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ABSTRACT
People interact with chairs frequently, making them a poten-
tial location to perform implicit health sensing that requires
no additional effort by users. We surveyed 550 participants to
understand how people sit in chairs and inform the design of a
chair that detects heart and respiratory rate from the armrests
and backrests of the chair respectively. In a laboratory study
with 18 participants, we evaluated a range of common sitting
positions to determine when heart rate and respiratory rate de-
tection was possible (32% of the time for heart rate, 52% for
respiratory rate) and evaluate the accuracy of the detected rate
(83% for heart rate, 73% for respiratory rate). We discuss the
challenges of moving this sensing to the wild by evaluating
an in-situ study totaling 40 hours with 11 participants. We
show that, as an implicit sensor, the chair can collect vital
signs data from its occupant through natural interaction with
the chair.
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INTRODUCTION
The most direct way to measure the general health of an indi-
vidual is through their vital signs: including heart rate, respi-
ratory rate, blood pressure, and oxygenation. However, most
people have these vitals taken very rarely, perhaps at an an-
nual doctor’s visit or when an illness has already shown itself
through other signs or symptoms. Though a motivated subset
of the population may measure their vital signs during exer-
cise, this is often restricted to periods of exercise only. Most
of the population gathers only infrequent measurements of
their vital signs.

While a recent explosion in wearable health devices [6, 16]
enables more people to track their vital signs, there are a
number of reasons people may choose not to wear such de-
vices including comfort, appearance, and frequency of charg-
ing. Given the current costs and requirements of such devices,
people adopting them are likely either highly motivated by a
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specific task, such as managing weight, or already aware of
a chronic condition that requires monitoring. In contrast to
these explicit health monitoring devices, we are interested in
implicit health sensing. How can we sense vitals without any
active participation from the individual being monitored?

Sensing vitals implicitly as people go about their daily lives
requires the sensing to be embedded in objects that people
interact with frequently. Research has shown that people cur-
rently spend most of their time in sedentary activities, sitting
at work, sitting watching TV, sitting in cars, sitting at meet-
ings, to eat, to socialize, etc. [8]. Many of these sedentary
activities revolve around an object seen in nearly every home,
building, and workspace: the chair.

Given their ubiquity, chairs are an intriguing possibility for
implicit sensing. A sensing chair could tell what posture a
person is holding, what their heart rate is, or how quickly they
are breathing. It could monitor stressful reactions over the
course of the day or record how the occupant’s health changes
over months or years. By combining ubiquitous sensing and
the common, everyday chair, we envision a way to monitor a
person’s health between clinic visits and detect early signs or
trends that can play a role in predicting future health.

To study the feasibility of implicit health sensing from a chair,
we selected two vital signs to sense: respiratory rate and heart
rate. These are commonly measured signs for many adverse
conditions including anxiety, stress, sleep disorders, cardio-
vascular disease, and respiratory disease. While we are not
the first to consider the possibility of a chair as a health sen-
sor [e.g. 2, 18, 26], our unique contributions are:

• Qualitative data from 550 participants about their usage of
chairs to inform the design of chair sensors
• Iterative design of an EKG armrest electrode pattern to in-

crease implicit sensing opportunities
• Lab evaluation of respiratory and heart rate sensing accu-

racy across 7 common sitting positions with 18 people
• In-situ evaluation of implicit sensing using the Health

Chair with 11 participants

Our findings suggest that the Health Chair can provide its oc-
cupants with information about their vital signs. Our expe-
rience moving the Health Chair out of the laboratory illumi-
nated challenges that prevent the Health Chair from continu-
ously sensing vitals when occupied. The Health Chair does,
however, have the potential to be a ubiquitous implicit sensor
for an individual’s health, opportunistically measuring their
vitals on a daily or multiple-times-per-day basis.
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RELATED WORK
Using devices outside the clinic to measure the health and ac-
tivities of people has been a growing area of interest in recent
years [20]. These devices can roughly be separated into two
main classes: wearable or explicit devices and environmental
or implicit devices.

Explicit health devices are those worn by the individual being
monitored. Many devices of this type are already commer-
cially available and monitor a variety of health signs and ac-
tivities, including devices that count the number of steps you
take or monitor heart rate through a strap worn around your
chest. Recent research has looked into making these devices
smaller, cheaper, easier to wear, and easier to communicate
with and collect data from, as well as how to collect a wider
variety of health signs [e.g. 6, 16].

However, though these explicit devices measure many of the
vital signs of the human body, they are not often used in ev-
eryday living. This is due to a number of problems with wear-
able devices. First, wearing devices can be cumbersome. If
the device is too large, visible, or unfashionable individuals
may be unwilling to wear the device. Second, monitored in-
dividuals may take the device off for activities such as show-
ering, sleeping, dish washing, etc. and forget to put the de-
vice back on. Assuming the individual requires the device for
immediate health purposes, such as a cardiac patient being
monitored for signs of a heart attack, these first issues may be
ignored or carefully worked around. However, this limits the
monitored population to those with already diagnosed issues
or identified high risk patients. Otherwise healthy individu-
als or those with unidentified health risks are almost never
monitored by these systems.

Implicit sensing devices solve a number of the problems pro-
duced by explicit devices. As implicit devices are not worn,
but instead embedded in the environment, there is no need for
the individual to remember to don the device. Additionally,
implicit sensing devices require no active participation from
the monitored individual. Such devices include video moni-
toring to determine heart rate [17], weight sensors placed in
beds [21], and sleep evaluation through heart rate and move-
ment detection in beds [11]. A monitored individual can go
about their daily life without interruption and each time they
interact with these implicit sensing devices a snapshot of their
health is taken.

