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Abstract

A number of databases around the world currently host a wealth of genomic data
that is invaluable to researchers conducting a variety of genomic studies. However,
patients who volunteer their genomic data run the risk of privacy invasion. In this
work, we give a cryptographic solution to this problem: to maintain patient privacy, we
propose encrypting all genomic data in the database. To allow meaningful computation
on the encrypted data, we propose using a homomorphic encryption scheme.

Specifically, we take basic genomic algorithms which are commonly used in genetic
association studies and show how they can be made to work on encrypted genotype and
phenotype data. In particular, we consider the Pearson Goodness-of-Fit test, the D′ and
r2-measures of linkage disequilibrium, the Estimation Maximization (EM) algorithm for
haplotyping, and the Cochran-Armitage Test for Trend. We also provide performance
numbers for running these algorithms on encrypted data.

1 Introduction

As the cost of sequencing the human genome drops, more and more genomic data will become
available for scientific study. At the same time, researchers are developing new methods for
analyzing genomic data across populations to look for patterns and find correlations. Such re-
search may help identify genetic risk factors for disease, suggest treatments, or find cures. But
to make this data available for scientific study, patients expose themselves to risks from invasion
of privacy [ADCHT13]. Even when the data is anonymized, individual patients’ genomic data
can be re-identified [GMG+13, WLW+09] and can furthermore expose close relatives to similar
risks [HAHT13].

A number of databases to host genomic data for research have been created and currently house
a wealth of genomic data, for example the 1,000 Genomes Project [TGP], the International Cancer
Genome Consortium (ICGC) [ICG], and the International Rare Diseases Research Consortium
(IRDiRC) [IRD]. There are also a number of shared research databases which house de-identified
genomic sequence data such as the eMERGE Network [MCC+11], the Database of Genotypes
and Phenotypes [dbG], the European Bioinformatics Institute [EBI], and the DNA Databank of
Japan [Jap].

Various approaches to protecting genomic privacy while allowing research on the data include
policy-based solutions, de-identification of data, approximate query-answering, and technological
solutions based on cryptography. Emerging cryptographic solutions are quickly becoming more
relevant. Encryption is a tool which essentially allows one to seal data in a metaphorical vault,
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which can only be opened by somebody holding the secret decryption key. Homomorphic En-
cryption (HE) allows other parties to operate on the data without possession of the secret key
(metaphorically sticking their hands into the vault via a glove box and manipulating the data).
Fully Homomorphic Encryption (FHE) allows the evaluation of any function on encrypted data
but current implementations are widely inefficient. More practical variants of HE schemes allow for
only a fixed amount of computation on encrypted data while still ensuring correctness and security.
In particular, practical HE schemes allow for evaluation of polynomials of small degree.

In this work, we take basic genomic algorithms which are commonly used in genome wide
association studies (GWAS) and show how they can be made to work on encrypted data using
HE. We find a number of statistical algorithms which can be evaluated with polynomials of small
degree, including the Pearson Goodness-of-Fit or Chi-Squared Test to test for deviation from Hardy-
Weinberg equilibrium, the D′ and r2 measures of linkage disequilibrium to test for association in
the genotypes at two loci in a genome, the Estimation Maximization (EM) Algorithm to estimate
haplotype frequencies from genotype counts, and the Cochran-Armitage Test for Trend (CATT) to
determine if a candidate allele is associated to a disease.

In our approach, these statistics are computed from encrypted genotype and phenotype counts
in a population. Thus for a database containing encrypted phenotypes and genotypes, we consider
two stages: in the first stage encrypted phenotype and genotype counts are computed using only
simple additions. The parameters of the encryption scheme, as well as the running time of the
computation in this stage depend on the size of the population sample being considered.1 The
second stage takes as input the encrypted genotype and phenotype counts obtained in the first
stage and computes the output of the statistical algorithms mentioned above. In this stage the
runtime of the statistical algorithms does not depend on the size of the population sample and only
depends on the parameter set needed for the computation. Table 2 gives the timings to evaluate
the statistical algorithms on encrypted genotype and phenotype counts. For example, the Cochran
Armitage Test for Trend takes 0.94 seconds at the smaller parameter size and 3.63 seconds at the
larger parameter size.

Genomic Databases: Hosted by a Trusted Party, Stored in an Untrusted Cloud. It is
important to note that in this work we are considering single-key homomorphic encryption, which
means that all data is encrypted under the same symmetric or asymmetric encryption key. To see
how this can be used to protect privacy in genome databases as described above, consider the fol-
lowing scenario which captures one of the challenges facing government and research organizations
currently deploying large-scale genomic databases for research.

A global alliance of government agencies, research institutes, and hospitals wants to pool all their
patients’ genomic data to make available for research. A common infrastructure is required to host
all these data sets, and to handle the demands of distributed storage, providing a low cost solution
which is scalable, elastic, efficient, and secure. These are the arguments for using commercial cloud
computing infrastructure made by the Global Alliance [Glo13, p.17] in their proposal. Thus we
arrive at the following requirement: data collected by a trusted host or hosts, such as a hospital or
research facility, may need to be stored and processed in an untrusted cloud, to enable access and
sharing across multiple types of boundaries. The mutually trusting data owners, i.e. the hospital
or hospitals, can encrypt all data under a single key using homomorphic encryption. The cloud can
then process queries on the encrypted data from arbitrary entities such as member organizations,

1The running time is linear in the population size for a fixed parameter set. For larger population sizes, parameters
need to be increased and performance degrades, but not by a large factor (see Table 1 for a comparison of the running
times for two typical parameter sets).
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registered individual researchers, clinicians etc. The cloud can return encrypted results in response
to queries, and the trusted party can provide decryptions to registered parties according to some
policy governing allowable queries. Note that the policy should not allow arbitrary queries, since
this would expose the data to the same re-identification risks that an unencrypted public database
faces. However, with a reasonable policy, this would allow researchers to study large data sets from
multiple sources without making them publicly available to the researchers who query them.

Related Work. Much of the related work on genomic privacy focuses on the problem of pattern-
matching for genomic sequences, which is quite different from the statistical algorithms we analyze
here. Actually the circuits for pattern matching and edit distance are much deeper than those
considered here, so less suitable as an efficient application of HE. On the other hand, De Cristofaro
et al. [DCFT13] present an algorithm for private substring-matching which is extremely efficient.
In another approach, Blanton et al. [BAFM12] efficiently carry out sequence comparisons using
garbled circuits. Finally, Ayday et al. [ARH13] show how to use additively homomorphic encryption
to predict disease susceptibility while preserving patient privacy.

