
ApproxHadoop: Bringing Approximations
to MapReduce Frameworks

Íñigo Goiri†∗ Ricardo Bianchini†‡ Santosh Nagarakatte‡ Thu D. Nguyen‡

‡Rutgers University †Microsoft Research
{ricardob, santosh.nagarakatte, tdnguyen}@cs.rutgers.edu {inigog, ricardob}@microsoft.com

Abstract
We propose and evaluate a framework for creating and run-
ning approximation-enabled MapReduce programs. Specif-
ically, we propose approximation mechanisms that fit nat-
urally into the MapReduce paradigm, including input data
sampling, task dropping, and accepting and running a pre-
cise and a user-defined approximate version of the MapRe-
duce code. We then show how to leverage statistical theories
to compute error bounds for popular classes of MapReduce
programs when approximating with input data sampling
and/or task dropping. We implement the proposed mech-
anisms and error bound estimations in a prototype system
called ApproxHadoop. Our evaluation uses MapReduce ap-
plications from different domains, including data analytics,
scientific computing, video encoding, and machine learning.
Our results show that ApproxHadoop can significantly re-
duce application execution time and/or energy consumption
when the user is willing to tolerate small errors. For exam-
ple, ApproxHadoop can reduce runtimes by up to 32× when
the user can tolerate an error of 1% with 95% confidence.
We conclude that our framework and system can make ap-
proximation easily accessible to many application domains
using the MapReduce model.

Categories and Subject Descriptors C.4 [Computer Sys-
tems Organizations]: Performance of Systems; D.m [Soft-
ware]: Miscellaneous

Keywords MapReduce, approximation, multi-stage sam-
pling, extreme value theory

∗ This work was done while Íñigo Goiri was at Rutgers University.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASPLOS ’15, March 14–18, 2015, Istanbul, Turkey..
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2835-7/15/03. . . $15.00.
http://dx.doi.org/10.1145/2694344.2694351

1. Introduction
Motivation. Despite the enormous computing capacity
that has become available, large-scale applications such
as data analytics and scientific computing continue to ex-
ceed available resources. Furthermore, they consume sig-
nificant amounts of time and energy. Thus, approximate
computing has and continues to garner significant attention
for reducing the resource requirements, computation time,
and/or energy consumption of large-scale computing (e.g.,
[5, 6, 10, 17, 38]). Many classes of applications are amenable
to approximation, including data analytics, machine learn-
ing, Monte Carlo computations, and image/audio/video pro-
cessing [4, 14, 25, 30, 41]. As a concrete example, Web site
operators often want to know the popularity of individual
Web pages, which can be computed from the access logs
of their Web servers. However, relative popularity is often
more important than the exact access counts. Thus, esti-
mated access counts are sufficient if the approximation can
significantly reduce processing time.

In this paper, we propose and evaluate a framework for
creating and running approximation-enabled MapReduce
programs. Since its introduction [13], MapReduce has be-
come a popular paradigm for many large-scale applications,
including data analytics (e.g., [2, 3]) and compute-intensive
applications (e.g., [15, 16]), on server clusters. Thus, em-
bedding a general approximation approach in MapReduce
frameworks can make approximation easily accessible to
many applications.
MapReduce and approximation mechanisms. A MapRe-
duce job consists of user-provided code executed as a set
of map tasks, which run in parallel to process input data
and produce intermediate results, and a set of reduce tasks,
which process the intermediate results to produce the final
results. We propose three mechanisms to introduce a gen-
eral approximation approach to MapReduce: (1) input data
sampling: only a subset of the input data is processed, (2)
task dropping: only a subset of the tasks are executed, and
(3) user-defined approximation: the user provides a precise
and an approximate version of a task’s code. These mecha-

nisms can be easily applied to a wide range of MapReduce
applications (Section 5).
Computing error bounds for approximations. Critically,
in Section 3, we show how multi-stage sampling theory [27]
and extreme value theory [11] can be used to compute error
bounds (i.e., confidence intervals) for approximate MapRe-
duce computations. Specifically, we apply the former theory
to develop a unified approach for computing error bounds
when using input data sampling and/or task dropping in ap-
plications that use a set of aggregation (e.g., sum) reduce op-
erations. We apply the latter theory to compute error bounds
when using task dropping in applications that use extreme
value (e.g., min/max) reduce operations. Such error bounds
allow users to intelligently trade accuracy to improve other
metrics (e.g., performance and/or energy consumption).
ApproxHadoop. We have implemented our proposed mech-
anisms and error bound estimations in a prototype system
called ApproxHadoop, which we describe in Section 4. (In
this paper, we limit our discussions to the first two mech-
anisms, input data sampling and task dropping, because of
space constraints. The description and evaluation of user-
defined approximation can be found in our longer technical
report [19].) For MapReduce programs that use Approx-
Hadoop’s error estimation, the user can specify the desired
error bounds at a particular confidence level when submit-
ting a job. As the job is executed, ApproxHadoop gathers
statistics and determines a mix of task dropping and/or input
data sampling to achieve the desired error bounds. Alterna-
tively, the user can explicitly specify the fraction of tasks
that can be dropped (e.g., 25% of map tasks) and/or the
data sampling ratio (e.g., 10% of data items). In this case,
ApproxHadoop computes the error bounds for the speci-
fied levels of approximation. This second approach can also
be used for running arbitrary ApproxHadoop programs that
can tolerate approximations, but for which ApproxHadoop’s
error-bounding techniques do not apply; of course, Approx-
Hadoop cannot compute error bounds for such jobs.
Evaluation. We use ApproxHadoop to implement and study
approximation-enabled applications in several domains, in-
cluding data analytics, scientific computing, video encoding,
and machine learning. In Section 5, we present represen-
tative experimental results for some of these applications.
These results show that ApproxHadoop allows users to trade
small amounts of accuracy for significant reductions in ex-
ecution time and energy consumption. For example, the ex-
ecution time of an application that counts the popularity of
projects (subsets of articles) in Wikipedia from Web server
logs for one week (217GB) decreases by 60% when the user
can tolerate a maximum error of 1% with 95% confidence.
This runtime decrease can be even greater for larger input
data (and the same maximum error and confidence); e.g.,
32× faster when processing a year of log entries (12.5TB).