The main drawback to implicit sensing then becomes the fact
that it is not continuous. An individual must interact with or
be in proximity to an implicit device for data on their health
to be sensed. However, many of the devices endowed with
sensing ability today are not in constant contact or sufficient
proximity to a person for frequent measurement. Instead, im-
plicit health sensing requires an object of great ubiquity and
constant use as a sensing platform. In modern society, we
can find a great candidate object below us during much of our
waking hours: the common chair.

Recent research has examined the chair as an implicit sensor
for several applications. Posture recognition through pres-
sure sensors on the chair provides the basis for many of these

applications [13, 12, 15, 23]. Applications that use posture
recognition include: providing feedback to the user to correct
bad posture [26], using positional information as a controller
and user interface [22], and detecting the interest level and
activities of the occupant [14, 10]. Additionally, the Smart
Chair [4] uses pressure sensors mounted under the legs of a
chair to extract information about the activities of the occu-
pant, such as their postures and hand and head movements,
to recognize activities such as typing on a computer and eat-
ing. These posture based approaches provide some indirect
information about an individual’s health, such as when their
postures change frequently due to discomfort [2], but do not
directly monitor the vital signs of the occupant.

Implicit sensors other than chairs that focus on vital sign
detection include respiration and heart rate in beds [3, 11],
blood pressure in toilet seats [24], and heart rate in car seats
[7]. Ford has recently been developing heart rate sensors em-
bedded in the backrest to measure heart rate through certain
clothing materials. Toyota is developing a heart rate monitor
built into a steering wheel [25], and Anttonen et al. [1] use
an electromechanical film sensor (EMFi) covering a chair to
detect heart rate. None of these sensors monitor respiration
rate. Some implicit sensors monitor individuals while they
are in chairs, but are not actually part of the chair, such as
video monitoring to determine heart rate [17]. In this work
we are looking to complement these approaches by providing
a second sensing point when sensing capabilities overlap and
sensing in situations these sensors cannot, such as when the
occupant sits in the chair, but is facing away from the video
monitor.

Perhaps most closely aligned with our approach, Postolache
et al. [18] mounted an EMFi on the backrest and seat of a
chair to monitor vital signs. Their results focus on evaluating
a wavelet based signal processing algorithm to extract res-
piration and heart rate. Results presented from a lab study
with 10 minutes of data collected for 10 people are encour-
aging, although details on sitting position and robustness of
the approach across different positions is not provided so it
is difficult to know how the approach would perform in real
world conditions.

Our unique contributions that go beyond prior work include a
chair usage study to inform our sensor design, lab evaluation
across common sitting positions, and an in-situ evaluation of
implicit sensing using a chair.

CHAIR USAGE STUDY
How successfully chairs can be used as implicit sensors de-
pends on how frequently people are sitting, understanding
how they sit to enable sensor placement, and the diversity of
chairs people use throughout the day. To evaluate these fac-
tors we began our investigation with a usage study. Initially,
we interviewed 50 office workers (M: 25 F: 25) with desk-
based offices at our company. Before interviewing a partici-
pant we unobtrusively observed their current sitting position,
including information such as how far forward they were sit-
ting, if they were using their armrests, and how their legs were
placed. Afterwards, if a participant chose to participate, this
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information was transferred to our participant pool and we
asked them questions such as:

• Siting duration for their typical work day

• What features (e.g. armrests, backrests) they prefer on their
chairs

• Typical posture they use in their chair

In addition to these interviews, we deployed a survey based
on these questions on Amazon’s Mechanical Turk (MTurk)
to 500 participants (194 female) located in the U.S and paid
each respondent U.S. $0.25. Due to the nature of the remote
survey, Mturk participants were not observed in their natural
pose before answering questions. However, the Mturk survey
responses allow us to generalize our results beyond the ini-
tial office worker interviews. Of the Mturk participants, 59%
spent less than 6 hours working on a computer, indicating that
the Mturk respondents had more diverse jobs then than our
internal population. In total, we collected data from 550 re-
spondents (M: 331 F:219). The majority of participants were
between the ages of 20 and 39 (75%), with 7% of participants
under 20 and 17% above 40.

How much do we sit?
Prior work [8] tells us that in developed countries people
spend up to 15 hours of their waking time in sedentary be-
havior. To better determine how much of this time was spent
sitting, we asked all respondents to report the number of hours
they spend sitting on a typical work or weekday. Participants
were asked to think of all the times they sit during the day, in-
cluding when sitting in cars, on buses, at mealtimes, at home,
and at work. More than half of the participants (55%) re-
ported that they typically spend more than 9 hours a day sit-
ting. Of these, 20% reported they spend more than 14 hours
a day sitting. Only 18% of respondents reported that they
spend less than 6 hours sitting per day. These results indicate
that, despite diverse jobs and lifestyles, people spend a large
portion of their day sitting in chairs.

Where do we sit?
To better understand how many chairs would need to be in-
strumented to sense the majority of a person’s waking day,
we asked participants if they had a primary chair that they
use during the day. 91% (498) of respondents reported they
had a primary chair. Of these respondents, 61% reported that
they typically sat in it for 6 or more hours a day. Surprisingly,
65% of respondents reported that this primary chair was lo-
cated in their homes. These responses show that the majority
of respondents interact primarily with a single chair, indicat-
ing that only one chair in their lives need be instrumented as
an implicit sensor to achieve frequent sensing.