Differential privacy techniques have also been investigated in several recent papers [FSU11,
JS13]. Fienberg et al. [FSU11] propose releasing differentially private minor allele frequencies,
chi-square statistics and p-values as well as a differentially-private approach to penalized logistic
regression (see e.g. [PH08]). Johnson and Shmatikov [JS13] present a set of privacy-preserving data
mining algorithms for GWAS datasets based on differential privacy techniques.

Finally a recent line of work investigating practical applications of HE to outsourcing compu-
tation on encrypted data has led to the present paper. Lauter et al. [LNV11] introduce the idea of
medical applications of HE, with optimizations, concrete parameters, and performance numbers.
Graepel et al. [GLN13] apply HE to machine learning, both to train a model on encrypted data,
and to give encrypted predictions based on an encrypted learned model. Bos et al. [BLN14] give
optimized performance numbers for HE and a particular application in health care to predictive
analysis, along with an algorithm for automatically selecting parameters. Yasuda et al. [YSK+13]
give an application of HE to secure pattern matching.

2 Statistical Algorithms in Genetic Association Studies

In this section, we detail common statistical algorithms used in genetic association studies. We
consider the Pearson Goodness-Of-Fit test, which is used to determine deviation from Hardy-
Weinberg Equilibrium (HWE) (Section 2.1), the D′ and r2 measures of linkage disequilibrium,
as well as the Estimation-Maximization (EM) algorithm for haplotyping (Section 2.2), and the
Cochran-Armitage Test for Trend (CATT) used in case-control studies (Section 2.3).

2.1 Hardy-Weinberg Equilibrium and the Pearson Goodness-Of-Fit Test

We begin by describing the Pearson Goodness-Of-Fit test, a test frequently used to determine
whether a gene is in Hardy-Weinberg Equilibrium (HWE). We first review the notion of HWE and
then describe the Pearson test.

Hardy-Weinberg Equilibrium (HWE). A gene is said to be in HWE if its allele frequencies
are independent. More specifically, suppose A and a are two alleles of the gene being considered, and
let NAA, NAa, Naa denote the observed population counts for genotypes AA, Aa, aa, respectively.
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Also let N be the total number of people in the sample population; that is, N
def
= NAA+NAa+Naa.

With this notation, the corresponding frequencies of the genotypes AA,Aa, aa are given by

pAA
def
=
NAA

N
, pAa

def
=
NAa

N
, paa

def
=
Naa

N
.

Moreover, the frequencies of the alleles A and a are given by

pA
def
=

2NAA +NAa

2N
, pa

def
=

2Naa +NAa

2N
= 1− pA ,

since each count of genotype AA contributes two A alleles, each count of genotype aa contributes
two a alleles, each count of genotype Aa contributes one A allele and one a allele, and the total
number of alleles in a sample of N people is 2N .

The gene is said to be in equilibrium if these frequencies are independent, or in other words, if

pAA = p2A , pAa = 2pApa , paa = p2a .

When a gene is in equilibrium, its allele frequencies stay the same from generation to generation
unless perturbed by evolutionary influences. Researchers test for HWE as a way to test for data
quality, and might discard loci that deviate significantly from equilibrium.

Pearson Goodness-Of-Fit Test. The main observation made by the Pearson Goodness-of-Fit
test is that if the alleles are independent (i.e. if the gene is in equilibrium) then we expect the
observed counts to be

EAA
def
= Np2A , EAa

def
= 2NpApa , Eaa

def
= Np2a .

Thus, deviation from equilibrium can be determined by comparing the X2 test-statistic below to
the χ2-statistic with 1 degree of freedom2:

X2 def
=

∑
i∈{AA,Aa,aa}

(Ni − Ei)2

Ei
.

2.2 Linkage Disequilibrium

Another important notion in genetic association studies is linkage disequilibrium (LD). Linkage
disequilibrium is an association in the genotypes at two loci in a genome. Suppose A, a are possible
alleles at locus 1 and B, b are possible alleles at locus 2. In this case there are 9 possible genotypes:
AABB,AABb,AAbb,AaBB,AaBb,Aabb, aaBB, aaBb, aabb. For i, i′ ∈ {A, a} and j, j′ ∈ {B, b}
we use Nii′jj′ to denote the observed count of genotype ii′jj′. As before, let N be the total size of
the population sample:

N
def
=

∑
i,i′∈{A,a}
j,j′∈{B,b}

Nii′jj′ .

We consider the population frequencies of alleles A, a,B, b:

pA
def
=

∑
j,j′∈{B,b} 2NAAjj′ +NAajj′

2N
, pa

def
=

∑
j,j′∈{B,b} 2Naajj′ +NAajj′

2N
,

21 degree of freedom = 3 genotypes − 2 alleles
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pB
def
=

∑
i,i′∈{A,a} 2Nii′BB +Nii′Bb

2N
, pb

def
=

∑
i,i′∈{A,a} 2Nii′bb +Nii′Bb

2N
.

Moreover, there are exactly 4 haplotypes to consider: AB, Ab, aB, ab. For i ∈ {A, a} and
j ∈ {B, b}, we use Nij to denote the observed count for the haplotype ij and consider the population
frequencies

pAB
def
=
NAB

2N
, pAb

def
=
NAb

2N
, paB

def
=
NaB

2N
, pab

def
=
Nab

2N
.

Under linkage equilibrium, we expect the allele frequencies to be independent. In other words, we
expect

pAB = pApB , pAb = pApb , paB = papB , pab = papb .

If the alleles are in linkage disequilibrium, the frequencies will deviate from the values above by a
scalar D, so that

pAB = pApB +D , pAb = pApb −D , paB = papB −D , pab = papb +D .

The scalar D is easy to calculate: D = pABpab − pAbpaB = pAB − pApB. However, the range of D
depends on the frequencies, which makes it difficult to use it as a measure of disequilibrium. One
of two scaled-down variants is used instead, the D′-measure or the r2-measure.

D′-Measure. The D′-measure is defined as:

D′
def
=
|D|
Dmax

where Dmax =

{
min {pApb, papB} if D > 0,
min {pApB, papb} if D < 0.

r2- Measure. The r2 measure is given by

r2
def
=
X2

N
, where X2 def

=
∑

i∈{A,a}
j∈{B,b}

(Nij − Eij)2

Eij
,

where Nij is the observed count and Eij
def
= Npipj is the expected count. Using the fact that

|Nij − Eij | = ND, it can be shown that

r2 =
D2

pApBpapb
.

The range of both D′ and r2 is [0, 1]. A value of 0 indicates perfect equilibrium and a value of 1
indicates perfect disequilibrium.

EM Algorithm for Haplotyping. Using the D′ and r2 LD measures described above requires
knowing the observed haplotype counts or frequencies. However, haplotype counts (resp. frequen-
cies) cannot be exactly determined from genotype counts (resp. frequencies). For example, consider
2 bi-allelic loci with alleles A, a and B, b. An observed genotype AaBb can be one of two possible
haplotypes: (AB)(ab) or (Ab)(aB). In practice, the Estimation Maximization (EM) algorithm can
be used to estimate haplotype frequencies from genotype counts.