Our results also show that, for a wide range of error tar-
gets, ApproxHadoop successfully chooses combinations of

data sampling and task dropping ratios that achieve close to
the best possible savings while always achieving the target
error bounds. For the same project popularity application,
ApproxHadoop reduces the execution time by 79% when
given a target maximum error of 5% with 95% confidence.
Contributions. In summary, we make the following con-
tributions: (1) we propose a general set of mechanisms for
approximation in MapReduce, (2) we show how statistical
theories can be used to compute error bounds in MapReduce
for rigorous tradeoffs between approximation accuracy and
other metrics, (3) we implement our approach in the Approx-
Hadoop prototype, and (4) via extensive experimentation
with real systems, we show that ApproxHadoop is widely
applicable to many MapReduce applications, and that it can
significantly reduce execution time and/or energy consump-
tion when users can tolerate small amounts of inaccuracy.

2. Background
MapReduce. MapReduce is a computing model designed
for processing large data sets on server clusters [13]. Each
MapReduce computation processes a set of input key/value
pairs and produces a set of output key/value pairs. Each
MapReduce program defines two functions: map() and
reduce(). The map() function takes one input key/value
pair and processes it to produce a set of intermediate key/-
value pairs. The reduce() function performs a reduction
computation on all the values associated with a given inter-
mediate key to produce a set of final key/value pairs.

A MapReduce computation is executed in two phases
by a MapReduce framework, a Map phase and a Reduce
phase. To execute the Map phase, the framework divides
the input data into a set of blocks, and runs a map task for
each block that invokes map() for each key/value pair in
the block. To execute the Reduce phase, the framework first
collects all the values produced for each intermediate key.
Then, it partitions the intermediate keys and their associated
values among a set of reduce tasks. Each reduce task invokes
reduce() for each of its assigned intermediate key and
associated values, and writes the output into an output file.

In practice, it has been observed that MapReduce exe-
cutions often take the form of waves of map and reduce
tasks, where most map/reduce tasks require similar amounts
of processing time as each other [48]. We leverage this ob-
servation later in our implementation of ApproxHadoop.
Hadoop. Hadoop is the best-known, publicly available im-
plementation of MapReduce [1]. Hadoop comprises two
main parts: the Hadoop Distributed File System (HDFS) and
the Hadoop MapReduce framework. Input and output data
to/from MapReduce programs are stored in HDFS. HDFS
splits files across the local disks of the servers in the cluster.
A cluster-wide NameNode process maintains information
about where to find each data block. A DataNode process at
each server services accesses to data blocks.

The framework is responsible for executing MapReduce
jobs. Users submit jobs to the framework using a client in-
terface; the user provides configuration parameters via this
interface to guide the splitting of the input data and set the
number of map and reduce tasks. Jobs must identify all in-
put data at submission time. The interface submits each job
to the JobTracker, a cluster-wide process that manages job
execution. Each server runs a configurable number of map
and reduce tasks concurrently in compute slots. The Job-
Tracker communicates with the NameNode to determine the
location of each job’s data. It then selects servers to execute
the jobs, preferably ones that store the needed data locally
if they have slots available. Each server runs a TaskTracker
process, which initiates and monitors the tasks assigned to it.
The JobTracker starts a duplicate of any straggler task, i.e. a
task that is taking substantially longer than its sibling tasks.

3. Approximation with error bounds
We propose three mechanisms for approximation in MapRe-
duce: (1) input data sampling, (2) task dropping, and (3)
user-defined approximation [19]. In this section, we use
theories from statistics to rigorously estimate error bounds
when approximating using input data sampling and/or task
dropping.

3.1 Aggregation
Multi-stage sampling theory. We leverage multi-stage sam-
pling [27] to compute error bounds for approximate MapRe-
duce applications that compute aggregations (e.g., counting
accesses to Web pages from a log file). The set of supported
aggregation functions includes sum, count, average, and ra-
tio. For simplicity, we next discuss two-stage sampling. De-
pending on the computation, it may be necessary to use addi-
tional sampling stages as discussed at the end of the section.

Two-stage sampling works as follows. Suppose we have
a population of T units, and the population is partitioned
into N clusters. Each cluster i contains Mi units so that
T =

∑N
i=1Mi. Suppose further that each unit j in cluster i

has an associated value vij , and we want to compute the sum
of these values across the population, i.e.

∑N
i=1

∑Mi

j=1 vij .
(We describe the approximation of sum in the remainder of
the subsection; approximations for the other operations are
similar [27].)