Although a person may have a primary chair, that chair may
be used by multiple people. If multiple people use the same
chair, implicit health sensing becomes more complicated be-
cause the chair must also identify the person sitting in it. We
asked respondents whether or not they shared their primary
chair with other people in order to determine how important it
would be for the Health Chair to identify its occupant. Most
of the respondents (69%) reported that they were the only

ones to routinely use their main chairs, 18% report that only
one other person did, and only 13% reported that 2 or more
people did. Hence, for the majority of respondents, the chair
would not need to determine their identity. Thus we do not
focus on occupant identification in this paper.

How do people sit in chairs?
To understand how to sense vitals from someone in a chair we
first need to better understand how people sit in chairs. For
example, if an individual always leans forward when sitting in
a chair and never uses the backrest, or does not have a back-
rest on their chair, then sensors designed to sense the person
from the backrest would never see that individual. Sensing
that requires skin contact, such as EDA or EKG, likely needs
to be placed on armrests, since uncovered arms are more com-
mon in work and everyday settings than an uncovered back or
upper legs.

To determine where sensing might be feasible on a chair we
asked respondents how they commonly use the chair they sit
in. The majority of respondents stated that they often use
the backrests of chairs (67%) and only 6% reported that they
never use backrests. Armrests were used, though to a lesser
degree, with 38% reporting that they often used armrests and
42% reporting that they sometimes used armrests. Of the re-
spondents that had a primary chair, 94% reported that their
chairs had a backrest and 71% reported that they had arm-
rests. Of the total respondents, 84% reported that they pre-
ferred armrests on their chairs and 87% reported that they
preferred chairs with backrests. These numbers indicate that,
for the majority of respondents, sensors in the backrest and
armrests of their chairs would be in contact with the person’s
body for some of the periods during the day that they occupy
their chair. Therefore we focus our sensing efforts on the
armrests and backrest of the chair.

SENSING VITALS FROM A CHAIR
Informed by the chair usage study, we built our Health Chair
prototype. We focused on sensing two vitals, heart rate and
respiratory rate, as these are well known indicators for a vari-
ety of medical issues including cardiac and respiratory issues
and other more subtle conditions such as stress and anxiety
issues.

Our usage study showed that sensing from the armrests and
backrest of chairs would provide periods of health sensing
data throughout the day for most people. Therefore we chose
these two locations from which to detect vital signs. Any
sensing performed by an implicit sensor must be performed
in such a way as to not impede the normal function of that
object. In the case of the chair, this meant that sensors had to
conform to the structure of the chair in question and produce
no increase in discomfort for the occupant. Figure 1 shows
the final prototype of the health chair, including the placement
of the electrodes and pressure sensors. Our two embedded
data collection devices are affixed out of sight to the bottom
of the chair.

We now describe the hardware implementation and signal
processing for heart rate and respiratory rate sensing.
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Figure 1. We employ conductive fabric on the chair’s armrests to sense
heart rate and pressure sensors on the back of the chair for sensing res-
piratory rate (left). Two iterations of our armrests (right).

Heart Rate from EKG
Clinicians commonly perform heart-rate detection using an
electrocardiogram (EKG). An EKG measures the electrical
activity of the heart, capturing the contraction of the heart
muscle as blood is pumped throughout the body. Electrodes
placed on the body capture these electrical signals through
contact with skin. The Health Chair sensor detects this elec-
trical activity through a three-electrode EKG, where two elec-
trodes are placed on opposing sides of the heart to detect elec-
trical activity and a third electrode drives the skin to a com-
mon voltage (referred to as the driven right leg or DRL) to
keep the common-mode voltage of the two sensing electrodes
in range of the analog-to-digital converter (ADC). While
other research [7] is studying the accuracy of EKG recording
without skin contact, our Health Chair requires skin contact.

Because EKG requires skin contact, electrodes were placed
on both armrests of the chair, where an occupant is most
likely to have exposed skin. We implemented the three elec-
trode EKG used by the Health Chair using conductive fabrics
as electrodes. The EKG electrodes are designed to cover the
entire upper surface of the armrest. Each armrest is covered
with two non-touching pieces of conductive material. Two it-
erations of the EKG electrodes were used in this study. The
first used copper foil tape and silver ribstop of 0.25 Ohm/sq.
The second used copper taffeta of 0.05 Ohm/sq and the sil-
ver ribstop. A combination of two materials was chosen for
aesthetic reasons. A single material can be used for all elec-
trodes provided electrodes are separated by an insulator. Both
iterations of the armrests are shown in Figure 1.

The electrodes are designed with an interlocking zig-zag pat-
tern. This pattern is intended to capture a person’s arm or
elbow with both pieces of fabric in any location where they
come into contact with the armrest. Because the DRL elec-
trode requires only one connection to the occupant, it is not
necessary for the occupant to touch this contact with both
arms (although it is fine if both arms touch DRL). Therefore,
the DRL contact was placed as the electrode on the outside
edge of the armrests. If an occupant places their arm on top
of one armrest and leans into the other, touching the inside
edge of the armrest only, this configuration will ensure that
both opposing leads are connected to the occupant and able
to collect EKG.

Figure 2. The rejected EKG signal (right) shows movement artifacts and
variation in R peaks that is not seen in an accepted (left) signal.

After our laboratory study, we learned that the individual
stripes of conductive material were so thick that often a per-
son would only be in contact with one of the active electrodes
on an armrest. To address this issue, we made a second ver-
sion of the armrest for the in-situ study with a tighter zig-zag
pattern (see Figure 1).

We employ the Texas Instruments ADS1298 for EKG sens-
ing. It is a low-power, 8-Channel, 24-Bit ADC meant for
many types of biopotential measurements. The ADS1298 is
from a family of biopotential ADCs suitable for EKG. We
sample the electrodes at 100Hz and log the data to a nearby
machine over Bluetooth.