The EM algorithm starts with arbitrary initial values p
(0)
AB, p

(0)
Ab , p

(0)
aB, p

(0)
ab for the haplotype fre-

quencies, and iteratively updates them using the observed genotype counts. In each iteration, the
current estimated haplotype frequencies are used in an estimation step to calculate the expected
genotype frequencies (assuming the initial values are the true haplotype frequencies). Next, in a
maximization step, these are used to estimate the haplotype frequencies for the next iteration. The
algorithm stops when the haplotype frequencies have stabilized.
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mth Estimation Step

E
(m)
AB/ab

def
= E

[
NAB/ab | NAaBb, p

(0)
AB, p

(0)
Ab , p

(0)
aB, p

(0)
ab

]
= NAaBb ·

p
(m−1)
AB p

(m−1)
ab

p
(m−1)
AB p

(m−1)
ab + p

(m−1)
Ab p

(m−1)
aB

E
(m)
Ab/aB

def
= E

[
NAb/aB | NAaBb, p

(0)
AB, p

(0)
Ab , p

(0)
aB, p

(0)
ab

]
= NAaBb ·

p
(m−1)
Ab p

(m−1)
aB

p
(m−1)
AB p

(m−1)
ab + p

(m−1)
Ab p

(m−1)
aB

mth Maximization Step

N
(m)
AB = 2NAABB +NAABb +NAaBB + E

(m)
AB/ab

N
(m)
ab = 2Naabb +NaaBb +NAabb + E

(m)
AB/ab

N
(m)
Ab = 2NAAbb +NAABb +NAabb + E

(m)
Ab/aB

N
(m)
aB = 2NaaBB +NAaBB +NaaBb + E

(m)
Ab/aB

2.3 Cochran-Armitage Test for Trend (CATT)

Finally, we consider the Cochran-Armitage Test for Trend (CATT), which is used in case-control
studies to determine if a candidate allele is associated to a disease. We first describe the basic
structure of case-control studies, and then describe the CATT test.

Case-Control Studies. As mentioned above, a case-control study is used to determine if a
candidate allele A is associated to a specified disease. Such a study compares the genotypes of
individuals who have the disease (cases) to the genotypes of individuals who do not (controls). A
2× 3 contingency table of 3 genotypes vs. case/controls can be constructed with this information,
as below, where the Nij represent a number of individuals, Ri is the sum of the ith row, and Cj is
the sum of the jth column. For example, N10 is the number of individuals with genotype AA who
present the disease (affected phenotype), R0 = N00 +N01 +N02, C0 = N00 +N10, etc.

AA Aa aa Sum

Controls N00 N01 N02 R0

Cases N10 N11 N12 R1

Sum C0 C1 C2 N

Cochran-Armitage Test for Trend (CATT). Given a contingency table as above, the CATT
computes the statistic

T
def
=

2∑
i=0

wi(N0iR1 −N1iR0),

where ~w
def
= (w0, w1, w2) is a vector of pre-determined weights3, and the difference (N0iR1−N1iR0)

can be thought of as the difference N0i − N1i of controls and cases for a specific genotype, after
reweighing the rows in the table to have the same sum.

3Common choices for the set of weights ~w = (w0, w1, w2) are: ~w = (0, 1, 2) for the additive (co-dominant) model,
~w = (0, 1, 1) for the dominant model (A is dominant over a), and ~w = (0, 0, 1) for the recessive model (A is recessive
to allele a).

6



The test statistic X2 is defined to be

X2 def
=

T 2

Var (T )
,

where Var (T ) is the variance of T :

Var (T ) =
R0R1

N

 2∑
i=0

w2
iCi(N − Ci)− 2

k−1∑
i=1

k∑
j=i+1

wiwjCiCj

 .

To determine if a trend can be inferred, the CATT compares the test statistic X2 to a χ2-statistic
with 1 degree of freedom.

2.4 Linear Regression

Linear regression is used in cases when the phenotype or trait is a continuous variable (e.g. tumor
size) rather than a binary variable (e.g. whether a disease is present or not). It assumes a linear
relationship between trait values and the genotype. The input data is a set of N pairs (yi, ~xi),
where yi ∈ {0, 1, 2} is a genotype4, and ~xi ∈ Rk is the vector of trait values corresponding to the
individual with genotype xi. Define

y
def
=

 y1
...
yN

 , X
def
=

 ~x>1
...

~x>N


Linear regressing finds β ∈ Rk and ε ∈ RN such that y = Xβ + ε.

Linear regression models can be found using the least squares approach, and a solution to
approximating least squares on homomorphically encrypted data is considered by Graepel, et al.
[GLN13, Section 3.1]. Their work focuses on Fisher’s linear discriminant classifier, but as noted
there, linear regression can be cast in a similar framework. We refer the reader to their work for
more details.

3 Practical Homomorphic Encryption

Fully homomorphic encryption (FHE) enables one to perform arbitrary computations on encrypted
data, without first decrypting the data and without any knowledge of the secret decryption key. The
result of the computation is given in encrypted form and can only be decrypted by a legitimate
owner of the private decryption key. The first construction of FHE was shown by Gentry in
2009 [Gen09], and many improvements and new constructions have been presented in recent years
[vDGHV10, BV11b, BV11a, BGV12, FV12, LTV12, Bra12, BLLN13, GSW13, BV14].

Model of Computation. In Gentry’s initial work and many follow-up papers, computation is
modeled as a boolean circuit with XOR and AND gates, or equivalently, as an arithmetic circuit
over F2

5. The data is encrypted bit-wise, which means that a separate ciphertext is produced
for each bit in the message. Addition and multiplication operations are then performed on the

4For a bi-allelic gene with alleles A and a, the value 0 corresponds to the genotype AA, the value 1 corresponds
to the genotype Aa and the value 2 corresponds to the genotype aa.

5An arithmetic circuit over Ft has addition and multiplication gates modulo t.

7



encrypted bits. Unfortunately, breaking down a computation into bit operations can quickly lead
to a large and complex circuit, thus making homomorphic computation very inefficient.

Luckily, most known constructions allow the computation to take place over a larger message
space. In particular, if the desired computation only needs to compute additions and multiplications
of integer values (as is (almost)6 the case with all algorithms presented in Section 2), then the data
does not necessarily need to be expressed in a bitwise manner. Indeed, most known constructions
allow the integers (or appropriate encodings of the integers) to be encrypted and homomorphic
additions and multiplications to be performed over these integer values. The advantage of this
approach is clear: a ciphertext now contains much more information than a single bit of data,
making the homomorphic computation much more efficient.