To compute an approximate sum, we can create a sample
by randomly choosing n clusters, and then randomly choos-
ingmi units from each chosen cluster i. Two-stage sampling
then allows us to estimate the sum from this sample as:

τ̂ =
N

n

n∑
i=1

(
Mi

mi

mi∑
j=1

vij)± ε (1)

where the error bound ε is defined as:

ε = tn−1,1−α/2

√
V̂ ar(τ̂) (2)

V̂ ar(τ̂) = N(N − n)
s2u
n

+
N

n

n∑
i=1

Mi(Mi −mi)
s2i
mi

(3)

where (s2u) is the inter-cluster variance (computed using the
sum and average of the values associated with units from
each cluster in the sample), (s2i) is the intra-cluster variance
for cluster i, and tn−1,1−α/2 is the value of the Student t-
distribution with n − 1 degrees of freedom at the desired
confidence 1 − α. Thus, to compute the error bound with
95% confidence, we use the value tn−1,0.975 [27].
Applying two-stage sampling to MapReduce. To apply
two-stage sampling to MapReduce, we associate population,
clusters, and the value associated with each unit in the pop-
ulation to the respective components in MapReduce. As an
example, consider a program that counts the occurrence of a
word W in a set of Web pages, where the Map phase counts
the occurrence of W in each page, and the Reduce phase
sums the counts. Suppose that the program is then run on an
input data set with T pages (input data items), and the frame-
work partitions the input intoN data blocks. In this case, the
population corresponds to the T pages, with each page being
a unit. Each data block i is a cluster, whereMi is the number
of units (pages) in the block. The Map phase would produce
<W, vij> for each unit (page) j in cluster (data block) i,
where vij is the value associated with that unit.

With the above associations, an approximate computation
can be performed by executing only a subset of randomly
chosen map tasks, using task dropping to avoid the exe-
cution of the remaining map tasks. Further, each map task
only processes a subset of randomly chosen pages (input
data items) from its data block using input data sampling.
Together, these actions are equivalent to choosing a sample
using two-stage sampling. Thus, in the Reduce phase, Equa-
tions 1 and 2 can be used to compute the approximate sum
and error bounds.

For jobs that produce multiple intermediate keys, we view
the summation of the values associated with each key as a
distinct computation. As an example, consider a program
that counts the occurrence of every word that appears in a
set of Web pages. The Map phase now produces a set of
counts for each word appearing in the input pages. Assuming
there are z words, Equations 1 and 2 are used in the Reduce
phase to produce z approximate sums, each with its own
error bound.

Figure 1 illustrates an approximate computation that pro-
duces several final keys and their associated sums. In this
computation, the sample comprises the 2nd and 4th input
data items from block 1, all data items from block 2, the 1st,
3rd, and 5th data items from block 4, and the 2nd data item
from block 6. The Map phase produces three intermediate
keys k1, k2, k3. Thus, Equations 1 and 2 are used three times
to compute τ̂1 ± ε1, τ̂2 ± ε2, and τ̂3 ± ε3.

In some computations, the Map phase may not produce a
value for every intermediate key from each processed input
data item (e.g., in the example in Figure 1, a value was
produced for k1 from the 2nd data item in block 1 but not for
the 4th data item.). This means that some units (input data
items) do not have associated values for that intermediate
key. When this happens, there are two cases: (1) the missing
values are 0, or (2) there are no defined values (i.e., part of
the Map computation is to filter out these input data items).
Our approximation approach works correctly for the first
case but not the second. Going back to the second word
counting example above, if a page p does not contain a word
w (but other pages do), then the Map phase will not produce
a count for w from data item p. However, we can correctly
view the Map phase as also (implicitly) producing <w, 0>
for p. Thus, our approximation with error bounds works for
this application.

We cannot handle the second case because the number of
data items in a block is no longer the correct unit count for
some intermediate keys; the data items that do not have as-
sociated values for an intermediate key have to be dropped
from the population for the key. It is then impossible to com-
pute accurate unit counts for the block for all intermediate
keys without processing all data items in the block. Thus,
our use of two-stage sampling depends on the assumption
that a value of 0 can be correctly associated with an input
data item, if the Map phase did not produce a value for the
item for some intermediate key. This is the only assumption
that we make in our application of multi-stage sampling.

Finally, we can either adjust the task dropping and input
data sampling ratios to achieve a target error bound (e.g., a
maximum error of ±1% across all output keys), or compute
the error bound for specific dropping/sampling ratios.
Three-stage sampling. In some MapReduce computations,
it may be desirable to associate the population units with
the intermediate <key, value> pairs produced by the Map
phase for each intermediate key, rather than the input data
items. For example, we might want to compute the average
number of occurrences of a word W in a paragraph, and
each input data item is a Web page. In this case, the Map
phase would produce <W, count> for each paragraph, so
that the average should be computed over the number of
pairs produced rather than the number of input pages. We
use three-stage sampling to handle such computations. The
programmer must understand her application and explicitly
add the third sampling level.
Limitation: Missed intermediate keys. With our approach
to sampling, it is possible to completely miss the generation
of an intermediate key. In the second word counting example
above, suppose that a word w only appears in one input
Web page. If the sampling skips this page, the computation
will not output an estimated count for w. If the set of all
words are known a priori, we can correctly estimate the
count for all words not in the output as 0 plus a bound,

Input Data Input Data Blocks

<k2,v2,1>
<k3,v2,2>
<k2,v2,3>
<k1,v2,4>

<k2,v4,1>
<k1,v4,3>
<k3,v4,5>

<k2,v6,2>

<k1,v1,2>
<k2,v1,4>

Values produced
by Maps

M
ap

1
M

ap
2

M
ap

4
M

ap
6

<k3,τ3±ε3>

<k1,τ1±ε1>

<k2,τ2±ε2>

R
ed

u
ce

1
R
ed

u
ce

2

Final Output

Block 2

Block 3

Block 4

Block 5

Block 6

Block 1

^

^

^

Figure 1. Example usage of two-stage sampling in a
MapReduce job. Only 4 map tasks (1, 2, 4, and 6) are ex-
ecuted, processing 10 input data items. vx,y is the value pro-
duced for an intermediate key by Mapx from data item y in
block x.

with a certain level of confidence. Otherwise, it is impossible
to know whether words with non-zero counts were lost in
the approximate computation. Thus, our online sampling
approach is not appropriate if it is important to discover
all intermediate keys, including the rarely occurring ones.
Nevertheless, we could estimate the overall number of keys
(with a certain confidence interval) by extrapolating from
a sample, as described in [20]. Further, creating a stratified
sample via pre-processing of the input data can help address
this limitation.