Signal Processing
The signal processing component of the Health Chair extracts
the rate of each vital sign being measured. Heart rate was
calculated using a method called R-peak detection. The R
wave represents the electrical stimulus in the heart as it passes
through the main portion of the ventricular walls and is mea-
sured as the highest peak in a single beat shown in an EKG.
R-peak detection detects this peak in each heart beat shown
by an EKG signal. With this information the heart rate of
the individual producing the EKG signal can be calculated.
The method we used to detect R-peaks is based on the code
published in [19].

To detect the R-peaks from the raw signal we begin by apply-
ing a first order IIR DC blocking filter with a cut-on frequency
of 0.1 Hz. The signal is then divided into 10 second windows,
with a one second step between windows. For each window,
we apply a simple high pass by taking an FFT and then an
IFFT of the frequency bins above 40 Hz. This sharpens the
peaks in the signal that correspond to R-peaks (when there is
good signal). From the high-passed signal, we can then find
the local maximums in the signal which correspond to the R-
peaks of the EKG signal.

Heart rate is calculated from the detected R-peaks by taking
the average RR-interval (the time between two R-peaks) and
inferring the heart rate of the individual in beats per minute.
Once the inferred heart rate at a given second is found the rate
is either accepted by the Health Chair as a rate corresponding
to its occupant, or rejected due to inconsistencies, see Figure
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2 for an example. Determining acceptable inferred rates is
particularly important for implicit sensing because we expect
the sensor to not always be in contact with the individual or to
be detecting incorrect rates due to an occupant’s movement,
position, or other noise. An inferred heart rate can therefore
be rejected as the occupant’s heart rate for a number of rea-
sons, most commonly because the individual is not in contact
with the sensor. For the EKG sensor, lack of good contact
also includes when only one of the occupant’s arms is in con-
tact with the armrests. A heart rate can also be rejected when
there are enough inconsistencies in the signal to indicate that
the detected rate may not be accurate. If the standard devia-
tion of the RR-intervals in the 10 second window is greater
than or equal to 0.1 seconds then the rate is rejected. Only
accepted heart rates are attributed to the occupant.

Respiratory Movement
Respiratory rate is measured by observing the rise and fall
of the human chest or abdomen over a period of time or the
pressure exerted by these areas of the body expanding against
adjacent surfaces. Because individuals breath differently, ex-
panding through either their chest or their abdomen, no single
location on the body exhibits respiratory expansion on all in-
dividuals. However, some portion of the human upper body
always expands with respiratory movement making the back-
rest an ideal place to measure respiration using pressure sen-
sors.

Respiratory movement was collected using force-sensing re-
sistors attached to the backrest of the chair. A force-sensing
resistor changes resistance when force is applied. The sensors
used in the Health Chair are FSR 406 Square and FSR 408
Strip Force Sensing Resistors from Interlink Electronics. An
Arduino attached to the bottom of the chair collected readings
from each sensor. Data was logged onto a laptop connected
to the Arduino over USB.

Most people expand or contract their upper body in one of
two locations when they breath: their chest or their abdomen.
The strip sensors are placed along the top of the chair to catch
the expansion of the occupant’s chest as breathing tilts there
upper body back and forth. The square sensors on the lower
back of the chair were placed to catch the expansion of the oc-
cupant’s abdomen as breathing pushes the fleshy skin below
their ribs out and in. It is important to note that an increase of
pressure against the sensors does not indicate that the occu-
pant has breathed in. Inhaling can lift parts of the occupant’s
body up and away from the sensors, particularly in the upper
back, and exhaling can relax them back into the sensors. A
total of six pressure sensors are used to detect respiratory rate
as shown in Figure 1.

Signal Processing
Using a sliding 10 second window, with a one second step,
we calculate respiratory rate from the pressure sensors using
autocorrelation. Autocorrelation overlays the original signal
on top of itself and shifts it across the time domain, measur-
ing cross-correlation of the signal with itself. The first peak of
similarity represents the lowest amount of lag time or move-
ment before the signal matches itself. Movements of a per-
son’s chest as they breath in and out can often be seen as a

Figure 3. The accepted respiration signal(left) shows a much larger dif-
ference between the first valley and peak of the autocorrelation than the
rejected signal (right).

sign-like wave in the pressure sensors, as they press into and
pull away from the sensor. Thus, this first peak of similarity
represents the frequency of the person’s respiration.

As with heart rate, a inferred respiratory rate can be rejected
for a number of reasons, including when the occupant is not
in contact with the sensors. This is fairly common in the pres-
sure sensors on the back of the chair, where a person might
be in contact with some, but not all, of the sensors. A respi-
ratory rate is rejected under two circumstances. First, if the
magnitude of the frequency peak, minus the magnitude of its
neighboring valleys is too small (less than 0.6), the rate is re-
jected. This means that any respiratory signal that does not
show enough change between an out breath and an in breath
is removed. Second, a rate is rejected when the peak-to-peak
amplitude of the raw pressure signal is too small. This helps
both to remove any calculated rates where the difference be-
tween the breath-in pressure and the breath-out pressure are
not clear enough to indicate that the individual is causing
them; instead, the sensor may be transducing noise sources
such as slight deformation of the sensors in how they are at-
tached to the chair. Figure 3 shows examples of accepted and
rejected inferred rates.

Once a respiratory rate is inferred for each of the six pressure
sensors, the final rates are fused to form the respiratory rate
detected by the chair. Each respiratory rate that was accepted
from each pressure sensor in a given 10 seconds window is
averaged together to form the final inferred rate. The final
respiratory rate is only accepted and attributed to the occu-
pant if the standard deviation of these combined rates is less
than or equal to 2 breaths per minute (found experimentally),
ensuring that the pressure sensors closely agree on the final
accepted respiratory rate.

