
Analyzing and Synthesizing Genomic Logic
Functions

Nicola Paoletti1,2, Boyan Yordanov1, Youssef Hamadi1,
Christoph M. Wintersteiger1, and Hillel Kugler1

1 Microsoft Research, Cambridge, UK
{yordanov,cwinter,youssefh,hkugler}@microsoft.com

2 Department of Computer Science, University of Oxford, UK
nicola.paoletti@cs.ox.ac.uk

http://research.microsoft.com/z3-4biology

Abstract. Deciphering the developmental program of an embryo is a
fundamental question in biology. Landmark papers [9, 10] have recently
shown how computational models of gene regulatory networks provide
system-level causal understanding of the developmental processes of the
sea urchin, and enable powerful predictive capabilities. A crucial aspect
of the work is empirically deriving plausible models that explain all the
known experimental data, a task that becomes infeasible in practice due
to the inherent complexity of the biological systems. We present a generic
Satisfiability Modulo Theories based approach to analyze and synthesize
data constrained models. We apply our approach to the sea urchin em-
bryo, and successfully improve the state-of-the-art by synthesizing, for
the first time, models that explain all the experimental observations in
[10]. A strength of the proposed approach is the combination of accu-
rate synthesis procedures for deriving biologically plausible models with
the ability to prove inconsistency results, showing that for a given set
of experiments and possible class of models no solution exists, and thus
enabling practical refutation of biological models.

1 Introduction

Understanding the underlying developmental program of an embryo is a fasci-
nating scientific question. How do cells divide and organize to form a body plan,
each one becoming a specific cell type capable of performing specialized functions
and interacting with other nearby cells to form a living organism? Answering
these questions, apart from their significant scientific value, has far reaching ap-
plications, for instance in early diagnosis, disease treatment, and regenerative
medicine.

At the heart of understanding the complexity of development is the chal-
lenge of understanding the process of biological computation that is performed
within living cells and organisms. The information processing is implemented
via highly concurrent biological machinery determining when to express specific
genes, which in an abstract view is seen as turning these genes on or off. Gene

2 N.Paoletti, B. Yordanov, Y. Hamadi, C.M. Wintersteiger and H. Kugler

regulatory networks (GRNs) control the dynamic (and spatial) patterns of gene
expression, which influence the decisions cells make during development. Unrav-
eling the structure and logic of these GRNs is thus a key research challenge.

Landmark papers studying the development of the sea urchin [9, 10] have
recently shown how computational models of gene regulatory networks provide
system-level causal understanding of the embryonic developmental processes,
and enable powerful predictive capabilities. The methodology used in that work
is based on modeling and simulation of Boolean systems with time delays and
discrete time semantics using a form of vector-based equations that determine
the dynamics of gene expression. A crucial aspect of this work is deriving biolog-
ically plausible models that explain all the known experimental data, a task that
becomes infeasible when using simulation based methods, due to the inherent
complexity of the biological systems.

We present an SMT-based approach that enables the analysis of realistic
GRNs and synthesizes models that accurately explain all known data. Our
method significantly extends the framework presented in [14] in order to in-
corporate time delays, spatial domains and the systematic use of uninterpreted
functions. We take a pragmatic approach, and rather than introducing a new
language for biological modeling we formalize the vector equation notation in-
troduced in [10] which has been demonstrated to be useful for experimental
biologists, shedding light on some of its constructs and features that were pre-
viously described informally.

The GRN reconstruction described in [9] is a result of over thirty years of
research, and incorporates detailed experimental data from various sources and
techniques. The scientific essence of a model is its ability to explain all existing
data and make new testable predictions. The detailed data of the expression
of many relevant genes at different time points and different spatial domains
in the embryo make the construction of such a model very hard. We explain
how we were able to construct the first model that fully explains all of the data
from [9], including perturbation experiments, through the use of formal analysis
and synthesis methods. Furthermore, we demonstrate that a subset of vector
equations is inconsistent with experimental data, regardless of how the other
vector equations are set, which is essential information for experimentalists and
which is impossible to obtain through the use of simulation techniques only. The
scalability of our methods as shown by analyzing the sea urchin model paves the
way for practical usage of formal methods, potentially transforming the way in
which computational modeling and experiments enhance our understanding of
biology.

2 Background

To establish a formal basis for our analysis, we first define some basic concepts
and a succinct notion of Gene Regulatory Networks with spatial and temporal
domains, as well as observations and perturbations.

Analyzing and Synthesizing Genomic Logic Functions 3

At the most fundamental level we require the set of Boolean values B = {0, 1}
and the usual Boolean operations. A bit-vector b ∈ Bn is a vector of Boolean
variables b0, b1, . . . , bn−1, where bi ∈ B for each i = 0, . . . , n − 1. We assume
the usual bit-wise operations on bit-vectors, including the arithmetic operators
+,−, ∗, /. We write bi = bj to indicate the logical equivalence bi ⇐⇒ bj .