3.2 Extreme values
Extreme value theory. We leverage extreme value the-
ory [11, 26] to estimate results and compute error bounds for
approximate MapReduce applications that compute extreme
values (e.g., optimizing for minimum cost). The supported
operations include minimum and maximum.

In extreme value theory, the Fisher-Tippett-Gnedenko
theorem states that the cumulative distribution function
(CDF) of the minimum/maximum of n independent, identi-
cally distributed (IID) random variables will converge to the
Generalized Extreme Value (GEV) distribution as n → ∞,
if it converges. The GEV distribution is parameterized by
three parameters µ, σ, and ξ, which define location, scale,
and shape, respectively. This theorem can be used to esti-
mate the min/max in a practical setting, where a finite set of
observations is available. Specifically, given a sample of n
values, it is possible to estimate a fitting GEV distribution
using the Block Minima/Maxima and Maximum Likelihood
Estimation (MLE) methods [11, 26].

The fitting process for estimating a minimum when given
a sample of n values v1, v2, ..., vn is as follows. (Estimat-

ing a maximum is similar.) First, divide the sample into m
equal size blocks, and compute the minimum value vi,min
for each block i; this Block Minima method transforms the
original sample to a sample of minima. Next, compute a fit-
ting GEV distribution G for v1,min, v2,min, ..., vm,min us-
ing MLE. This fitting will give values for µ, σ, and ξ for G,
as well as the confidence intervals around them (e.g., 95%
confidence intervals). These confidence intervals are used to
compute Gl and Gh, the fitted GEV distributions that bound
the errors around G.
G is then used to estimate the minimum by computing

the value min where G(min) = p for some low percentile
p (e.g., 1st percentile). The confidence interval around min
is defined by [minl,minh], where Gl(minl) = p and
Gh(minh) = p.
Applying extreme value theory to MapReduce. We ap-
ply the above to approximate MapReduce min/max compu-
tations as follows. First, assume that the Map phase produces
values (for a specific intermediate key) corresponding to a
sample of random variables. (This is our only assumption
about the Map computation.) To approximate, we can then
simply drop some of the map tasks, leading to a smaller
sample being produced. In the Reduce phase, we would
use the above GEV fitting approach to estimate the min/-
max and the confidence interval. Of course, smaller sam-
ples lead to larger confidence intervals (error bounds) for
the GEV fitting. Thus, similar to multi-stage sampling, the
amount of approximation (i.e., the percentage of dropped
map tasks) must be adjusted properly to achieve the desired
error bounds.

In some computations, each map task may compute mul-
tiple values and output only the min/max of these values.
Thus, the values already comprise a sample of min/max, al-
lowing them to be used directly without applying the Block
Minima/Maxima method. In turn, this increases the sample
size for GEV fitting and so may allow many more map tasks
to be dropped when targeting a specific error bound.

Figure 2 shows an example approximate computation that
uses GEV. Each map task computes a part of an optimiza-
tion procedure and outputs the minimum value that it finds.
(There is only one intermediate key.) The reduce uses the
GEV fitting and estimation approach to determine that the
desired error bound has been achieved after map tasks 1 and
2 complete. Thus, map task 3 is discarded.

4. ApproxHadoop
We have implemented the three approximation mecha-
nisms [19], along with the error estimation techniques de-
scribed in Section 3, in a prototype system called Approx-
Hadoop that extends the Hadoop MapReduce framework.
This section describes ApproxHadoop’s interfaces for ap-
plication development and job submission, and the changes
required to implement the approximation mechanisms and

M
ap

1
M

ap
2

M
ap

3

min

<k,min1>

<k,min2> <k,min± >

minhminl

fitted GEV

min1

min2

R
ed

u
ce

fitted GEVhfitted GEVl

min1

min2

εh
εl

Figure 2. Example usage of GEV theory in a MapReduce
job. Each map task computes the values shown (red points)
and reports the minimum. Only maps 1 and 2 are executed.

error estimation. As previously mentioned, we limit our dis-
cussion to input data sampling and task dropping.

4.1 Developing ApproxHadoop programs
Hadoop offers a set of pre-defined reduce functions (via
Java classes) that can be used by programmers (e.g., a re-
duce function that sums the values for a given intermediate
key). ApproxHadoop similarly offers a set of pre-defined
approximation-aware map templates and reduce functions—
e.g., classes MultiStageSamplingMapper and Multi-
StageSamplingReducer for aggregation and ApproxMin-
Reducer for extreme values; see [19] for a complete list.
These classes implement the desired approximation (by
leveraging the ApproxHadoop mechanisms), collect the
needed information for error estimation (e.g., the total num-
ber of data items in a sampled input data block), perform
the reduce operation, estimate the final values and the corre-
sponding confidence intervals, and output the approximated
results. To perform approximations with dropping/sampling,
the user inherits ApproxHadoop’s pre-defined classes in-
stead of the regular Hadoop classes. The rest of the program
remains the same as in regular Hadoop, including the code
for map() and reduce().

