes in the method; (iii) the condition carried
over implies the correctness of the new assertion; and (iv) bug fix
(warning in PN but not in P′N). Except for (i), all other categories
demonstrate the use of necessary conditions. One common example
of (iii) appears to be when the programmer changed the API, but
correctness relied on the same semantic argument. For instance:

[--] m_vFileSystem = new LocalFileSystem(fs)
[++] m_vFileSystemSet = new VirtualFileSystemSet(fs, ..)

The correctness condition that ensures that the parameter fs is
non-null and is valid (preconditions LocalFileSystem) of the
old version also ensures that the argument to the new API call is
non-null (precondition of VirtualFileSystemSet). Please note
that VMV does not need to match the call to LocalFileSystem
with that to VirtualFileSystemSet: it only uses the semantic
information on fs.

We found a few examples of (iv), where the change turns a
possibly-null value into a non-null value:

[--] tArgs = ResolveTarget(rtTask.Arguments, target);
[++] tArgs = ResolveTarget(rtTask.Arguments != null ?
[++] rtTask.Arguments : string.Empty, target);

We also encountered cases where the necessary condition in-
ferred a universally quantified condition on all elements in a collec-

Original code base P Updated code base P′

Total for P′ New code Changed code C’
Project Meth. Checks Warns P Warns PN Meth. Checks Warns Meth. Checks Warns Meth. Checks Warns Warns C’N Rel. proofs
BS 113 1065 99 16 116 1090 98 3 9 0 30 369 34 3 31
C 302 2611 273 36 314 2620 270 21 180 16 10 220 25 0 25
CBCBC 25 595 98 13 25 598 99 0 0 0 1 136 32 0 32
CBF 323 1923 351 80 323 1922 351 0 0 0 1 5 5 0 5
CM 388 4129 641 223 436 4392 682 154 2553 408 58 922 167 127 40
DF 855 8074 622 142 868 8132 639 70 216 56 89 1967 177 94 83
EMSBD 101 1439 145 18 101 1445 149 3 185 13 4 148 31 21 10
EMSBWH 15 321 17 6 17 583 29 3 242 7 5 246 17 12 5
ES 53 857 148 36 47 757 123 4 126 8 5 135 44 13 31
MAF 3 37 3 0 3 34 3 0 0 0 2 33 3 0 3
MC 84 665 62 11 85 667 62 1 2 0 4 62 10 2 8
MRM 27 326 39 1 27 334 39 0 0 0 6 159 11 0 11
MS 53 575 52 11 53 575 52 0 0 0 1 4 0 0 0
MSBE 22 109 20 0 58 1252 109 41 1149 99 10 97 10 9 1
MT 16 107 5 0 23 138 5 7 41 0 2 8 0 0 0
PMSBG 30 477 92 36 30 482 100 1 21 2 12 388 94 69 25
PMSBMI 25 539 57 32 18 325 32 1 62 10 3 110 11 8 3
PP 24 507 66 12 24 507 69 0 0 0 6 199 32 13 19
PT 49 482 47 11 49 482 47 19 307 44 17 131 1 1 0
R 56 653 57 10 52 630 53 37 465 38 5 51 10 0 10
SI 172 1208 102 11 188 1453 144 53 561 84 9 120 4 3 1
TC 69 711 107 16 76 784 115 8 76 8 5 167 35 9 26
TCDPV 84 2298 183 36 84 2271 183 0 0 0 5 99 6 5 1
TCDTV 151 3821 394 90 153 3850 397 2 7 2 7 1530 104 49 55
TDD 25 506 46 2 25 418 45 1 4 3 3 274 19 1 18
TFC 12 162 22 6 12 162 22 1 84 15 0 0 0 0 0
TPGF 4 66 3 2 4 66 3 0 0 0 1 63 3 2 1
TTH 10 192 22 5 10 192 22 0 0 0 1 32 5 1 4
TTPG 52 1289 132 47 52 1304 132 1 23 0 1 230 10 10 0
TTR 46 1460 141 40 153 1864 170 108 429 37 21 1028 104 40 64
TTTCM 142 961 199 18 189 1572 295 69 855 140 44 414 100 58 42
U 381 5164 219 45 401 5266 237 24 85 16 14 305 22 8 14
VFS 20 209 45 16 48 458 84 47 457 84 0 0 0 0 0

Figure 6: Breakdown of warnings in new code base and effect of necessary baseline. C’ denotes the set of changed methods in P ∩ P′.

tion being non-null in the old version to (relatively) verify elements
in the new version.