For most of the problems we investigate in this paper, it is convenient to have
one compact mathematical object which carries all the information available
from the biological context over the formal context. For this reason we define
the notion of Gene Regulatory networks with Delays, and spatial Domains:

Definition 1 (GRNDD). A Gene Regulatory Network with Delays and spa-
tial Domains (GRNDD) is a tuple (G,D, SR,T, F), where:

– G is a finite set of genes;
– D is a finite set of spatial domains;
– SR is a finite set of spatial relations between domains;
– T = {0, 1, . . . , tmax} is the discrete time domain; and
– F is a finite set of vector equations.

A GRNDD captures the required information describing the system dynam-
ics which can be represented as a transition system. The components of the
transition system are the genes G, the spatial domains D and the vector equa-
tions (which implicitly define the transition relation). SR is a set of relations
that describes the relationship between spatial domains (e.g., whether they are
next to each other, or close to each other, etc). Each element of SR is a function
r : T ×D ×D → B, and r(t, di, dj) = 1 iff the relation r holds between spatial
domains di and dj at time t.

Note that our definition of a GRNDD contains a discrete and bounded time
domain, where tmax is the maximum execution time. The problems we investigate
in the remainder of this paper are always related to a set of observational data,
which represent finite executions of the system, often providing experimental
measurements for each time step from steps 0 to tmax.

A state q of a GRNDD is a valuation of the expression of each gene in each
spatial domain, i.e., essentially a bit-vector that describes whether each of the
genes is enabled or not in a spatial domain. Thus, we define the set of states
Q := B|G×D|. The expression (valuation) of gene g in domain d in a state q is
denoted by q(g, d). A path is a sequence of states and we denote the set of paths
as Π := {< q0, . . . , qi > | 0 ≤ i ≤ tmax ∧ qi ∈ Q} and π[i] denotes the i-th state
in path π.

The set of vector equations F of a GRNDD contains an update function
for every gene g ∈ G which has the signature fg : Π × T × D → B. In other
words, the vector equation of a gene g is a function fg(π, t, d) which determines
whether g is expressed at a time t in spatial domain d in a path π. Note that
these update functions depend on a whole path through the system, because
they may depend not only on a unique previous state, but on a sequence of
previously visited states. As pointed out in [10], the term “vector equation”

4 N.Paoletti, B. Yordanov, Y. Hamadi, C.M. Wintersteiger and H. Kugler

reflects the matrices of gene expression in space and time that these equations
generate. We provide a syntax and semantics of these functions in Sec. 2.1.

To incorporate experimental data into our analysis, we define a set of obser-
vations as follows:

Definition 2 (Observations). Observations are sets of tuples (C,E), where

– C is a set of perturbed vector equations; and
– E is a set of predicates e : Π ×Π → B describing effects.

The most basic observation is that of the so-called wild type, which means that
a system is observed without making changes to the system; such an observation
has the form (∅, π) where π is a predicate that describes a concrete path (of finite
length). Observations with non-empty C are called perturbation (or mutation)
experiments. These describe the system behavior after some change is made
to the system. A common experiment is that of a knock-out where some gene
is repressed, e.g., C = {fg(π, t, d) := 0} for some gene g. In Section 3.1, we
illustrate how the predicates in E can be defined for expressing perturbation
effects.

2.1 Formal syntax and semantics of vector equations

A formal syntax for vector equations is not strictly required. In practice however,
the establishment of a language greatly simplifies the modeling task. In [10] such
a language is proposed, but a a formal syntax or semantics is not provided. To
establish a fully formal basis, we revisit their operators and prescribe a formal
semantics to them.3

Definition 3 (Vector equation language). The syntax of vector equations
is given by the following grammar:

V ::= g | > t | < t | In d̄ | ¬V | V ∧ V | V ∨ V
| At-n V | After-n V | Perm-n V | In d̄ V | In r d̄ V

where g ∈ G, t ∈ T, n ∈ N, r ∈ SR and d̄ ∈ D.

The semantics of a term V within the vector equation language is defined
with respect to a path π, a time point i, and a spatial domain d using the Boolean
connectors ¬, ∧ and ∨. The semantics of temporal operators are defined as:

g(π, i, d) ⇐⇒ π[i](g, d) (gene expression)

> t (π, i, d) ⇐⇒ i > t (time boundary)

< t (π, i, d) ⇐⇒ i < t (time boundary)

At-n V (π, i, d) ⇐⇒ n ≤ i ∧ V (π, i− n, d) (delayed temporary effect)

3 It is interesting to note that our formalization turns out to be within a subset of
the past fragment of linear temporal logic (details omitted from this version of the
paper).

Analyzing and Synthesizing Genomic Logic Functions 5

g(π, i, d)

f

0 1 2 3

(a) f = At-1 g(π, i, d)

g(π, i, d)

f

0 1 2 3

(b) f = After-1 g(π, i, d)

g(π, i, d)

f

0 1 2 3

(c) f = Perm-1 g(π, i, d)

Fig. 1. Examples showing the semantics of temporal operators. Yellow squares corre-
spond to the points where the gene is on, gray squares where the gene is off.