Using ApproxHadoop, the word count example from [13]
would be adapted as in Figure 3. Only lines #2, #8, and #17
are different than the corresponding Hadoop code.

4.2 Job submission
When the user wants to run an approximate program that
uses input data sampling and/or map dropping, she can direct
the approximation by specifying either:

1. The percentage of map tasks that can be dropped (drop-
ping ratio) and/or the percentage of input data that needs
to be sampled (input data sampling ratio); or,

2. The desired target error bound (either as a percentage or
an absolute value) at a confidence level.

Users who understand their applications well (e.g., from re-
peated execution) can use the first approach. In this case,
ApproxHadoop will randomly drop the specified percentage

1 c l a s s ApproxWordCount :
2 c l a s s Mapper extends

Mult iStageSampl ingMapper :
3 // key : document name
4 // v a l : document c on t en t s
5 vo id map(S t r i n g key , S t r i n g v a l) :
6 f o r each word w i n v a l :
7 con t e x t . w r i t e (w, 1) ;
8 c l a s s Reducer extends

Mul t iS tageSamp l ingReduce r :
9 // key : a word

10 // v a l s : a l i s t o f count s
11 vo id r educe (S t r i n g key , I t e r a t o r v a l s) :
12 i n t r e s u l t =0;
13 f o r each v i n v a l s :
14 r e s u l t+=v ;
15 con t e x t . w r i t e (key , r e s u l t) ;
16 vo id main () :
17 s e t I npu tFo rmat (ApproxText InputFormat) ;
18 run () ;

Figure 3. An example approximate word count MapReduce
program using ApproxHadoop.

of map tasks and/or sample each data block with the spec-
ified sampling ratio. For supported reduce operations, Ap-
proxHadoop will also compute and output error bounds.

In the second case, for the supported reduce operations,
ApproxHadoop will determine the appropriate sampling and
dropping ratios. For other computations, the user would
need to provide code for estimating errors. When the Map
phase produces multiple intermediate keys, ApproxHadoop
assumes that the specified error bound is the maximum error
desired for any intermediate key.

4.3 The ApproxHadoop framework
Input data sampling. We implement input data sampling
in new classes for input parsing. These classes parse an
input data block and return a random sample of the input
data items according to a given sampling ratio. For example,
we implement ApproxTextInputFormat, which is similar
to Hadoop’s TextInputFormat. Like TextInputFormat,
ApproxTextInputFormat parses text files, producing an
input data item per line in the file. Instead of returning all
lines in the file, however, ApproxTextInputFormat returns
a sample that is a random subset of appropriate size.
Task dropping. We modified the JobTracker to: (1) execute
map tasks in a random order to properly observe the require-
ments of multi-stage sampling, and (2) be able to kill run-
ning maps and discard pending ones when they are to be
dropped; dropped maps are marked with a new state so that
job completion can be detected despite these maps not finish-
ing. We also modified the Reducer classes to detect dropped
map tasks and continue without waiting for their results.
Error estimation. As already mentioned, our pre-defined
approximate Mapper and Reducer classes implement error
estimation. Specifically, the Mapper collects the necessary
information, such as the number of data items in the input

TaskTrackermTTaskTrackerm9

ReduceTaskm%

JobTracker

InputmBlockmN

MapTaskmN

OutputmBlock

MultiStage
Reducer

MultiStage
Mapper

ApproxInput
Format

ApproxOutput

TaskTrackerm%

MapTaskm%

MultiStage
Mapper

x

ApproxInput
Format

Incremental

Dropping
Mechanism

:%.

:9. :9. :9.

:f. :f.

:8. :8.

:%C.

lorem sit ipsum

nisi ipsum sit

laboris nisi ut

sit ipsum ut

%:
9:
f:

M%:

666m

ipsum ut sit

nisi lorem ipsum

sit laboris lorem

%:
9:

MN:

666m

ipsum ut sit

nisi lorem ipsum

sit laboris lorem

%:
9:

MN:

666m

ipsum

lorem

nisi

666m

9f5±9
f57±f

999±%

Error
Estimator

:6.

:9.

TaskTrackermTTaskTrackerm9

ReduceTaskm%

JobTracker

InputmBlockmN

MapTaskmN

OutputmBlock

MultiStage
Reducer

MultiStage
Mapper

ApproxInput
Format

ApproxOutput

TaskTrackerm%

MapTaskm%

MultiStage
Mapper

ApproxInput
Format

ApproxWordCount

map:.
reduce:.
Targetmerrormbound
mm±%3m953mconfidence

x

Incremental

Dropping
Mechanism

:9. :9. :9.

:f. :f.

:8. :8.

:5.

:7.:8.

:9.

:%C.

lorem sit ipsum

nisi ipsum sit

laboris nisi ut

sit ipsum ut

%:
9:
f:

M%:

666m

ipsum ut sit

nisi lorem ipsum

sit laboris lorem

%:
9:

MN:

666m

ipsum ut sit

nisi lorem ipsum

sit laboris lorem

%:
9:

MN:

666m

ipsum

lorem

nisi

666m

9f5±9
f57±f

999±%

Error
Estimator

:6.