LABORATORY EVALUATION
To assess how well the Health Chair could accurately detect
heart rate and respiratory rate we first evaluated our chair in
a laboratory study. Specifically, we looked at when the chair
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Sitting Position Arm Position Back Position
1. Arms Flat Arms Flat and parallel on the Armrests Straight Back

2. Right Partial Right Arm Resting Partially on Armrest, Left arm as in (1) Straight Back
3. Arms Partial Both arms resting partially on armrests Straight Back
4. Right Elbow Right elbow on armrest, Left arm as in (1) Straight Back

5. Elbows Both elbows on armrests Straight Back
6. Slouched Both arms as in (1) Slouched, Lower back only touching

7. Leaning Back Both arms as in (1) Leaning back, Upper back only touching
Table 1. Participants varied both arm and back positions when using the chair in the laboratory study.

is able to detect these vital signs and how accurate is the de-
tected rate?

Experimental Design
This study focused on assessing the ability of the Health
Chair to accurately detect and calculate heart and respiratory
rate under controlled conditions. We tested two aspects: 1)
whether the Health Chair could detect a vital sign consis-
tently and accurately when the vital is in a steady state, such
as the heart rate while a person is at rest across several dif-
ferent sitting positions and 2) whether the Health Chair can
detect when the vital sign is changing.

We recruited 18 participants (F:9, M:9) who sat in 7 different
positions for 30 seconds each while silently watching a short
video clip. These experiments tell us how accurately a rate
at rest can be detected given how the occupant is sitting. The
various positions were chosen from the observation of par-
ticipants in our office building during the chair usage study.
Participants were shown pictures of each position for refer-
ence, but were otherwise not directed into the position. In the
first position, participants were asked to sit up straight with
their back resting against the backrest and their forearms flat
on the armrests. From this position participants were asked
to vary their arm positions, as described in Table 1. Partici-
pants then returned to the first position and were asked to vary
their back positions. To test how well the chair could detect
when vital signs are changing we asked participants to bike
on a stationary bike for a full minute before sitting in position
1 for a full minute. This exercise-sitting cycle was repeated
four times.

We designed this study to evaluate the ability of the sensors
to infer vitals when the occupant was in contact with the chair
under controlled and ideal conditions. Thus, we asked partic-
ipants to remove any jackets, long sleeves, or jewelry from
their forearms that could interfere with the heart rate elec-
trodes and we did not include sitting positions that would pre-
vent contact with the sensors (e.g. not using the arm rests or
sitting at the front edge of their chair and not touching the
backrest).

Ground Truth
Ground truth for both heart rate and respiratory rate was col-
lected using commercially available wearables. Heart rate
and respiratory rate were detected using the Garmin Soft
Strap Heart Rate Monitor and NeuLog Respiration Monitor
Belt Sensor respectively.

The Garmin Soft Strap Heart Rate Monitor encircles an in-
dividual’s chest and wirelessly transmits detected heart rates
to a ANT+ device. The Garmin sensor requires good skin

contact to detect heart rates and advises wearers to wet the
strap for better conductivity before placing it on skin. If the
strap does not have good conductivity it does not transmit
a heart rate and because of this heart rate ground truth was
lost for parts of the experiments for a number of the partic-
ipants. The total amount of data lost across all participants
and experiments was 51 minutes (36%). Only the parts of
the experiments that had ground truth were evaluated. The
Garmin strap has no specific sampling rate for detecting heart
rates, whenever the monitor detects a heart rate it transmits it.
The exact signal processing of the Garmin strap are propri-
etary. In order to match the heart rate detection of our chair,
all heart rates detected by the Garmin strap in a single second
are averaged together.

The NueLog Respiration Monitor Belt Sensor encircles an
individual’s upper abdomen and lower rib cage. An air
bladder inside the belt is inflated to press against the chest
of the individual and the air pressure within the bladder is
recorded. The bladder is small, only 4-5 inches horizontally,
and is positioned over the lower rib cage and upper abdomen
of a participant’s chest. The bladder itself does not press
against the Health Chair’s pressure sensors that touch a par-
ticipant’s back. When a person breathes their expanding chest
is pressed against the bladder and the increase in pressure in-
dicates an inhale. Before data is collected from each partici-
pant, the bladder is inflated until an inhale and exhale by the
participant are seen as a sign wave in the pressure signal, then
the bladder is stoppered to hold that pressure level. Since the
NueLog senor will pick up all movement of the chest, par-
ticipants were asked to refrain from talking and laughing so
that the NeuLog only recorded the movements of their chest
due to respiration. The resulting pressure signal was turned
into respiratory rate by taking an autocorrelation of the signal
and extracting the rate at the first peak of high correlation.
As this is the same technique that is used to extract the res-
piratory rate from the Health Chair our comparison against
respiratory ground truth is not measuring the error of the au-
tocorrelation technique, but the similarity of the respiratory
signal found by the Health Chair to that of the NeuLog Belt
Sensor.
Results
The success of any implicit sensor depends on two things: its
ability to detect when it should be accepting data and how
accurate that data actually is. Not surprisingly, as the im-
plicit sensor becomes more strict with its acceptance criteria,
the reported data becomes more accurate. The success of the
Health Chair as an implicit sensor is therefore a combination
of how often it accepts a rate and, of those accepted rates, how
accurately it infers the rate compared to ground truth. Accu-
racy for a vital sign was calculated by comparing only those
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Figure 4. The percentage of accepted heart rates varies widely across the
different positions occupants took. Positions with limited arm contact,
such as elbows only in position 5, showed the least number of accepted
heart rates.

rates found in a 10 second slide window that were accepted
to the corresponding rate found in ground truth.