It is important to note that in the latter approach, the only possible homomorphic operations are
addition (equivalently, subtraction) and multiplication. It is currently not known how to perform
division of integer values without performing an inefficient bitwise computation, as described above.
For practical reasons, in this work we limit homomorphic operations to include only addition,
subtraction, and multiplication.

Levels of Homomorphism. In all known FHE schemes, ciphertexts inherently contain a certain
amount of noise, which “pollutes” the ciphertext. This noise grows during homomorphic operations
and if the noise becomes too large, the ciphertext cannot be decrypted even with the correct
decryption key. A somewhat homomorphic encryption scheme is one that can evaluate a limited
number of operations (both addition and multiplication) before the noise grows large enough to
cause decryption failures. Somewhat homomorphic schemes are usually very practical.

In order to perform an unlimited number of operations (and achieve fully homomorphic encryp-
tion), ciphertexts need to be constantly refreshed in order to reduce their noise. This is done using
a costly procedure called bootstrapping.

A leveled homomorphic encryption scheme is one that allows the setting of parameters so as to
be able to evaluate a given computation. In other words, given a fixed function that one wishes
to compute, it is possible to select the parameters of the scheme in a way that allows one to
homomorphically compute the specified function, without the use of the costly bootstrapping step.
Leveled homomorphic schemes enjoy the flexibility of fully homomorphic schemes, in that they
can homomorphically evaluate any function, and are also quite practical (albeit not as practical
as somewhat homomorphic schemes). The construction we use in our implementation is a leveled
homomorphic encryption scheme.

3.1 The Homomorphic Encryption Scheme

In our implementation we use a modified7 version of the homomorphic encryption scheme proposed
by López-Alt and Naehrig [LN14b], which is based on the schemes [SS11, LTV12, Bra12, BLLN13].
The scheme is a public-key encryption scheme and consists of the following algorithms:

• A key generation algorithm KeyGen(params) that, on input the system parameters params,
generates a public/private key pair (pk, sk).

• An encryption algorithm Encrypt(pk,m) that encrypts a message m using the public key pk.

6The algorithms in Section 2 include divisions. In Section 4, we show how to get around this issue.
7The only modification we make to the scheme of López-Alt and Naehrig is removing a step called “relinearization”

or “key switching”, needed to make decryption independent of the function that was homomorphically evaluated. In
our implementation, decryption depends on the number of homomorphic multiplications that were performed. We
make this change for efficiency reasons, as relinearization is very costly.
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• A decryption algorithm Decrypt(sk, c) that decrypts a ciphertext c with the private key sk.

• A homomorphic addition function Add(c1, c2) that given encryptions c1 and c2 of m1 and m2,
respectively, outputs a ciphertext encrypting the sum m1 +m2.

• A homomorphic multiplication function Mult(c1, c2) that, given encryptions c1 and c2 of m1

and m2, respectively, outputs a ciphertext encrypting the product m1m2.

System Parameters. The scheme operates in the ring R
def
= Z[X]/(Xn + 1), whose elements are

polynomials with integer coefficients of degree less than n. All messages, ciphertexts, encryption
and decryption keys, etc. are elements in the ring R, and have this form. In more detail, an element
a ∈ R has the form a =

∑n−1
i=0 aiX

i, with ai ∈ Z. Addition in R is done component-wise in the
coefficients, and multiplication is simply polynomial multiplication modulo Xn + 1.

The scheme also uses an integer modulus q. In what follows, we use the notation [a]q to denote
the operation of reducing the coefficients of a ∈ R modulo q into the set

{
−b q2c, . . . , b

q
2c
}

.
Finally, the scheme uses two probability distributions on R, χkey and χerr, which generate poly-

nomials in R with small coefficients. In our implementation, we let the distribution χkey be the
uniform distribution on polynomials with coefficients in {−1, 0, 1}. Sampling an element according
to this distribution means sampling all its coefficients uniformly from {−1, 0, 1}. For the distribution
χerr, we use a discrete Gaussian distribution with mean 0 and appropriately chosen standard devi-
ation (see Section 4.4). For clarity of presentation, we refrain from formally describing the specifics
of this distribution and instead refer the reader to any of [SS11, LTV12, Bra12, BLLN13, LN14b]
for a formal definition.

The system parameters of the scheme are the degree n, modulus q, and distributions χkey, χerr:
params = (n, q, χkey, χerr).

Plaintext Space. The plaintext space of the scheme is the set of integers in the interval M =
[−2n, 2n]. For the scheme to work correctly, we assume that the initial inputs, the output of the
function evaluation, and all intermediate values are all in M.

To encrypt an integer µ ∈ M, this integer is first encoded as a polynomial m ∈ R. To do
this, we take the bit-decomposition of µ and use these bits as the coefficients in m. Formally, if

µ =
∑
i

µi2
i for µi ∈ {0, 1}, then we define m =

∑
i

µiX
i.

Formal Definition. Below is a formal and detailed definition of the key generation, encryption,
decryption, and homomorphic evaluation algorithms.

• KeyGen(params): On input the parameters params = (n, q, χkey, χerr), the key generation
algorithm samples polynomials f ′, g ← χkey from the key distribution and sets

f = [(X − 2)f ′ + 1]q.

If f is not invertible modulo q, it chooses a new f ′. Otherwise, it computes the inverse f−1

of f in R modulo q. Finally, it outputs the key pair:

pk = h
def
= [gf−1]q ∈ R and sk = f ∈ R.
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• Encrypt(h, µ): To encrypt an integer µ ∈ M, the encryption algorithm first encodes it as a
polynomial m, as described above. Then, it samples small error polynomials s, e← χerr, and
outputs the ciphertext

c
def
= [∆m+ e+ hs]q ∈ R,

where

∆
def
= dqΥe and Υ

def
= −X

n−1 + 2Xn−2 + 4Xn−3 + . . .+ 2n−1

2n + 1
∈ Q[X].

• Add(c1, c2): Given two ciphertexts c1 and c2, outputs the ciphertext cadd
def
= [c1 + c2]q.

• Mult(c1, c2): Given two ciphertexts c1 and c2, outputs cmult
def
= [c1c2]q.

• Decrypt(f, c): Given the private decryption key f and a ciphertext c that is the output of a

degree-D function evaluation8, the decryption algorithm computes f̃
def
= fD ∈ R and

µ =

(⌊
(X − 2)

q
· [f̃ c]q

⌉
mod (X − 2)

)
mod 2n + 1.

We remark that if the function that will be homomorphically computed is known in advance
(or even only its degree), then the polynomial fD can be precomputed when the secret key
is generated, simplifying the decryption step to a single polynomial multiplication and some
modular operations.

We also note that the modular reduction modulo (X−2) is mathematically equivalent to the
evaluation of the polynomial at the point X = 2.