InputmBlockm%

lorem sit ipsum

nisi ipsum sit

laboris nisi ut

sit ipsum ut

%:
9:
f:

M%:

666m

InputmBlockm%

lorem sit ipsum

nisi ipsum sit

laboris nisi ut

sit ipsum ut

%:
9:
f:

M%:

666m

Figure 4. Example execution of the ApproxWordCount
program with multi-stage sampling in ApproxHadoop.

data block, and forwards it to the Reducer. The Reducer
computes the error bounds using the techniques described in
Section 3. We have also modified the JobTracker to collect
error estimates from all reduce tasks, so that it can track error
bounds across the entire job. This is necessary for choosing
appropriate ratios of map dropping and input data sampling.
Incremental reduce tasks. To estimate errors and guide
the selection of sampling/dropping ratios at runtime, reduce
tasks must be able to process the intermediate outputs be-
fore all the map tasks have finished. We accomplish this by
adding a barrier-less extension to Hadoop [44] that allows
reduce tasks to process data as it becomes available.
Example execution. Figure 4 depicts a possible approxi-
mate execution of the ApproxWordCount program. The user
first submits the job (arrow 1), specifying a target error
bound and confidence level. The JobTracker then starts N
map tasks (only two are shown) and 1 reduce task (2). Each
map task executes by sampling its input data block (3 & 4).
Map task N finishes first and reports its statistics to the re-
duce task (5). The reduce task estimates the error bounds (6),
decides that the target has been achieved, and so asks the
JobTracker to terminate the remaining map tasks (7). The
JobTracker then kills map task 1, which may still be exe-
cuting (8). The reduce task is informed that map task 1 will
not complete (9), allowing it to complete its execution and
output the results (10).

4.4 Estimating and bounding errors for aggregation
To compute the error bounds when multi-stage sampling is
used, we need to know which cluster (i.e., input data block)
each key/value pair came from. Thus, each map task tags

each key/value pair that it produces with its unique task ID.
Each map task processing an input data block i also tracks
the number of units (i.e., data items) Mi in the block, as
well as the number of sampled units mi. This information
is passed to all of the reduce tasks. We implement this func-
tionality in our pre-defined Mapper and Reducer classes.
User-specified dropping/sampling ratios. The computa-
tion is straightforward when the user specifies the ratios.
The framework randomly chooses the appropriate number of
map tasks and executes them. Each task is directed to sample
the input data block at the user-specified sampling ratio. The
reduce tasks then compute the error bounds as discussed in
Section 3.1.
User-specified target error bound. Selecting dropping/sam-
pling ratios is more challenging when the user specifies a
target error bound, because the ratios required to achieve
the bound depend on the variance of the intermediate val-
ues. Also, different combinations of n (number of clusters)
and mi/Mi (sampling ratio within each cluster) will achieve
similar error bounds.

Our approach for choosing n and mi is as follows. Sup-
pose that a subset n1 of map tasks are executed first and the
target error is X%. The framework collects information from
these tasks to guide the sampling of the remaining map tasks.
Specifically, we want to find the minimum amount of time
required to complete the job while meeting the constraint:

tn−1,1−α/2

√
V̂ ar(τ̂) ≤ X%× τ̂ (4)

Thus, we set up an optimization problem and solve it. The
optimization problem is to minimize the remaining execu-
tion time RET = n2tmap(M̄, m̄), where n2 is the num-
ber of remaining map tasks, and tmap(M̄, m̄) is the time re-
quired to execute a map task with M̄ input data items, pro-
cessing only m̄ items. Note that this assumes that the input
data is equally divided among the map tasks, and that pro-
cessing time for each data item does not vary greatly. We
model the running time of a map task as:

tmap(M,m) = t0 +Mtr +mtp (5)

where t0 is the base time to start a map and tr and tp are the
average times required to read and process one data item,
respectively. We do not model or optimize the running time
of reduce tasks, because the Map phase is typically the most
time-consuming, and optimizing for the map tasks usually
decreases the reduces’ runtime.

We also rewrite Equation 3 as:

V̂ ar(τ̂) = N(N − n)
s2u
n

+
N

n
CV ar (6)

where

CV ar = n2M̄(M̄ − m̄)
s̄2

m̄
+

n1∑
i=1

Mi(Mi −mi)
s2i
mi

(7)

Finally, we estimate to, tr, tp, M̄ , and s̄ using statistics
gathered from the execution of the n1 completed map tasks.
We then solve for n2 and m̄ using binary search, under the
constraint given by Equation 4, n = n1 + n2, and n2 ≤
N −n1. The time required to solve the problem is negligible
(compared to the time to compute the approximate result
and its error bounds), even for large numbers and sizes of
clusters.

By default, for a job using multi-stage sampling with a
user-specified target error bound, ApproxHadoop executes
the first wave of map tasks without sampling. It then uses
statistics from this first wave to solve the optimization prob-
lem and set the dropping/sampling ratios for the next wave.
After the second wave, it selects ratios based on the previous
two waves, and so on.

The above approach implies that a job with just one wave
of map tasks cannot be approximated. However, the user
can set parameters to direct ApproxHadoop to run a small
number of maps at a specific sampling ratio in a first pilot
wave. Statistics from this pilot wave are then used to select
dropping/sampling ratios for the next (full) wave of maps.
This reduces the amount of precise execution and allows
ApproxHadoop to select dropping/sampling ratios even for
jobs whose maps would normally complete in just one wave.
Running such a pilot wave may lengthen job execution time
(e.g., by running two waves of maps instead of one), but can
increase system throughput and decrease energy consump-
tion because fewer maps are executed without sampling.