The laboratory study showed that the position an occupant
is in has a large effect on the ability of the chair to be an
implicit sensor. How often the Health Chair found valid rates
differed greatly due to the position of the occupant. Overall,
the Health Chair accepted heart rates 32% of the time and
accepted respiratory rates 52% of the time.

Heart Rate
The detection of heart rate in EKG depends highly on the
contact area of an individual’s skin, the more contact the bet-
ter. As shown in Figure 4 positions with less contact area be-
tween the participant’s skin and the EKG electrodes accepted
fewer heart rates. Most noticeably, the position that had the
least amount of skin contact (elbows only) also had the lowest
number of heart rates accepted.

Movement between the skin of the monitored individual and
the electrodes also causes noise in the EKG signal. All the ex-
ercise experiments showed fewer detected heart rates, likely
due to the movement of the participants after exertion. As
a participant breaths heavily from the exercise, their body
movements increase. This movement can cause motion ar-
tifacts in the EKG signal and, because the acceptance criteria
for a rate are so strict, signals with these motion artifacts will
often be rejected. The first exercise experiment’s results show
this to a greater degree than the others because many partici-
pants paced themselves after the initial exercise experiment.

Of the accepted heart rates, 83% were within 5 beats per
minute of the ground truth heart rate. Figure 5 shows the
accuracy of the Health Chair when compared to ground truth
within 1 to 10 beats per minute. Unsurprisingly, with the low
number of accepted rates detected for position 5, the accuracy
of the heart rates in this position is high. Other positions, such
as 3 and 4, show lower accuracy and a higher accepted per-
centage.

In the exercise experiments, heart rate was detected with 5
beats per minute of ground truth 75% of the time and within
10 beat per minute 85% of the time.

Figure 5. The accuracy of the accepted heart rates when compared to
ground truth vary only moderately with position.

Respiratory Rate
Unsurprisingly, changes to the back positions had a large ef-
fect on the number of accepted respiratory rates as Figure 6
illustrates. For both positions, leaning forward (position 6)
and leaning back (position 7), the percentage of accepted res-
piratory rates was less than half of the straight back position
(position 1). In both cases this was due to the fact that fewer
sensors were able to detect the respiratory motion of the up-
per body. When the participants leaned forward they came
off the upper pressures sensors, effectively reducing the num-

Figure 6. The percentage of accepted respiratory rates is fairly consis-
tent across most positions, but drops sharply when the back position is
changed in positions 6 and 7.
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Figure 7. The accuracy of the accepted respiratory rates when compared
to ground truth vary only slightly with position.

ber of sensors that could detected their respiratory rate. When
participants leaned back they pressed themselves into the up-
per pressure sensors in such a way that the sensors reached
their maximum pressure limit and therefore could no longer
detect changes in respiratory motion.

Changing arm positions also had an effect on the respiratory
rate detection. Position 3, where the participants had their
upper forearms on the armrests and their hands in their laps,
showed the highest percent of valid respiratory rates. This
may be due to the fact that this position forces a slight slump
to the upper body, pulling it slightly away from the sensors
to prevent hitting the pressure limit, but not far enough that
we see the drop in accuracy of position 6. As the participants
move to having their elbows on the armrests, as in position 5,
they are able to correct this slight slump and the percentage
of accepted respiratory rates falls again.

As people exert themselves, they take deeper breaths, caus-
ing more expansion to the upper body. This can be seen
in the accepted respiratory rates of the exercise experiments.
With these deeper breaths the values from the pressure sen-
sors change more drastically from an inhale to an exhale than
seen from restful breathing. With this higher peak-to-peak
amplitude, more rates are accepted by the respiratory rate sig-
nal processing. Opposite of the heart rate analysis, as the par-
ticipants paced themselves through later exercise experiments
this percentage of accepted respiratory rates fell.

Figure 7 shows the accuracy of the respiratory rate detection
when compared to ground truth. Of the accepted respiratory
rates, 73% were within 3 breaths per minute of ground truth.

REAL WORLD USAGE STUDY
To understand if the Health Chair would be effective as an
implicit sensor in a real world environment we performed a
series of in-situ studies. The goal of these studies was to pro-
vide an initial look into how an implicit sensing chair could
be used in a real environment, and the frequency with which
vital signs could be sensed. Because the intent of this real
world study was to examine the chair in as natural an envi-
ronment as possible we chose not to collect ground truth in-
formation, believing that wearing either of our ground truth
devices might severely change the habits of our participants.
For the in-situ study we focus not on the accuracy of the data
collected, but on the participant’s interaction with the chair.

Two Hour Study
Eight office workers at our company (M:4 F:4) participated in
these studies. Each participant chosen was already using an
identical, un-instrumented copy of the Health Chair as their
normal office chair. Participants were encouraged to adjust
the chair’s arms, back, and height to match their normal us-
age. The health chair was then given to the participants to use
in their offices for a period of two hours.

During the two hour in-situ period participants were asked to
go about their normal work and act as if the Health Chair was
their regular chair. We requested that they talk, type, read,
write, and act as they normally do. Participants were asked to
select a two hour period where they intended to sit for the full
two hours, to ensure that we collected data that corresponded
to an occupied chair. We did, however, provide them with a
method to mark any times in that period where they stood up
and left the chair if required. We also asked that participants
work without sweatshirts or sweaters to make sure that their
forearms were bare.

Given how often calculated rates are rejected as invalid even
when the person is in full contact with the chair sensors, we
expect an even smaller number of valid detected heart rates
in real world usage, where an occupant is not always in con-
tact with the backrest or armrests. Extrapolating from the lab
study, where 32% of the time the chair accepts heart rate, we
can assume that for a period of two hours if an occupant only
uses both armrests for 10 minutes then we will only accept
heart rates for 2.7% of that period (about 3 minutes).