4 Computation on Encrypted Data

In this section, we discuss how to run the statistical algorithms described in Section 2 on genetic
data encrypted using the homomorphic encryption scheme described in Section 3. To this end, in
Section 4.1 we describe how genetic data can be encoded and encrypted. In Section 4.2 we discuss
how to obtain the genotype and phenotype frequencies that serve as input to the algorithms de-
scribed in Section 2. Additionally, given the constraints of homomorphic computation on encrypted
data, we must make some necessary modifications to the statistical algorithms; we describe these
in Section 4.3. Finally, in Section 4.4, we discuss how to choose the parameters of the encryption
scheme. In what follows, for a value a, we use â to denote an encryption of a.

4.1 Encoding Genomic Data

Structure of the Data. Data used in genetic association studies consists of individuals’ geno-
types and phenotypes. The data can be represented in 2 tables or matrices, one for genotype
information and the other for phenotype information. In the genotypes table, each row contains
information about a single person, and each column specifies a DNA locus. An entry in this table
specifies the person’s genotype at the given locus. For a bi-allelic gene with alleles A, a, this can
be one of 4 possible values: the reference homozygote AA (value 0), the heterozygote Aa (value 1),

8Informally, a function has degree D if it can be represented as a (possibly multivariate) polynomial of degree D.
See Section 4.4 for more details.
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the non-reference homozygote aa (value 2) and “missing” if that person’s genotype at the specified
locus is not known.

Similarly, in the phenotypes table, each row contains information about a single person, and each
column specifies a single phenotype. An entry in this table specifies the person’s given phenotype.
For a disease phenotype, this can be one of 3 possible values: unaffected (value 0), affected (value 1)
and “missing” if that person’s affection status is not known. For continuous phenotypes (e.g. tumor
size), the table entry contains a real number. We focus only on phenotypes containing disease
affection status.

Genotype Encoding. For each entry (i, j) in the genotype table, we compute 3 ciphertexts,

one for each of the possible values 0,1,2 (ie. AA, Aa, aa); we call these ciphertexts c
(i,j)
0 , c

(i,j)
1 , c

(i,j)
2

respectively. A ciphertext encrypts 1 if the entry value is the same as the value it represents, and
0 otherwise. More specifically, the 4 possible genotypes are encoded as follows:

AA (value 0) : c
(i,j)
0 ← Encrypt(pk, 1), c

(i,j)
1 ← Encrypt(pk, 0), c

(i,j)
2 ← Encrypt(pk, 0),

Aa (value 1) : c
(i,j)
0 ← Encrypt(pk, 0), c

(i,j)
1 ← Encrypt(pk, 1), c

(i,j)
2 ← Encrypt(pk, 0),

aa (value 2) : c
(i,j)
0 ← Encrypt(pk, 0), c

(i,j)
1 ← Encrypt(pk, 0), c

(i,j)
2 ← Encrypt(pk, 1),

missing : c
(i,j)
0 ← Encrypt(pk, 0), c

(i,j)
1 ← Encrypt(pk, 0), c

(i,j)
2 ← Encrypt(pk, 0).

Phenotype Encoding. For each entry (i, j) in the phenotype table, we compute 2 ciphertexts,
one for the “unaffected” phenotype (value 0) and one for the“affected” phenotype (value 1); we call

these ciphertexts c
(i,j)
0 , c

(i,j)
1 respectively. A ciphertext encrypts 1 if the entry value is the same as

the value it represents, and 0 otherwise. More specifically, the 3 possible genotypes are encoded as
follows:

unaffected (value 0) : z
(i,j)
0 ← Encrypt(pk, 1), z

(i,j)
1 ← Encrypt(pk, 0),

affected (value 1) : z
(i,j)
0 ← Encrypt(pk, 0), z

(i,j)
1 ← Encrypt(pk, 1),

missing : z
(i,j)
0 ← Encrypt(pk, 0), z

(i,j)
1 ← Encrypt(pk, 0).

4.2 Computing Genotype and Phenotype Counts

Recall that the statistical algorithms described in Section 2 take as input genotype and phenotype
frequencies or counts. While we are not able to obtain the genotype and phenotype frequencies9, we
can obtain the counts using a few simple homomorphic additions. Indeed, if the data is encrypted

as described in Section 4.1, computing the (encrypted) counts N̂
(j)
k of value-k genotypes at locus j

can be done by summing all the ciphertexts c
(i,j)
k in column j of the genotype table:

N̂
(j)
0 =

∑
i

c
(i,j)
0 , N̂

(j)
1 =

∑
i

c
(i,j)
1 , N̂

(j)
2 =

∑
i

c
(i,j)
2 .

Finally, we can compute the (encrypted) total number N̂ (j) of available (non-missing genotypes)
in column j by summing

N̂ (j) = N̂
(j)
0 + N̂

(j)
1 + N̂

(j)
2 .

9Recall from Section 3 that we cannot perform homomorphic divisions.

11



4.3 Modified Algorithms

Unfortunately, since we are not able to compute the genotype and phenotype frequencies, we must
modify the statistical algorithms to use genotype and phenotype counts instead.

Pearson Goodness-of-Fit or Chi-Squared Test. Recall that for a single locus, the Pearson
test computes the test statistic

X2 =
2∑
i=0

(Ni − Ei)
Ei

,

where Ni is the observed genotype count, and Ei is the expected genotype count. The expected
counts can be computed as

E0 = N

(
2N0 +N1

2N

)2

, E1 = 2N

(
2N0 +N1

2N

)(
2N2 +N1

2N

)
, E2 = N

(
2N2 +N1

2N

)2

,

which can be simplified to

E0 =
(2N0 +N1)

2

4N
, E1 =

(2N0 +N1)(2N2 +N1)

2N
, E2 =

(2N2 +N1)
2

4N
.

The test statistic X2 can then be computed as

X2 =
(N0 − E0)

2

E0
+

(N1 − E1)
2

E1
+

(N2 − E2)
2

E2

=
(4N0N2 −N2

1 )2

2N

(
1

2(2N0 +N1)2
+

1

(2N0 +N1)(2N2 +N1)
+

1

2(2N2 +N1)2

)
.

Since we are unable to perform homomorphic divisions, we return encryptions of α,N, β1, β2, β3,
where

α
def
= (4N0N2 −N2

1 )2, β1
def
= 2(2N0 +N1)

2, β2
def
= (2N0 +N1)(2N2 +N1), β3

def
= 2(2N2 +N1)

2.

From these, the test statistic can be computed as:

X2 =
α

2N

(
1

β1
+

1

β2
+

1

β3

)
.