4.5 Estimating and bounding errors for extreme values
To compute the error bounds when GEV is used, the Reducer
needs to know whether the values it receives for each key
are already in Block Minima/Maxima format. If not, the
Reducer transforms the data to this format.
User-specified dropping ratio. The framework only runs a
randomly chosen subset of maps as specified by the user.
The reduce then estimates the min/max and corresponding
error bounds, as discussed in Section 3.2.
User-specified target error bound. The reduce estimates
the min/max and the error bounds as each map completes.
The overhead of this estimation is negligible. When the tar-
get error bound has been achieved, the reduce asks the Job-
Tracker to kill and/or drop all remaining maps. The reduce
will then observe that all maps have completed (or been
dropped) and will complete the overall computation.

5. Evaluation
We evaluate ApproxHadoop using applications with vary-
ing characteristics (see Table 1) and using various approxi-
mations for each application. We first explore the approxi-
mation mechanisms and errors for some of the applications
when users specify the dropping/sampling ratios. Next, we
evaluate ApproxHadoop’s ability to dynamically adjust its
approximations to achieve user-specified target error bounds

Approx.
Application Input data Size S D U Err.
Page Length Wikipedia dump 9.8GB 3 3 MS
Page Rank (40GB) 3 3 MS
Request Rate

Wikipedia log
3 3 MS

Project Popul 46GB 3 3 MS
Page Popul (217GB) 3 3 MS
Request Rate

Webserver log

3 3 MS
Page Popul 3 3 MS
Page Traffic 3 3 MS
Total Size 330MB 3 3 MS
Request Size (11GB) 3 3 MS
Clients 3 3 MS
Client Browser 3 3 MS
Attack Freq 3 3 MS
DC Placement US and Europe 480KB 3 3 GEV
Video Encoding Movie 816MB 3 U
K-Means Apache mail list 7.3GB 3 U

Table 1. List of evaluated applications. Approximations:
sample input data (S), drop computation (D), and user-
defined approximation (U). Error estimation: multi-stage
sampling (MS), generalized extreme values (GEV), and
user-defined (U).

while minimizing execution time. Finally, we explore Ap-
proxHadoop’s sensitivity to the distribution of key values,
job sizes (and the impact on energy consumption), and input
data sizes.

5.1 Methodology

Hardware. We run our experiments on a cluster of 10
servers (larger experiments on a 60 server cluster). Each
server is a 4-core (with 2 hardware threads each) Xeon ma-
chine with 8GB of memory and one 164GB 7200rpm SATA
disk. The cluster is interconnected with 1Gb Ethernet. Each
server consumes 60 Watts when idle and 150 Watts at peak.
Reported energy consumption numbers are based on a power
model we built from measuring one server. We use a sepa-
rate client machine to submit jobs, measuring job execution
times on this client.
Software. ApproxHadoop extends Hadoop 1.1.2. Each server
hosts a TaskTracker and DataNode, while one server also
hosts the JobTracker and NameNode. We configure each
server to have 8 map slots and 1 reduce slot. Experiments
with multiple reduce tasks always run with the number of
reduce tasks equal to the cluster size.
Metrics and measurements. Evaluation metrics include job
execution time, energy consumption, and accuracy. For ac-
curacy, we report the actual errors between approximate and
precise executions, as well as the estimated 95% confidence
intervals for the approximate executions. When a job out-
puts multiple key-value pairs, we report the actual error and
confidence interval for the key with the maximum predicted
absolute error. We repeat each experiment 20 times and often
report the average, minimum, and maximum for each metric.

104

105

106

107

500 1000 1500 2000 2500 3000

N
um

be
r

of
 a

rt
ic

le
s

Page size (bytes)

(a) Wikipedia Length

Approximate
Precise

104

105

106

N
um

be
r

of
 li

nk
s

Top 100 linked-to pages (in descending order)

(b) Wikipedia Page Rank

100
101
102
103
104
105
106
107
108
109

1010

N
um

be
r

of
 a

cc
es

se
s

Project accesses (in descending order)

(c) Wikipedia Project Popularity

Approximate
Precise

105

106

107

108

N
um

be
r

of
 a

cc
es

se
s

Top 100 accessed pages (in descending order)

(d) Wikipedia Page Popularity

Figure 5. Results of data analysis for (a) WikiLength and
(b) WikiPageRank; and log analysis for (c) Project Popular-
ity and (d) Page Popularity. The error bars show the intervals
of one approximated run at 1% input data sampling ratio.

5.2 Results for user-specified dropping/sampling ratios
Data Analysis. We study two publicly available large-scale
data analysis applications, WikiLength and WikiPageRank,
that analyze all English Wikipedia articles. These applica-
tions are representative of large-scale processing on collec-
tions of Web pages (e.g., for Web search). WikiLength pro-
duces a histogram of lengths of the articles [45], with the
Map phase producing a key-value pair <s, 1> for each arti-
cle whose size is in bin s and the Reduce phase summing the
count for each key s. WikiPageRank counts the number of
articles that point to each article [24], emulating one of the
main processing components of PageRank [32]. The Map
phase of this application produces a pair <a, 1> for each
link that it finds to article a and the Reduce phase sums the
count for each key a.

We use the Mapper and Reducer classes that implement
multi-stage sampling to create approximation-enabled ver-
sions of WikiLength and WikiPageRank. We then use the
applications to analyze the May 2014 snapshot of Wikipedia
[45, 46]. This snapshot contains more than 14 million arti-
cles and is compressed into 9.8GB using bzip2 to allow ran-
dom access by the map tasks. (Uncompressed, the snapshot
requires 40GB of storage.) The 9.8GB partitions into 161
blocks and thus our jobs have 161 maps, running in a little
more than two waves in the Xeon cluster.