Results from the two hour in-situ experiments, Table 2, show
that while the chair does not pick up health signs for a large
portion of natural use, it detects some resting heart rates and
respiratory rates. Each detected rate in Table 2 corresponds
to 10 seconds of vital sign signal from the occupant. As
indicated by our usage study the use of the backrests, and
therefore the detection of respiratory rate from the backrest,
is more common than the use of the armrests. Additionally,
most of the in-situ participants reported using the armrests
very infrequently during the two hour period.
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Participant Resting Respiratory
Rate Detected

Resting Heart
Rate Detected

1 8.2% (9.7 minutes) 0.30% (21 seconds)
2 7.2% (8.7 minutes) 0.18% (13 seconds)
3 6.2% (7.2 minutes) 0.45% (33 seconds)
4 6.7% (8.2 minutes) 0.78% (57 seconds)
5 4.6% (5.5 minutes) 0.42% (30 seconds)
6 5.9% (7.1 minutes) 0.33% (24 seconds)
7 5.8% (7.1 minutes) 0.21% (16 seconds)
8 5.5% (6.7 minutes) 0.18% (13 seconds)

Table 2. Amount of time during two hour in-situ study that resting rates
(40-100 beats per minute for heart rate, 12-20 breaths per minute for
respiratory rate) are detected during normal chair usage.

Eight Hour Study
Due to the limited time heart rate was detected in the two
hour in-situ studies we decided to conduct three longer in-
situ studies. In this experiment we looked to evaluate the up-
per bound on sensing heart rate from the Health Chair. We
recruited three additional participants who responded to the
chair usage survey with ”often uses armrests”. These three
office workers (M:1 F:2) were given the Health Chair to use
as their normal chair for one workday, a period of about 8
hours. Similar to the two hour study, participants were asked
to go about their normal work. For this study we put a pres-
sure sensor in the seat of the chair to detect when the occu-
pant was present so participants did not need to record their
absences. As this study focused on heart rate, respiratory data
was not collected.

To determine what role electrical or mains noise played in
the lower numbers of detected heart rates of the in-situ stud-
ies, participants were first asked to sit in the chair with their
arms on the armrests for 5 minutes in an area with minimal
amounts of this noise. We then took the chair and partici-
pant to their office and repeated the five minute sitting period
in the new environment where the 8 hour study would take
place. Then the Health Chair was left in the office of the par-
ticipant to use throughout the rest of the day.

Results from the eight hour in-situ experiments show that the
different environments played a significant role in reducing
the number of accepted heart rates (see Table 3). Heart rates
could be detected in the minimal noise environment to a much
greater degree for each participant than in their respective of-
fices. Table 3 shows the percentage of time the participant
was detected sitting during that 8 hour period and how often
a resting heart rate was detected when they were sitting. In
this longer study, heart rate was detected very infrequently;
although the absolute amount of time with a valid heart rate
was longer, the relative percentage of time heart rate was de-
tected was similar to the shorter in-situ study.

BARRIERS FOR IMPLICIT SENSING IN THE WILD
Moving the Health Chair from the laboratory to the real world
gave us insight into the pragmatic challenges of using implicit
sensors in the wild. Though the primary goal of an implicit
sensor is to be an opportunistic sensor, sensing only when the
opportunity to collect data presents itself, we would still like
to collect as much data as possible. When moving the Health
Chair into a real world environment we saw a significant drop

Low
Noise

Office
Noise

Sitting
Time

Heart
Rate

Length 5 min 5 min 8 hrs 8 hrs
1 55% 0.39% 63.89% 0.53% (1.8 min)
2 31% 4.5% 50.42% 0.37% (.88 min)
3 31% 16% 76.29% 0.68% (2.1 min)

Table 3. The first two columns show percentage of time heart rate was
detect in a low noise environment and in the participant’s office under
ideal conditions. Heart rate was much harder to detect in the in-situ
office environment likely due to electrical noise. The last two columns
show the amount of time participants were sitting in the Health Chair
over an 8 hour period and the percentage of time heart rate was detected
while sitting.

in the accepted respiratory and heart rates. From this experi-
ence, we describe a few of the barriers that we discovered to
using the Health Chair as an implicit sensor in the wild.

Challenges

Usage Study 6= Natural Usage
In the wild, people do not always use objects in the way one
would expect. For the Health Chair we concluded originally
from our usage study that the armrests were the ideal loca-
tions from which to sense heart rate. This location provided
us with skin contact, sensor locations on either side of the
heart, and was reported to be a location on the chair used by
80% of our respondents to some degree. However, heart rate
was the least detected vital sign in our in-situ study - to a
much lower degree than our laboratory study results would
lead us to believe.

This lack of detected heart rates may be greatly attributed to
participants in the in-situ study simply not using the armrests
for the study period. Additionally, an occupant’s use of the
armrests may not be suited to our sensors. Using only one of
the armrests of the chair is still ’use’, and would have been
a correct response to our usage study, but would not provide
the Health Chair with the conditions necessary to sense heart
rate. We suspect that many of the participants of the in-situ
study exhibited some of these behaviors naturally and there-
fore contributed to the loss of sensing opportunities.