After-n V (π, i, d) ⇐⇒
∃k. 0 ≤ k ≤ i− n ∧ V (π, k, d) (permanent activation)

Perm-n V (π, i, d) ⇐⇒
¬(∃k. 1 ≤ k ≤ i− n ∧ V (π, k, d) ∧ ¬V (π, k − 1, d)) (permanent repression)

The At-n V (π, i, d) operator corresponds to the evaluation of V at n steps in
the past. After-n V (π, i, d) evaluates to true and stays true thereafter, if V is
true n steps earlier, while Perm-n V (π, i, d) evaluates to false, and stays false
thereafter, if V becomes true n steps earlier. Note that Perm-n does not simply
represent the negation of After-n operator, but instead implies that V has to
be false n− 1 and become true n steps in the past. An illustration of the path-
based semantics of the At-, After- and Perm- operators is provided in Fig. 1.

The semantics of spatial operators are defined as

In d̄ (π, i, d) ⇐⇒ d = d̄ (evaluation at domain d̄)

In d̄ V (π, i,) ⇐⇒ V (π, i, d̄) (evaluation of V at domain d̄)

In r d̄ V (π, i,) ⇐⇒ ∃d . r(i, d̄, d) ∧ V (π, i, d) (eval. of V in a related domain)

While In d̄ and In d̄ E(π, i,) evaluate whether an atom or formula E holds at
a given domain, In r d̄ E(π, i,) evaluates to 1 when E holds in some domain d
related to d̄ via the spatial relation r at time t.

3 Gene expression computation as a path synthesis
problem

We adapt the method presented in [14] for the encoding of Boolean networks as
finite transition systems (over bit-vectors), in order to support spatial domains
and time delays.

Definition 4 (Dynamics of a GRNDD). The dynamics of a GRNDD N =
(G,D, SR,T, F) is formally a finite-state automaton with

– set of states Q = B|G×D|;
– initial state q0 ∈ Q; and

6 N.Paoletti, B. Yordanov, Y. Hamadi, C.M. Wintersteiger and H. Kugler

– transition relation δ : Π → B =

δ(π) ⇐⇒
∧

0<i≤T,g∈G,d∈D
π[i](g, d) = fg(π, i, d)

Intuitively, given a path π ∈ Π, δ(π) holds if π is a valid execution of the system.
Note that we do not require an input alphabet. This is because GRNDDs do not
have external input. However, non-deterministic behaviour is possible as part of
the initial state selection or for update functions with delays beyond the initial
time (e.g. fg(π, i, d) = At-3 V (π, i, d), at i = 2) or referring to the current time
(e.g. fg(π, i, d) = At-0 V (π, i, d)). Such non-determinism can be limited by the
requirement that the system’s dynamics are consistent with certain observations.

Note that our model of dynamics is based on that of a concurrent but syn-
chronous execution model, meaning that the expressions of all genes of the net-
work are updated within one step of the execution. In principle, it is possible
to integrate asynchronous dynamics, even if for this work we have followed the
semantics proposed in [10].

We are now ready to state the computation of the temporal and spatial gene
expression in terms of a path synthesis problem:

Problem 1 (Gene expression computation) Let N = (G,D, SR,T, F) be
a GRNDD. The computation of the temporal and spatial gene expression of net-
work N corresponds to the synthesis of a (set of) path(s) {πi} ⊆ Π of length |T|
such that for each πi, δ(πi) holds.

In our experiments, we encode this problem into the theory of bit-vector and
uninterpreted functions (SMT QF UFBV). If these constraints are satisfiable,
i.e. there exist paths πi such that δ(πi) holds, then the SMT solver is able to
construct them one by one.

The dynamics of a perturbed GRNDD are defined in a straight-forward way:

Definition 5 (Perturbed Dynamics). Let N = (G,D, SR,T, F) be a
GRNDD, let o = (C,E) be an observation. Set F ′ to be F with all functions that
have a definition in C replaced with their definition. Then the dynamics of the
perturbed system are the dynamics of (G,D, SR,T, F ′).

Finally, we need to be able to check whether a given GRNDD indeed repli-
cates the behavior seen in a set of observations. Formally, we do this by comput-
ing gene expressions under all perturbations and checking whether the effects
that were observed experimentally are also observed in the GRNDD:

Problem 2 (Adequacy) Let N = (G,D, SR,T, F) be a GRNDD and let O be
a set of observations. Let ΠN be the computed gene expressions for N . Determine
whether for each observation (Ci, Ei) ∈ O there is a path πi of length |T| which
is contained in ΠN and a path π′i of the same length in N perturbed by Ci, such
that Ei(πi, π

′
i) holds.

If a GRNDD N is adequate, i.e., if Problem 2 is answered in the positive, then
N does indeed allow executions that perfectly explain all observational data. In
the next section we make use of this problem definition to synthesize adequate
GRNDDs.