Semantic versus syntactic baselines. Our work on VMV was
inspired by the limitations of the syntactic baseline feature im-
plemented in cccheck, which uses warning type-based syntac-
tic matching to suppress warnings. In 5+ years of using only the
syntactic baseline feature, we found that that syntactic baselining
masks too many alarms, including interesting ones. If our goal is
simply to suppress warnings to ease the load on the programmer,
syntactic baselining provides an acceptable alternative to VMV.
However, if our goal is to review the code for potential new prob-
lems, VMV using necessary conditions provides better guarantees
that no new code issues have been introduced. We believe that
the two techniques have fundamentally different strengths and that
both should be provided to users of the tool.

9. Related Work
Baselining Industrial strength-tools like Coverity [14], Klocwork
[23], or Polyspace [31] provide a syntactic baseline feature to mask
warnings. However, we could not find good documentation detail-
ing the internals of their alarm suppression mechanism. Essentially,
they enable suppression by manually providing annotations, creat-
ing XML filter files, or adding custom function stubs. FindBugs
[21] uses a syntactic baselining mechanism based mostly on warn-
ing types and errs on the side of suppressing too much. The match-
ing does not take variable names or line numbers into account and
thus will usually suppress all warnings of type t for a given method
if the baseline already contains a warning of type t for that method.
This strategy seems quite reasonable for a tool like FindBugs that
makes no exhaustiveness guarantees, but would not be acceptable
for a sound tool.

Differential static analysis Differential static analysis [25] also
seeks to utilize multiple versions of a program to improve analysis
results. The differential algorithm in [22] filters away inputs caus-
ing alarms in a sequential version of a program to isolate the alarms
that are unique to the concurrent version of the program. However,
their approach is limited to bounded programs without loops and
recursion. Recent work on differential assertion checking (DAC)
[24] proves relative correctness between assertions across two ver-
sions of a program. The approach reduces checking DAC to a single
composed program that can be analyzed by existing program ver-
ification techniques. Like our work, DAC is useful for identifying
when program changes introduce bug fixes or regressions. Rela-
tional verification approaches based on product programs [3] have
also been used to verify equivalence and information-flow safety of
a pair of programs.

VMV differs from those works in several ways. Our framework
provides the flexibility to extract and utilize either necessary or
sufficient conditions from the previous version of the program,
whereas other works typically fix the kind of conditions to extract.
VMV can easily be added to any static analysis tool, whereas it
is not clear how applicable differential techniques are to existing
tools. For example, [22] only shows how to prune false positives
in concurrent program analysis, [27] only applies when a program
has many semantically related alarms, and [3, 25] necessitates the
construction of a composed program that require the static analysis
to analyze two versions of the program simultaneously. Finally, we
showed that VMV can be applied to large code bases, whereas it is
unclear how scalable the approaches above are.

Annotation inference Inferring annotations can significantly re-
duce the number of false alarms a static analyzer reports for a pro-
gram [28, 33]. The tool cccheck already performs contract infer-
ence, but we find that on realistic code bases it still raises too many

warnings (Sec. 8). A main reason for that is the difficulty of infer-
ring annotations for external APIs. VMV turns out to be very useful
in this case: it can infer a (necessary or sufficient) condition on the
particular API, and then automatically insert in the next version of
the program.

Several authors addressed the problem of under-approximating
sufficient conditions—even if they did not explicitly state it in the
terms of this paper. For instance, previous work in specification
mining [2] and interface inference [1, 20] under-approximates suf-
ficient history conditions ~S: their goal is to describe safe API usage
by inferring sequences of API calls that are sufficient to prevent
crashes in library code. Similarly, works on the inference of suffi-
cient preconditions [5, 32] under-approximate our method call suf-
ficient conditions S. In the worst case, such approximations result
in the sufficient condition false. Few authors addressed the infer-
ence of necessary condition. For instance, Bouaziz et al. [6] used
necessary history conditions to infer a sequences of method calls
that inevitably lead to a crash, and Cousot et al. [10] used them in
the context of modular analysis. In the worst case, such approxima-
tions yield the necessary condition true.

10. Conclusion
In this paper, we addressed the problem of reducing the number
of warnings, yet providing soundness guarantees, in real-life static
analyzers by carrying over semantic information from previous ver-
sions. We showed that sufficient conditions (VMV(S)) are useful
for bug finding whereas necessary conditions are best for relative
verification (VMV(N)). We implemented VMV(N) in the popu-
lar cccheck tool, and showed that it drastically reduces the number
of alarms while still providing semantic guarantees. In the future,
we plan further investigation of VMV(S), the concept of abstract
regression, and the combination of VMV(S) and VMV(N).

Acknowledgments. We would like to thank Sophia Drossopoulou
for the carefull reading of an earlier version of this paper and the
many the constructive comments.