EM Algorithm. To run the EM algorithm on genotypes at loci j and `, we need the 9 genotype

counts N
(j,`)
xy for x, y ∈ {0, 1, 2}. In other words, we need to know the number of individuals N

(j,`)
x,y

in the data set that have genotype x at locus j and genotype y at locus `, for all combinations of
x and y. The (encrypted) counts can be computed as

N̂ (j,`)
xy =

∑
i

c(i,j)x · c(i,`)y .

Recall that the EM algorithm estimates the haplotype frequencies. As before, we are unable to
estimate frequencies since we cannot perform homomorphic division, but we are able to estimate

haplotype counts. Notice that since Nxy = 2N · pxy, this does not change the fraction in µ
(m)
AB/ab

and µ
(m)
Ab/aB (essentially, this change multiplies both the numerator and the denominator by 4N2).

This modifies the estimation step as follows.
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mth Estimation Step

E
(m)
AB/ab = N11 ·

N
(m−1)
AB N

(m−1)
ab

N
(m−1)
AB N

(m−1)
ab +N

(m−1)
Ab N

(m−1)
aB

def
=
α(m)

β(i)
,

E
(m)
Ab/aB = N11 ·

N
(m−1)
Ab N

(m−1)
aB

N
(m−1)
AB N

(m−1)
ab +N

(m−1)
Ab N

(m−1)
aB

def
=
γ(m)

β(i)
.

We can also simplify the iteration so that at any given point, we need only remember one numerator
and one denominator. Define

ζAB
def
= 2N22 +N21 +N12, ζab

def
= 2N00 +N01 +N10,

ζAb
def
= 2N20 +N21 +N10, ζaB

def
= 2N02 +N12 +N01.

Then

N
(m)
AB = ζAB + E

(m)
AB/ab = ζAB +

α(m)

β(m)
=
ζAB · β(m) + α(m)

β(m)
,

N
(m)
ab = ζab + E

(m)
AB/ab = ζab +

α(m)

β(m)
=
ζab · β(m) + α(m)

β(m)
,

N
(m)
Ab = ζAb + E

(m)
Ab/aB = ζAb +

γ(m)

β(m)
=
ζAb · β(m) + γ(m)

β(m)
,

N
(m)
aB = ζaB + E

(m)
Ab/aB = ζaB +

γ(m)

β(m)
=
ζaB · β(m) + γ(m)

β(m)
.

Following the iteration, at the next estimation step we need to compute:

E
(m+1)
AB/ab = N11 ·

(
ζAB ·β(m)+α(m)

β(m)

)(
ζab·β(m)+α(m)

β(m)

)
(
ζAB ·β(m)+α(m)

β(m)

)(
ζab·β(m)+α(m)

β(m)

)
+
(
ζAb·β(m)+γ(m)

β(m)

)(
ζaB ·β(m)+γ(m)

β(m)

)
= N11 ·

(
ζAB · β(m) + α(m)

) (
ζab · β(m) + α(m)

)(
ζAB · β(m) + α(m)

) (
ζab · β(m) + α(m)

)
+
(
ζAb · β(m) + γ(m)

) (
ζaB · β(m) + γ(m)

)
def
=
α(m+1)

β(m+1)
.

and similarly,

E
(m+1)
Ab/aB = N11 ·

(
ζAb · β(m) + γ(m)

) (
ζaB · β(m) + γ(m)

)(
ζAB · β(m) + α(m)

) (
ζab · β(m) + α(m)

)
+
(
ζAb · β(m) + γ(m)

) (
ζaB · β(m) + γ(m)

)
def
=

γ(m+1)

β(m+1)
.

In other words, since the denominator β(m) always cancels out, we need only remember the numera-
tors. The numerators depend on β(m), so we still compute it as part of the numerator computation,
but do not need to store it after this computation. Of course, at the last step we must divide by
β(m) to maintain correctness.

The modified estimation and maximization steps are described below.
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mth Estimation Step

α(m) = N11·N (m−1)
AB N

(m−1)
ab , γ(m) = N11·N (m−1)

Ab N
(m−1)
aB , β(m) = N

(m−1)
AB N

(m−1)
ab +N

(m−1)
Ab N

(m−1)
aB .

mth Maximization Step

N
(m)
AB = ζAB·β(m)+α(m), N

(m)
ab = ζab·β(m)+α(m), N

(m)
Ab = ζAb·β(m)+γ(m), N

(m)
aB = ζaB·β(m)+γ(m).

Measures of LD. The degree of linkage disequilibrium of two bi-allelic genes can be determined

by computing the scalar value D
def
= pAB−pApB where A and B are the reference alleles of the genes,

pA and pB are their corresponding population frequencies, and pAB is the population frequency
of the haplotype AB. Once more, we need to compute D as a function of counts rather than
frequencies, as we cannot compute the latter homomorphically. We have

D =
NAB

2N
− NA

2N
· NB

2N
=

2N ·NAB −NANB

(2N)2
.

The haplotype count NAB is estimated using the EM algorithm, which outputs values α, β such
that NAB = α/β. Thus,

D =
2N · α− βNANB

β(2N)2
=

2N · α− β(2NAA +NAa)(2NBB +NBb)

β(2N)2
.

Again, since we cannot perform homomorphic division, we return encryptions of δ and β, where

δ
def
= 2N · α− β(2NAA +NAa)(2NBB +NBb).

The scalar D can be computed as D = δ/(β(2N)2). To be able to calculate the D′ and r2 statistics,
we also return encryptions of NA, Na, NB, Nb, from which they can be computed:

D′ =
δ

βDmax
, where Dmax =

{
min {NANb, NaNB} if D > 0,
min {NANB, NaNb} if D < 0

and

r2 =
δ2

β2NANaNBNb
.

Cochran-Armitage Test for Trend. To run the CATT algorithm on genotype at locus j and

phenotype `, we need the 6 genotype-phenotype counts N
(j,`)
x,y for x ∈ {0, 1, 2} and y ∈ {0, 1}. In

other words, we need to know the number of individuals N
(j,`)
x,y in the data set that have genotype

x at locus j and phenotype ` with value y, for all combinations of x and y. The (encrypted) counts
can be computed as

N̂ (j,`)
xy =

∑
i

c(i,j)x · z(i,`)y .

The test statistic can be computed as X2 = α/β where

α
def
= N ·

(
2∑
i=0

wi(N0iR1 −N1iR0)

)2

, β
def
= R0R1 ·

 2∑
i=0

w2
iCi(N − Ci)− 2

k−1∑
i=1

k∑
j=i+1

wiwjCiCj

 .
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4.4 How to Set Parameters

In order to implement any cryptographic scheme efficiently and securely, one needs to select suitable
parameters. For the homomorphic encryption scheme in this work, one needs to find a dimension n,
an integer modulus q and the standard deviation σ of the error distribution χerr. These parameters
have to satisfy two conditions. The first one guarantees security, more precisely the parameters
need to guarantee a desired level λ of security against known attacks on the homomorphic en-
cryption scheme. This means that an attacker is forced to run for at least 2λ steps in order to
break the scheme. The second condition guarantees correctness. Given a desired computation, the
encryption scheme must be able to correctly evaluate the computation without the error terms in
the ciphertexts growing too large such that the result is decrypted correctly. Subject to these two
conditions, we aim to choose the smallest dimension and modulus in order to make computations
as efficient as possible. We follow the approach described in [LN14a] for selecting parameters and
refer the reader to this paper for more details.