Analyzing and Synthesizing Genomic Logic Functions 7

3.1 Comparison operators.

In the biological literature, the effects of perturbation experiments are often
only formulated in a qualitative fashion (e.g. ‘if gene g0 is knocked out, then
g1 is over-expressed’), rather than in actual execution traces. For the purposes
of formal analysis however, a formal semantics of the effects of perturbations is
required. To do so, we characterize the class of comparison operators that can
occur in the predicates Ei in observations. We consider predicates of the form

(πi, gi, di, [t
s
i , t

e
i]) ./ (πj , gj , dj , [t

s
j , t

e
j])

in order to compare the expression of a gene gi, in a domain di, in a path πi
and in a discrete time interval [tsi , . . . , t

e
i], with the expression of a gene gj , in

a domain dj , in a path πj and in a time interval [tsj , . . . , t
e
j]. We consider two

types of operators: First, the weak operators are ./ ∈ {>,<,≤,≥,=} and they
are used to compare the ‘average’ expression of the operands in the considered
time intervals. We define

(πi, gi, di, [t
s
i , t

e
i]) ./ (πj , gj , dj , [t

s
j , t

e
j]) ⇐⇒∑tei

t=tsi
πi[t](gi, di)

tei − tsi
./

∑tej
t=tsj

πj [t](gj , dj)

tej − tsj

Second, the strong operators are ./ ∈ {�,�,�=,=�,==} and they compare
gene expressions point-by-point, and not on the basis of their average over a time
interval. Hence, they are defined only if tei − tsi = tej − tsj , i.e. if the time intervals
of the two operands have the same length. Let us assume that tsi = tsj + k and
that tei = tej + k, with k ∈ Z. Then,

(πi, gi, di, [t
s
i , t

e
i]) ./ (πj , gj , dj , [t

s
j , t

e
j]) ⇐⇒

tei∧
t=tsi

πi[t](gi, di) ./w πj [t+ k](gj , dj)

where ./w denotes the weak version of a strong operator ./. Fig. 2 shows two
examples of how these operators apply.

4 Synthesis of vector equations

In this section we present a procedure for the automated synthesis of vector
equations, so that the computed temporal expressions meet the observations,
with the aim of answering positively to Problem 2. We extend the vector equa-
tion language to enable synthesis of basic gene interactions, i.e. simple regulatory
interactions from which more complex gene functions are constructed; and the
synthesis of generic Boolean functions, based on the use of uninterpreted func-
tions for finding admissible logical combinations of vector equation terms.

8 N.Paoletti, B. Yordanov, Y. Hamadi, C.M. Wintersteiger and H. Kugler

πi, gi, di
πj, gj, dj

0 1 2 3 4

(a)

πi, gi, di
πj, gj, dj

0 1 2 3 4

(b)

Fig. 2. Comparison of two temporal expression patterns πi and πj . Yellow squares
indicate time-points where the gene is expressed, gray squares where it is not. Gene
gi in πi and domain di is overexpressed w.r.t. gene gj in πj and domain dj . How-
ever, the strong comparison operator �= does not hold in the example (a) over the
time interval [0, 4], while its weak equivalent (≥) does. Contrarily in example (b),
(πi, gi, di, [0, 4]) �= (πj , gj , dj , [0, 4]), because the comparison is verified point-by-
point, and thus (πi, gi, di, [0, 4]) ≥ (πj , gj , dj , [0, 4]) also holds.

Definition 6 (Basic interaction). Let N = (G,D, SR,T, F) be a GRNDD.
A basic interaction (BI) of N is a tuple f = (g, b, d, r, t, op) where:

– g ⊆ G is a set of input genes;
– b ⊆ B is a set of Boolean values indicating whether genes in g are expressed

or not;
– d ⊆ Dε = D ∪ {ε} is a possibly empty set of (d = ε) spatial domains;
– r ⊆ SRε = SR ∪ {ε} is a possibly empty set of spatial relations;
– op ⊆ {At-,After-,Perm-} and t ∈ T are a set of temporal operators and

a corresponding set of delays, respectively.

A BI f = (g, b, d, r, t, op) describes a set of interactions where an input gene
g′ ∈ g (whose expression depends on a b′ ∈ b) affects the target gene according
to a temporal operator op′ ∈ op and delay in t′ ∈ t, and possibly occurring in a
domain d′ ∈ d, or in a domain that is in a spatial relation r′ ∈ r with d′. In order
to avoid unwanted redundancies and non-determinism, we exclude the empty
temporal operator which is semantically equivalent to At-0. The choice of this
particular template for BIs was driven by observing that in the sea urchin model
presented in [10], every vector equation takes the form of a logical combination of
terms characterized by the same information. On the specification side, we want
to allow the modeler to incorporate some degree of flexibility in the declaration of
a BI to synthesize, and in turn to include gene regulations that are supported by
experimental evidence. Moreover, constraining the set of potential interactions
has the added benefit that the resulting functions are easily interpreted by the
domain expert who specified the templates, and that the same templates enables
the exclusion of unwanted or biologically unlikely interactions. Of course, there
is also a performance advantage, because a smaller set of functions is considered
by the solver.