Work Stops For No Implicit Sensor
People don’t just sit in chairs, they use them as a physical
platform to work from. How people use a chair’s armrests de-
pends significantly on their current task. For example, when
typing an occupant is much more likely to have their arms
resting on the desk in front of them than on the armrests.
When watching a video or reading something on a screen
they may also lean forward onto the desk, or lean back and
rest their arms on the armrests or in their lap. These different
positions can greatly change what the Health Chair is able to
sense. These tasks may be short or long and vary significantly
across an occupant’s day or week. Additionally, people with
different occupations may perform tasks unsuited to the sens-
ing capabilities of the Health Chair to a greater degree than
others, such as programmers leaning on their desk or key-
board to type.

Even if the occupant is in contact with the implicit sensors
the task they are performing can interfere with rate detection.
If the occupant is talking to a colleague, as likely happened
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in our study due to a number of shared offices, then the pres-
sure sensors may not be able to detect a sensible respiratory
rate despite full contact with the occupant. If the occupant is
reading a paper with both arms on the armrests, but marking
up the paper with pen and flipping pages, the constant or near
constant motion of their arms can make heart rate detection
impossible. In some cases, the natural use of the chair may
even trick the Health Chair into detecting a false rate in ways
that we did not observe in the laboratory study. If a person is
fidgeting at a regular rate or bobbing their head and body in
time to some music, the Health Chair pressure sensors could
pick up that rate instead of their respiratory rate.

Electrical Noise and Physical Environments Vary Widely
The physical environment of a lab is almost never the same
as the real environment in which a system will be deployed.
For EKG the real world has the added complications of being
a very noisy environment for electrical signals. Due to the
nature of EKG, if a individual puts their foot over a power
supply the 60Hz noise can cause interference with the EKG
signal. In the controlled environment of the lab, this noise can
be missed because that particular environment may not have
a problematic power source. In the wild, you cannot know
what will be around a chair, especially if no action can be
asked for and taken by the user to mitigate such noise. We
observed this effect in the 8 hour in-situ study.

Indirect interference from the environment can also be a large
problem, and much more difficult to identify. For example,
the EKG electrodes require skin contact to pick up the electri-
cal signals stimulating the heart. The more conductive an oc-
cupant’s skin is, the easier it is to detect a clear signal. Since
the skin’s conductance is governed by the amount of sweat on
a person’s skin, in an environment that induces sweating, such
as an office room that is warm, EKG detection will be easier.
In this way the real environment affects the occupant, which
affects the Health Chair’s ability to detect vital signs. In a
similar manner, a cold environment may induce the occupant
to wear thicker, heavier clothes, thus making their respiratory
movements less pronounced and harder to sense.

Future Work
The challenges found in our move from that lab to the wild in-
forms the direction of future work, for both our Health Chair
and other implicit sensors. It is important to remember that
the goal of an implicit sensor is to be an opportunistic sensor.
It is not designed to constantly detect someone, but it should
take advantage of every opportunity to perform sensing. Fu-
ture work in this area would both address the limitations of
the sensing design of the Health Chair and examine other op-
portunities for implicit sensing available in the Health Chair’s
primary environment.

Future work on the sensing systems of our Health Chair, in-
cluding both the sensor design and signal processing, would
likely improve the percentage of accepted rates that can be de-
tected and the accuracy of the accepted rates. Improvements
such as detecting and removing motion artifacts in the res-
piratory signal processing, rather than rejecting any window
showing motion, is a direction of future work. Since users
make frequent movements in a chair, work on more advanced

signal processing to discriminate between signal and noise
may also help ease the strict acceptance criteria for EKG sig-
nals, allowing for heart rate to be measured more frequently.
Additionally, since the current rejection algorithm for heart
rate uses the standard deviation of the RR intervals measure-
ments of some cardiac abnormalities, such as premature ven-
tricular contraction and atrial fibrillation, may be rejected de-
spite the signal displaying a true physical accurate heart beat.
Future work on the heart rate detection algorithm would be
needed to detect these signals from the Health Chair.

Additionally, alternate sensing systems, such as the through-
clothes EKG being developed by Ford, may be able to further
the sensing capabilities of the Health Chair by reducing some
of the physical sensing limitations. Alternate sensing of res-
piratory rate could include performing impedance measure-
ments across the chest or extracting respiratory sinus arrhyth-
mia from EKG [5, 9]. Since the extraction of respiratory sinus
arrhythmia can be done directly from the RR intervals of an
EKG signal, we could condense the health sensing to only
one sensor on the chair or compare the respiratory rate found
in the EKG to the pressure sensors synchronously collecting
respiratory rate to improve the accuracy of both. However,
given our results using EKG in-situ we did not pursue this
approach.

Our in-situ study showed us that the armrests of a chair is
not always the best location to sense heart rate. The Health
Chair’s EKG sensors require skin contact from both arms on
both armrests, behavior that our in-situ tests show may not be
common. Additionally, since contact with skin is required,
jackets, long sleeves and other arm coverings may interfere
with the collection of EKG. These results indicate that the
armrests may not be the optimal choice for EKG, often be-
cause the occupants are using the environment surrounding
the chair to perform certain tasks. Therefore instrumenting
the surrounding environment, such as the desk, keyboard, or
mouse, may provide a better implicit sensor for sensing sys-
tems that require skin contact. Future work would examine
these locations, both in concert with the Health Chair and on
their own, as implicit sensors designed for use in the wild.

CONCLUSION
In this work we have shown that the Health Chair can ac-
curately detect respiratory and heart rates in the laboratory
though a variety of different positions an occupant can take.
In the wild, we have shown that the Health Chair can detect
respiratory and heart rates as the occupant uses the chair in
a natural fashion, without active participation. Our chair us-
age study suggests that the Health Chair as an implicit sensor
would be able to provide a large portion of the population
with frequent measurements of their vital signs. The Health
Chair is an implicit sensor that can opportunistically provide
more frequent information about a person’s vitals than they
would be willing or able to obtain otherwise.
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