References
[1] R. Alur, P. Černý, P. Madhusudan, and W. Nam. Synthesis of interface

specifications for java classes. In POPL, 2005.

[2] G. Ammons, R. Bodı́k, and J.R. Larus. Mining specifications. In
POPL, 2002.

[3] G. Barthe, J. M. Crespo, and C. Kunz. Relational verification using
product programs. In FM, 2011.

[4] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem, C.
Henri-Gros, A. Kamsky, S. McPeak, and D. R. Engler. A few billion
lines of code later: using static analysis to find bugs in the real world.
Commun. ACM, 53(2), 2010.

[5] S. Blackshear and S. K. Lahiri. Almost-correct specifications: a
modular semantic framework for assigning confidence to warnings.
In PLDI, 2013.

[6] M. Bouaziz, F. Logozzo, and M. Fähndrich. Inference of necessary
field conditions with abstract interpretation. In APLAS, 2012.

[7] P. Cousot. Constructive design of a hierarchy of semantics of a
transition system by abstract interpretation. Theor. Comput. Sci.,
277(1-2), 2002.

[8] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice
model for static analysis of programs by construction or approxima-
tion of fixpoints. In POPL, 1977.

[9] P. Cousot and R. Cousot. Abstract interpretation frameworks. J. Log.
Comput., 2(4):511–547, 1992.

[10] P. Cousot, R. Cousot, M. Fähndrich, and F. Logozzo. Automatic
inference of necessary preconditions. In VMCAI, 2013.

[11] P. Cousot, R. Cousot, and F. Logozzo. A parametric segmentation
functor for fully automatic and scalable array content analysis. In
POPL, 2011.

[12] P. Cousot, R. Cousot, and F. Logozzo. Precondition inference from
intermittent assertions and application to contracts on collections. In
VMCAI, 2011.

[13] P. Cousot, R. Cousot, F. Logozzo, and M. Barnett. An abstract
interpretation framework for refactoring with application to extract
methods with contracts. In OOPSLA, 2012.

[14] Coverity. Coverity static analysis verification engine. http://www.
coverity.com/products/coverity-save.html.

[15] E. W. Dijkstra. Guarded commands, nondeterminacy and formal
derivation of programs. Commun. ACM, 18(8), 1975.

[16] M. Fähndrich, M. Barnett, and F. Logozzo. Embedded contract lan-
guages. In ACM SAC, 2010.

[17] M. Fähndrich and F. Logozzo. Static contract checking with abstract
interpretation. In FoVeOOS, 2010.

[18] R. Giacobazzi, F. Ranzato, and F. Scozzari. Making abstract interpre-
tations complete. J. ACM, 47(2):361–416, 2000.

[19] GrammaTech. CodeSonar. http://www.grammatech.com/
codesonar.

[20] T.A. Henzinger, R. Jhala, and R. Majumdar. Permissive interfaces. In
ESEC/FSE-13, 2005.

[21] D. Hovemeyer and W. Pugh. Finding bugs is easy. SIGPLAN Not.,
39(12), 2004.

[22] S. Joshi, S.K. Lahiri, and A. Lal. Underspecified harnesses and
interleaved bugs. In POPL, 2012.

[23] Klocwork. Klocwork inspect. http://www.klocwork.com/
products.

[24] S.K. Lahiri, K.L. McMillan, R. Sharma, and C. Hawblitzel. Differen-
tial assertion checking. In FSE, 2013.

[25] S.K. Lahiri, K. Vaswani, and C.A.R. Hoare. Differential static analy-
sis: opportunities, applications, and challenges. In FoSER, 2010.

[26] V. Laviron and F. Logozzo. Subpolyhedra: A (more) scalable ap-
proach to infer linear inequalities. In VMCAI, 2009.

[27] W. Lee, W. Lee, and K. Yi. Sound non-statistical clustering of static
analysis alarms. In VMCAI, 2012.

[28] F. Logozzo. Automatic inference of class invariants. In VMCAI, 2004.
[29] F. Logozzo and M. Fähndrich. Pentagons: a weakly relational abstract

domain for the efficient validation of array accesses. In SAC, 2008.
[30] F. Logozzo and M. Fähndrich. Checking compatibility of bit sizes in

floating point comparison operations. In 3rd workshop on Numerical
and Symbolic Abstract Domains, ENTCS, 2011.

[31] Mathworks. Polyspace verifier. http://www.mathworks.com/
products/polyspace/.

[32] Y. Moy. Sufficient preconditions for modular assertion checking. In
VMCAI, 2008.

[33] Y. Wei, C. A. Furia, N. Kazmin, and B. Meyer. Inferring better
contracts. In ICSE, 2011.