Formally, the declaration of a basic interaction is of the form

f ⊆ G× B×Dε × SRε × T× {At-,After-,Perm-} → B

where f is a symbol from the set I of declared BI symbols. In practice, we con-
strain every BI by a declaration of choice of (subsets of) admissible values to each

Analyzing and Synthesizing Genomic Logic Functions 9

of its elements. For example, f
dec
= ({g},B, {ε}, {ε}, {0, 1, 2}, {After-,Perm-})

describes an interaction with a gene g whose expression is unknown (b can
take any Boolean value), where no domain-specific or inter-domain signaling
occurs (both d and r are fixed to ε), and causing a permanent effect (op =
{After-,Perm-}) on the target gene with a maximum delay of 2.

Obviously, for every declaration f
dec
= (g, b, d, r, t, op), we need to impose the

BI f to be evaluated to one of the admissible values specified in its declaration,
which imposes the constraint∨

g′∈g,b′∈b,d′∈d,r′∈r,t′∈t,op′∈op

f = (g′, b′, d′, r′, t′, op′)

Apart from basic interactions, we also allow the specification of arbitrary
Boolean functions by the use of uninterpreted functions (UF) of the form uf :
Bn → B. The only constraint we impose on such functions is whether input
variables are allowed to be negated or not. This information depends on domain
knowledge, e.g., it may be known that expression of some gene inhibits the
expression of another gene, but the precise mechanism of inhibition is unknown.

Indeed the negation of a term radically changes the regulatory input it repre-
sents, by turning an activation input into an inhibition (and vice versa). There-
fore, if we require that the synthesized function does not contradict known bi-
ological hypotheses about the kind of input interaction, for a UF uf of arity n
the following constraints are imposed:∧

i=1,...,n

uf(b1, . . . , bi−1, 0, bi+1, . . . bn) =⇒ uf(b1, . . . , bi−1, 1, bi+1, . . . bn)

We briefly explain the rationale behind this formula. According to the sum-
of-products (SoP, DNF) form of uf , if uf(b1, . . . , bi−1, 0, bi+1, . . . , bn) holds for
some choice of b1, . . . , bn, then the function translates to a formula of the form

uf = (b′1 ∧ . . . ∧ b′i−1 ∧ ¬bi ∧ b′i+1 ∧ . . . ∧ b′n) ∨ . . .

which contains a min-term where the i-th variable is negated and b′j is either bj
or ¬bj for j 6= i. A way to get rid of the negated term ¬bi is to enforce that
uf(b1, . . . , bi−1, 1, bi+1, . . . , bn) holds for the same choice of variables b1, . . . , bi−1,
bi+1, . . . , bn. By doing so, in the SoP representation of uf the negated term would
conveniently simplify because

(b′1 ∧ . . . ∧ b′i−1 ∧ ¬bi ∧ b′i+1 ∧ . . . ∧ b′n)∨
(b′1 ∧ . . . ∧ b′i−1 ∧ bi ∧ b′i+1 ∧ . . . ∧ b′n) ∨ . . .
= (b′1 ∧ . . . ∧ b′i−1 ∧ b′i+1 ∧ . . . ∧ b′n) ∨ . . .

We now extend the vector equation language in order to support the speci-
fication of BIs and UFs to be synthesized:

10 N.Paoletti, B. Yordanov, Y. Hamadi, C.M. Wintersteiger and H. Kugler

Definition 7 (Vector equation language for synthesis). The syntax of vec-
tor equations supporting the synthesis of basic interactions and Boolean functions
is given by the following grammar:

V ::=f | uf(V, . . . , V) | g | > t | < t | In d̄ | ¬V | V ∧ V | V ∨ V
| At-n V | After-n V | Perm-n V | In d̄ V | In r d̄ V

where g ∈ G, t ∈ T, n ∈ N, r ∈ SR, d̄ ∈ D, f ∈ I is a declared BI symbol; and
uf ∈ U is a declared UF symbol.

The semantics of the expression uf(V1, . . . , Vn) simply consists in the appli-
cation of the UF uf over its arguments:

uf(V1, . . . , Vn) (π, i, d) ⇐⇒ uf(V1(π, i, d), . . . , Vn(π, i, d)) .