Security. One first picks a desired security level, common values are λ = 80 or higher. Next, one
chooses a dimension n and standard deviation σ. The analysis in [LN14a] shows that, for fixed λ,
n and σ, there is an upper bound on the allowed modulus q to achieve the desired security level.
In order to increase security, one can either increase the dimension n, or increase the standard
deviation σ or a combination of both and then re-evaluate to obtain the new maximal value for q.

Correctness. The correctness condition is in contrast to the security condition in that given a
dimension and standard deviation, it demands a lower bound for the modulus q. The complexity of
the planned computation and the size of σ influence the error growth throughout the computation.
To make correct decryption possible, the relative size of the error compared to the modulus q needs
to be small enough, or in other words, q needs to be large enough to accommodate the error that
arises during the homomorphic operations.

Efficiency. To maximize the efficiency of our implementation, we select the “smallest” parameter
set amongst those that satisfy the security and correctness criteria. Clearly, increasing n or q
leads to a decrease in efficiency, so we are interested to keep the dimension and modulus as small
as possible. In general, smaller security level and less complex computations allow for smaller
parameters, increasing the security and complexity leads to larger, less efficient parameters. In this
work, we are contented with a security level of λ = 80.

5 Performance

In this section, we describe our experiments. We implemented the homomorphic encryption scheme
from Section 3 and the algorithms described in Section 4 in the computer algebra system Magma
[BCP97]. Note that specialized implementations in a language such as C/C++ may perform signifi-
cantly better than our proof-of-concept implementation in Magma. The exact speed-up depends on
the optimizations in such an implementation. For example, for the parameters used in [BLLN13],
we observe that our Magma implementation of the homomorphic addition, multiplication, and de-
cryption operations is roughly twice as slow as the C/C++ implementation reported in [LN14a],
which uses a general purpose C/C++ library for the underlying arithmetic. The decryption oper-
ation in the implementation in [LN14a] in turn is roughly twice as slow as the C implementation
in [BLLN13]. A completely specialized and optimized implementation will achieve even better
efficiency.
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Timings for the Scheme. Timings for the basic algorithms of the homomorphic encryption
scheme (key generation, encryption, addition, multiplication, and decryption for several degree
values D) are shown in Table 1. Timings for both key generation and encryption include the
sampling of small elements according to the distributions described in Section 3. Depending on the
specific implementation scenario, these steps could be precomputed and their cost amortized.

As mentioned in Section 3, our implementation does not perform relinearization (a.k.a. key-
switching) in homomorphic operations (see any of [BV11a, BGV12, LTV12, Bra12, BLLN13,
LN14b]). We choose not to perform this step as an optimization (indeed, the timing for a sin-
gle multiplication increased more than 50-fold when relinearization was included). The downside
to our approach is that decryption depends on the degree of the function that was homomorphically
computed (recall from Section 3 that the decryption algorithm first computes fD where f is the
secret key and D is the degree of the computed function). Thus, decryption timings depend on
the degree of the evaluated function, albeit only logarithmically. We remark that if the function
is known in advance (or even only an upper bound on its degree), the element fD can be precom-
puted. In this case, the decryption time in all cases is the same and equivalent to the decryption
time for degree-1 ciphertexts.

Parameters. Table 1 provides timings for two different parameter sets. The first set (I) uses
smaller parameters and therefore produces faster timings. All algorithms in this paper can be run
correctly with the first parameter set except for the EM algorithm for more than two iterations. The
second set (II) uses larger parameters that are suitable to run the EM algorithm for 3 iterations,
but the performance is worse due to the larger parameters. Both parameter sets provide 80 bits of
security. We refer the reader to Section 4.4 for a detailed explanation of how these parameter sets
were selected.

In order to increase the security to 128 bits, we must adjust the parameter sizes. For example,
this can be done as follows. According to the analysis in Section 4.4, when all other parameters
are fixed, one can achieve the 128-bit security level by decreasing the modulus q to 149 bits. Such
a parameter set can still be used to run the same algorithms as parameter set (I), except for the
LD algorithm. In order to run the LD algorithm, one needs to increase the dimension n. If n is
restricted to be a power of two, then n = 8192 as in parameter set (II). However, q needs to be
smaller than in set (II). Arithmetic for such parameters is the same as for the set (II) but with
slightly faster arithmetic modulo q. Therefore, the timings in Table 1 give a rough estimate for the
upper bound on the performance penalty when moving to 128-bit security.

Table 1: Timings for the operations of the homomorphic encryption scheme. Measurements were
done in the computer algebra system Magma [BCP97] V2.17-8 on an Intel(R) Core(TM) i7-3770S
CPU @ 3.10GHz, 8GB RAM, running 64-bit Windows 8.1. Values are the mean of 1000 measure-
ments of the respective operation. Decryption depends on the degree of the evaluated function, the
timing differences are due to the computation of the respective power of the secret key. Parameter
sets are (I) n = 4096, dlog(q)e = 192 and (II) n = 8192, dlog(q)e = 384, both use σ = 8 and provide
80-bit security. A single ciphertext with parameter set (I) is of size slightly less than 100KB, for
parameter set (II), it is less than 400KB.

Operation KeyGen Encrypt Add Mult
Decrypt

deg 1 deg 2 deg 5 deg 10 deg 20

Parameters I 3.599s 0.296s 0.001s 0.051s 0.035s 0.064s 0.114s 0.140s 0.164s

Parameters II 18.141s 0.783s 0.003s 0.242s 0.257s 0.308s 0.598s 0.735s 0.888s
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Testing Correctness. To test the correctness of our homomorphic evaluations, we implemented
the statistical algorithms in their original form (as described in Section 2) and unencrypted, as well
as the modified algorithms described in Section 4, also unencrypted. A third implementation ran
the modified algorithms (as in Section 4) on encrypted data and used the homomorphic operations
of the encryption scheme. In each test, we ran all versions of the algorithms and confirmed that
their return values were equal.