The semantics of a BI f is defined as a conjunction of formulas of the form
f = (g′, b′, d′, r′, t′, op′) =⇒ V (π, i, d) which relate any synthesizable evaluation
of f to the corresponding vector equation term V :∧
g′ ∈ g, b′ ∈ b,
d′ ∈ d, r′ ∈ r,
t′ ∈ t, op′ ∈ op

f = (g′, b′, d′, r′, t′, op′) =⇒ op′ t′(IN r′d′(b′ ⇐⇒ g′)) (π, i, d)

where IN r′d′ V corresponds to INd′ V if r′ = ε∧d′ 6= ε, or to V if d′ = ε. A BI
is naturally mapped to a vector equation term describing the same interaction.
For instance, the interaction (g, 1, d, ε, 2,At-) corresponds to term At-2(In d(g)),
while (g, 0, d, r, 0,Perm-) corresponds to Perm-0(In r d(¬g)).

Bit-vector encoding of basic interactions. To make use of specialized simplifi-
cation and solving procedures in the solver, we use a bit-vector encoding of
BIs. Given an interaction f = (g, b, d, r, t, op), let us denote with f its bit-
vector encoding, and with f(g) ∈ Bdlog2|G|e, f(b) ∈ B, f(d) ∈ Bdlog2(|D|+1)e,
f(r) ∈ Bdlog2(|SR|+1)e, f(t) ∈ Bdlog2|T|e and f(op) ∈ B2 the fields of f encoding
the finite-ranging elements g, b, d, r, t and op, respectively, as subsequences of f .
Thus, the total length of f is:

N = dlog2|G|e+ 1 + dlog2(|D|+ 1)e+ dlog2(|SR|+ 1)e+ dlog2|T|e+ 2 .

Note that it is typically unnecessary to allocate dlog2|T|e bits to describe a delay
t, since in any non-trivial model, it is very unlikely to have delays as long as the
total execution time. Hence, in most cases it is worth fixing a maximum delay
t̄ < |T| for a more efficient bit-vector representation of the interaction.

5 Predicting Sea Urchin Development

We evaluated our approach by considering one of the most complete models of
sea urchin embryonic development [10], which contains 45 genes (and the vector

Analyzing and Synthesizing Genomic Logic Functions 11

equations describing their dynamics); 4 spatial domains; and 2 spatial relations
between domains. The sea urchin is a well established model organism, allowing
to study fundamental biological processes in a simpler setting, with mature and
powerful experimental methods, and the advantage that many of the underlying
mechanisms are conserved in higher level organisms. The model execution spans
the discrete time interval [0, 30] hours post fertilization (hpf), corresponding to
the early stages of development. We implemented the vector equation language
and the synthesis methods in a prototype where we make extensive use of the
QF UFBV support in the Z3 theorem prover [4].

We summarize the procedure followed for synthesizing a set of vector equa-
tions that completely explain all experimental data (both wild-type expression
and perturbation effects). The resulting equations have been obtained by consid-
erably changing the original formulation of the sea urchin model that explains
most but not all the data. Although the synthesis of vector equations in terms of
their regulatory logic and input interactions is fully automated, the final model
is derived after a number of manual refinement steps, which allows to progres-
sively add assumptions that are both biologically plausible and logically consis-
tent. This semi-automated strategy helps in excluding models able to reproduce
experimental observations but that are not biologically meaningful.

Initially, we validated the correctness of our formalization of the language,
by showing that the SMT-based implementation of the original model produced
the same expression patterns as reported in [10].

1. Removal of hard-coded data constraints. The original model contains a number
of terms formulated in a way that reproduces exactly wild-type observations, of
the form IN d ∧ t > ts ∧ t < te. Such a term basically forces the expression
of the output gene to be expressed in a specific domain (d) and time-interval
([ts + 1, te − 1]), regardless of the initial conditions or interactions with other
genes, thus providing just a description of the observation and no predictive
capabilities. We removed from the original equations any occurrence of such
terms (present in 8 vector equations), and we found that the resulting model
still does not admit solutions that meet experimental observations.

2. Exploration of unsatisfiable vector equations. Identifying the components of
a biological model which fail in reproducing the expected behavior is a hard
task, especially if the system is characterized by a large numbers of interacting
components like in our case. We address this problem with the automated ex-
traction of unsatisfiable subsets of vector equations, that are not able to explain
experimental data regardless of how the other equations are defined. This kind
of analysis points the biologist to the exact source of inconsistency, thus prompt-
ing further investigation of the underlying regulatory interactions that make the
model contradict experimental data.

In our case, we found that 14 out of the 45 original equations were inconsis-
tent on their own, i.e. solving Problem 2 with a GRNDD model that contains
only one among those equations determines inadequacy. Note that the removal
of inconsistent equations from the model does not necessarily make it satisfiable.

12 N.Paoletti, B. Yordanov, Y. Hamadi, C.M. Wintersteiger and H. Kugler

Indeed, our model was found inconsistent even after excluding all these problem-
atic equations, suggesting that any minimal unsatisfiable subset would include
a major part of the original equations. We therefore synthesize a new equation
for every gene, as explained in the following step:

3. Reformulation of vector equations into functions to synthesize. With our
framework we are able to synthesize correct models that also incorporate biolog-
ical knowledge and assumptions. The procedure consists of replacing each vector
equation with an uninterpreted Boolean function over a set of basic interactions
to synthesize, one for each term of the original equation. The final equations are
obtained through an iterative refinement where initially, each term to synthesize
is constrained to meet the original specification only in the input gene and in the
temporal operator, which are the most fundamental information of a regulatory
interaction. Then, we restrict the space of solutions by gradually restoring the
satisfiable features of the initial model (and removing hard-coded observations
as described in Step 1).