Data Pre-Processing. All algorithms being considered take as input genotype and/or phenotype
count tables. Because of this, once the encrypted tables have been computed and appropriate
parameters have been chosen, the running times of the statistical algorithms are independent of the
size of the population sample and depend only on the parameter set needed for the computation.10

Thus, we separate our analysis into two phases: In the first phase, we construct the encrypted
genotype and phenotype tables. This includes encoding and encrypting genotype and phenotype
data, as well as summing these encryptions (see Section 4.1 and Section 4.2). In the second phase,
we run the statistical algorithms on the encrypted tables. Indeed, we view the first phase as a pre-
processing of the data, whose cost can be amortized over any number of computations. Moreover,
this data can be easily updated by subtracting encryptions if a person’s data is no longer needed
or desired, by adding new encryptions if new data is collected, or by replacing specific encryptions
as a person’s record needs to be updated or modified. We emphasize the fact that there is no
need to re-encode and re-encrypt the entire data set when modifications are required. Necessary
changes will be proportional to the number of entries that need to be modified (inserted, deleted,
or updated).

The main cost in pre-processing the data is the computation of the 3 encryptions for each
genotype sample and the 2 encryptions for each phenotype sample (see Section 4.1). This cost is
linear in the size of the data set and can be easily computed from the timings for encryption given
in Table 1. For example, encoding and encrypting 1000 genotype data points sequentially using
parameter set (I) takes roughly 15 minutes, and encoding and encrypting 1000 phenotype data
entries takes roughly 10 minutes.

Once all genotypes and phenotypes have been encoded and encrypted, we need to construct 3
contingency tables (see Section 4.2 and Section 4.3). The first table contains the genotype counts for
a single locus and can be computed by sequential addition of the genotype encryptions. Sequentially
adding 1000 ciphertexts takes roughly 1 second; thus, computing all genotype counts for a single
locus takes roughly 3 seconds. Computing the 3× 3 contingency table for the counts of individuals
having a certain genotype at one locus and another at a second locus requires one multiplication and
one addition per individual. Thus, for parameter set (I), each entry in the table can be computed in
roughly 1 minute and the entire table can be computed in roughly 9 minutes. Similarly, computing
the 2 × 3 contingency table for the counts of individuals with a certain genotype and a given
phenotype requires one multiplication and one addition per individual. Thus, for parameter set (I),
the entire table can be computed in roughly 6 minutes.

10Admittedly, the size of the parameters needed does depend on the magnitude of the genotype and phenotype
counts, which can be as large as the size of the population sample. This is because the size of the message encrypted
at any given time (i.e. the size of the counts and all the intermediate values in the computation) cannot grow too large
relative to the modulus q. Therefore, larger population sizes (and therefore larger counts) require a larger modulus q,
which in turn requires a larger dimension n for security. However, for a fixed parameter set, it is possible to compute
an upper bound on the size of the population sample and the homomorphic computations detailed in this work do
work correctly for any population sample with size smaller than the given bound.
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Timings for the Statistical Algorithms. As mentioned above, once the data has been pro-
cessed and the genotype and phenotype tables have been computed, the runtime of the statistical
algorithms is independent of the size of the population sample and only depends on the parameter
set needed for the computation. Table 2 contains performance numbers for the algorithms after
the data has been encoded and encrypted, and population counts have been computed. It includes
timings for both parameter sets described above.

Table 2: Timings for statistical algorithms. Measurements were done in the computer algebra
system Magma [BCP97] V2.17-8 on an Intel(R) Core(TM) i7-3770S CPU @ 3.10GHz, 8GB RAM,
running 64-bit Windows 8.1. Values are the mean of 100 measurements of the respective algorithm.

Algorithm Pearson
EM

LD CATT
1 iteration 2 iterations 3 iterations

Parameters I 0.34s 0.57s 1.10s − 0.19s 0.94s

Parameters II 1.36s 2.29s 4.54s 6.85s 0.74s 3.63s

Further Specialization. For the case that only one of the statistical algorithms needs to be
run, further optimizations are possible, decreasing storage space and runtime significantly. For
example, if we focus on running only the Pearson test, we can change the encoding of genotypes from
Section 4.1 to use only a single ciphertext as follows: value 0 is encrypted as ci,j = Encrypt(pk, 1),
value 1 as ci,j = Encrypt(pk, x100), value 2 as ci,j = Encrypt(pk, x301) and missing values as ci,j =
Encrypt(pk, 0). By adding up all such ciphertexts, the genotype counts are then contained in a
single ciphertexts that encrypts N0 + N1x

100 + N2x
301. The Pearson test has degree 4 in these

counts and can be computed with only two multiplication operations on this ciphertext. Note that
needed values encoded in the polynomials (N0 +N1x

100 +N2x
301)i for i ∈ {2, 4} can be shifted to

the constant coefficient by multiplying with suitable powers of x.
Using this optimization, the storage space for encrypted genotype data is reduced by a factor

3, as is the encryption time. With parameter set (I), the runtime of one Pearson test becomes less
than 0.13s.

6 Conclusion and future work

In this paper we presented algorithms and proof-of-concept implementations for computing on en-
crypted genomic data. We showed how to encode genotype and phenotype data for encryption and
how to apply the Pearson Goodness-of-Fit test, the D′ and r2-measures of linkage disequilibrium,
the Estimation Maximization (EM) algorithm for haplotyping, and the Cochran-Armitage Test for
Trend, to the encrypted data to produce encrypted results. These are standard algorithms used in
genome wide association studies and our proof-of-concept implementation timings are reasonable.
We showed that the timings for evaluating the statistical algorithms do not depend on the pop-
ulation size once the correct parameter sizes are fixed and the encrypted genotype or phenotype
counts are input. Timings at the smaller parameter size for the various algorithms vary up to
roughly 1 second on a standard PC, indicating that these computations are well within reach of
being practical for relevant applications and scenarios.

Homomorphic encryption may well be ripe for deployment, to achieve private outsourcing of
computation for simple algorithms such as those presented in this paper when applied to modest-
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size data sets. That will require increased effort and focus on high-performance implementations for
a range of architectures. In addition, many other interesting avenues for research remain. There is
still much work to be done to make homomorphic encryption more efficient at scale and to expand
the functionality. In addition, to solve a wide-range of practical privacy problems which arise with
cloud services, it will be important to consider various cryptographic building blocks such as secure
multiparty computation and other more interactive solutions and the trade-offs between storage
and interaction costs. One should also consider how homomorphic encryption can be combined
with building blocks such as verifiable computation. Currently homomorphic encryption does not
provide a practical solution for operating on data encrypted under multiple keys, for example in
the setting of a public database where multiple patients upload data under different keys. Finally,
the practical homomorphic encryption schemes presented here rely on hardness assumptions for a
class of new problems such as RLWE. It is crucial to continue to study the hardness of these new
assumptions and to attack the systems to accurately assess parameter bounds to assure security.

Acknowledgements. We thank Tancrède Lepoint for suggesting the encoding in Section 4.1.
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