Specifically, consider a general vector equation f of the form:

f = . . . op t(IN r d(b ⇐⇒ g)) . . .

where op is the temporal operator, t the delay, d and r the (possibly empty)
domain and spatial relation, respectively, g the input gene and b the Boolean
indicating whether g is on or off. A UF uf is considered in place of the initial
logical combination of terms, and each term is replaced by a BI as follows:

f = uf(. . . , ({g},B, Dε, SRε,T′, {op}), . . .)

where only g and op are constrained to their original values, and T′ = [0, 12] hpf
is a reasonably large set of admissible delays. The subsequent refinement steps
include restoring b and constraining each function uf so that its interpretation
does not negate the involved terms; setting back the original spatial relation and
domain; and restricting the delay to the interval [max(0, t − 3), t + 3] so that
we admit an error of 3 hpf, which is reported in [10] to be the resolution of
experimental observations. Using the following procedure we have synthesized a
biologically plausible model that fully explains all the experimental data repre-
sented in [10]. The proposed SMT-based approach paves the way for new kinds
of in silico experiments, infeasible without automated reasoning and synthesis
techniques. The biological interpretation of our model is however beyond the
scope of this paper.

6 Related Work

6.1 Program Synthesis

In our work synthesis is used to support the abstract reasoning process biolo-
gists perform in their research towards deriving mechanistic predictive models.

Analyzing and Synthesizing Genomic Logic Functions 13

Our system takes observation data and equations templates as specifications
and produces new vector equations which fully reproduce the observations and
respect the initial templates. In program synthesis the aim is to automate the
process of implementation and ensure that the program is correct by construc-
tion. Program synthesis accepts specifications and generates code fulfilling those
specifications.

In [12] sketches are used to synthesize programs. A sketch is a program with
placeholders. The synthesizer takes a sketch along a working reference imple-
mentation and generates an optimized version of the reference implementation.
This work has been extended to take into account Boolean constraints and a
numerical qualitative objective [3].

Work in [13] introduced a so called proof-theoretic synthesis that interprets
program synthesis as generalized program verification. It requires the user to
provide an input-output functional specification, a description of the atomic
operations in the programming language, and a specification of the synthesized
programs looping structure, allowed stack space, and bound on usage of certain
operations. Their system works by using the Z3 theorem prover to reconcile
constraints that relate unknown statements, guards, inductive invariants, and
ranking functions.

These synthesis tools require a higher level of specification effort. This is
different from our work which uses less information to start with. In particular,
we do not ask the biologist to provide a working set of fully specified vector
equations, or fine details on the generated equations. However our approach
enables biologists to provide additional constraints that capture information in-
ferred from experimental results or biological intuition, which helps the synthesis
methods to derive more realistic models.

6.2 Computational Biology and Synthesis

The use of synthesis as a method to construct models of biological systems has
gained interest in the setting of discrete models that capture biological behav-
ior and enable important predictions and understanding. In particular several
approaches have been developed and applied to a classical system in develop-
mental biology describing fate specification of Vulval Precursor Cells (VPCs) in
the C. elegans nematode. In [7] a method that introduces a set of don’t care (dc)
Boolean variables that must be assigned values in order to obtain a concrete
model is presented. When a dc variable is set to 1, this indicates that the infor-
mation from the corresponding component does not contribute to the observed
result. The problem is formulated as maximizing the number of dc variables that
are set to 1, while retaining a model solution that is consistent and explains all
the given known data. This amounts to solving a QBF formula with a maxi-
mization goal for the dc variables. In [5] the question of synthesizing concurrent
models with bounded asynchrony satisfying a set of experiments that include ge-
netic mutations is addressed and the developed language and tools are applied
to the VPC system. Technically this turns out to be a QBF formula with three
levels of alternation, and new algorithms are developed to solve it. Additional

14 N.Paoletti, B. Yordanov, Y. Hamadi, C.M. Wintersteiger and H. Kugler

work on synthesis from scenario-based specifications and its application to the
VPC system is described in [8, 6], there the approach considered views the prob-
lem as a game between the environment (the experimentalist) and the system
(the nematode) and the solution relies on computing fix-points symbolically via
compositional methods.

Besides being applicable to the reverse engineering of biological systems,
approaches based on the use of formal synthesis and verification are also relevant
for their design. For example, in the field of synthetic biology one goal is to
engineer genetic networks with specific, useful properties. In [2] temporal logic
was used to capture such properties and model-checking was applied to study
if a synthetic gene network design was consistent with these specifications. A
parameter synthesis strategy was also developed to tune a design in order to
achieve the required behavior in [2] and, more recently, similar modular design
strategies were proposed in [1].

In [14] we introduce Z34Bio, an SMT-based framework for the automated
analysis and design of several classes of biological systems, where a common
symbolic representation as transition systems over bit-vectors is used to encode
multiple classes of biological models, including Boolean networks and chemi-
cal reaction networks. The framework was applied in [14] to the verification of
DNA circuit design and to the stability analysis of gene regulatory networks, in
particular showing how multiple gene knockouts that affect the stability of the
system are automatically identified. Recent extensions to this framework include
methods for analyzing probabilistic systems [11].

7 Conclusion

Deciphering and understanding the underlying developmental program of an
embryo is a fundamental problem. In particular, biologists have spent several
decades detailing how a complex gene regulatory network controls the develop-
ment of sea urchin embryos. In [10] it is shown how a model of the sea urchin
GRN is turned empirically into a predictive dynamic Boolean model. Beyond
the mere understanding of a complex process, this result provides a tool with
which to test in silico regulatory circuitry and developmental perturbations.

In this paper, we present a generic SMT-based approach for analyzing GRNs
in order to synthesize predictive dynamic and Boolean GRN. We applied our
approach to the sea urchin embryo, and successfully improve the current state-
of-the art by providing, for the first time, biologists with models that perfectly
explain all known data.

There are several major benefits to our method. First, our approach saves
biologists and modelers months or even years of tedious work trying to derive the
best predictive model. Second, biologists may have greater confidence in silico
tests since the provided models perfectly explain all known data. Third, our
method enables to determine that part of a model is inconsistent and cannot
explain all known experimental data, helping to focus research efforts on specific
biological mechanisms and assumptions that require reevaluation.

Analyzing and Synthesizing Genomic Logic Functions 15

This last benefit is related to the finding of minimal unsatisfiable cores in
verification applications. However, in our context, this represents much more
than the discovery of a transient problem with a particular version of a chip
design or software component. Instead, it represents a new way to push the
boundaries of knowledge, by driving biologists toward new scientific findings
and empowering their capacity to understand life.

Acknowledgments. Nicola Paoletti is part supported by the ERC Advanced
Grant VERIWARE. The research was carried out during his internship at Mi-
crosoft Research Cambridge, UK.

References

1. E. Bartocci, L. Bortolussi, and L. Nenzi. A temporal logic approach to modu-
lar design of synthetic biological circuits. In Computational Methods in Systems
Biology, volume 8130 of LNCS. Springer, 2013.

2. G. Batt, B. Yordanov, R. Weiss, and C. Belta. Robustness analysis and tuning of
synthetic gene networks. Bioinformatics, 23(18), 2007.

3. S. Chaudhuri, M. Clochard, and A. Solar-Lezama. Bridging Boolean and quanti-
tative synthesis using smoothed proof search. In POPL. ACM, 2014.

4. L. de Moura and N. Bjørner. Z3: An efficient SMT solver. In TACAS, volume 4963
of LNCS. Springer, 2008.

5. A. Koksal, Y. Pu, S. Srivastava, R. Bodik, J. Fisher, and N. Piterman. Synthesis of
biological models from mutation experimentss. In SIGPLAN-SIGACT symposium
on principles of programming languages. ACM, 2013.

6. H. Kugler, C. Plock, and A. Roberts. Synthesizing Biological Theories. In CAV,
volume 6806 of LNCS. Springer, 2011.

7. H. Kugler, A. Pnueli, M. Stern, and E. Hubbard. “Don’t Care” Modeling: A logical
framework for developing predictive system models. In TACAS, volume 4424 of
LNCS. Springer, 2007.

8. H. Kugler and I. Segall. Compositional Synthesis of Reactive Systems from Live
Sequence Chart Specifications. In TACAS, volume 5505 of LNCS. Springer, 2009.

9. I. S. Peter and E. H. Davidson. A gene regulatory network controlling the embry-
onic specification of endoderm. Nature, 474(7353), 2011.

10. I. S. Peter, E. Faure, and E. H. Davidson. Predictive computation of genomic logic
processing functions in embryonic development. Proc. of the National Academy of
Sciences, 109(41), 2012.

11. M. N. Rabe, C. M. Wintersteiger, H. Kugler, B. Yordanov, and Y. Hamadi. Sym-
bolic approximation of the bounded reachability probability in markov chains. In
QEST, LNCS (to appear). Springer, 2014.

12. A. Solar-Lezama, R. M. Rabbah, R. Bod́ık, and K. Ebcioglu. Programming by
sketching for bit-streaming programs. In PLDI. ACM, 2005.

13. S. Srivastava, S. Gulwani, and J. S. Foster. From program verification to program
synthesis. In POPL. ACM, 2010.

14. B. Yordanov, C. M. Wintersteiger, Y. Hamadi, and H. Kugler. Z34Bio: An SMT-
based framework for analyzing biological computation. In SMT, 2013.