Figures 5(a) and 5(b) plot parts of the results for a precise
execution and an approximate execution with an input data
sampling ratio of 1% (each map task processes 1 out of ev-
ery 100 input data items) for each application. The error bars
show the 95% confidence intervals of the approximated val-
ues. Taking one size for WikiLength as an example, consider
the values for 1000B articles; the precise value is 230,793,

0

20

40

60

80

100

0.01 0.1 1 10 100

P
er

ce
nt

ag
e

(%
)

Input data sampling ratio (%)

(a) WikiLength not dropping maps

Precise runtime
Approximate runtime
Approximation error

95% confidence interval

0.01 0.1 1 10 100
Input data sampling ratio (%)

(b) WikiLength dropping 25% maps

0.01 0.1 1 10 100
Input data sampling ratio (%)

(c) WikiLength dropping 50% maps

0

50

100

150

200

R
untim

e (secon
ds)

Figure 6. Performance and accuracy of WikiLength for different dropping/sampling ratios.

while the approximated value is 221,802±9,165. The actual
error is 8,991 (i.e., 3.89% = (230,793 - 221,802)/230,793).

Figure 6 shows the impact of approximations on the run-
time (Y-axis on right) and estimation errors (Y-axis on left)
for WikiLength. Each data point along a curve in the graphs
plots the average value (over 20 executions) for the corre-
sponding metric, and a range bar limited by the minimum
and maximum values (over the 20 executions) of the metric.
The gray horizontal band across each graph depicts the range
of runtimes from multiple runs of the precise program.

Figure 6(a) shows the impact of different input data sam-
pling ratios when no map tasks were dropped. Observe that
runtime can be reduced by 21% (173.6 → 137.5 secs) by
processing 1% of the articles, resulting in a 95% confidence
interval of 0.81% and an actual error of 0.34%. Figures 6(b)-
(c) show the impact of combining task dropping with input
data sampling. Observe that dropping tasks reduces execu-
tion times more than input data sampling, but with wider
confidence intervals. For example, by dropping 50% of the
maps, we can reduce the runtime to below 105 secs. How-
ever, even without input data sampling (i.e., 100% sampling
ratio), the confidence interval at this dropping ratio is 7.38%
while the actual error is 2.83%.

Task dropping has a stronger impact on execution times
because it eliminates all processing (data block I/O accesses
and computation on data items) for each dropped block,
whereas input data sampling still requires all data items
in a block to be read even though some of them will not
be processed as part of the chosen sample. On the other
hand, task dropping leads to wider confidence intervals for
two reasons: (1) data within blocks usually has “locality”
(e.g., the data was produced close in time), and (2) sampling
within blocks (input data sampling) adds more randomiza-
tion than sampling blocks (task dropping), because in our
setup, block sizes are substantially larger than the number of
blocks (M � N).

Though not shown in the figures, the approximate version
of WikiLength does miss sizes for which counts are small
(rare occurrences). For example, in the case of 1% input data
sampling, counts were reported for 1028 sizes compared to

5018 in the precise computation. For these missing sizes, the
error bound was ±197, which is substantially smaller than
the maximum error bound,±33,480, for the sizes that we did
find. This is consistent with our discussion of the limitations
of multi-stage sampling in Section 3.1.

To quantify the overhead of our implementation, we com-
pare the runtime of the precise version against the approxi-
mation with no sampling and no dropping. In this case, the
average runtime increases from 173.6 to 175.0 secs, which
is less than 1%.

While not shown here, results for WikiPageRank show
the exact same trends (although the overhead is somewhat
larger at close to 8%) [19]. Thus, in summary, we observe
that input data sampling and map dropping can lead to sig-
nificantly different impacts on job runtime and error bounds.
Properly combining the two via multi-stage sampling can
lead to the lowest runtime for specific error bound targets
(and vice versa).
Log Processing. Log processing is a second important type
of data analysis commonly done using MapReduce [8].
Thus, we use ApproxHadoop to process the access log for
Wikipedia [46]. This log contains log entries for the first
week of 2013 and is compressed into 46.0GB (216.9GB
uncompressed).

In this case, each unit is an access log entry containing in-
formation like access date, access page, and request size. We
compute the Project Popularity (the English project, rooted
at http://en.wikipedia.org, is the most popular project
across more than 2,064 projects with more than 1.9 billion
accesses) and Page Popularity (http://en.wikipedia.
org/wiki/Main_Page is the most accessed page).

Figures 5(c) and 5(d) plot the results for a precise execu-
tion and an approximate execution with an input data sam-
pling ratio of 1% for the two programs. Though the con-
fidence intervals for unpopular projects may seem large in
Figure 5(c), this effect is caused by reporting small num-
bers in log scale. These intervals are actually narrower than
those for more popular projects. Figure 7 plots the runtime
and errors for Project Popularity, as a function of the drop-
ping/sampling ratios. The figure shows very similar trends to

http://en.wikipedia.org
http://en.wikipedia.org/wiki/Main_Page
http://en.wikipedia.org/wiki/Main_Page

0

2

4

6

8

10

0.01 0.1 1 10 100

P
er

ce
nt

ag
e

(%
)

Input data sampling ratio (%)

(a) Project Popularity not dropping maps

Precise runtime
Approximate runtime
Approximation error

95% confidence interval

0.01 0.1 1 10 100
Input data sampling ratio (%)

(b) Project Popularity dropping 25% maps

0.01 0.1 1 10 100
Input data sampling ratio (%)

(c) Project Popularity dropping 50% maps

0

200

400

600

800

1000

1200

R
untim

e (secon
ds)

Figure 7. Performance and accuracy of Wikipedia log processing for Project Popularity.

those for WikiLength. The overhead when executing the ap-
proximate version without sampling/dropping is 12%. (Note
that, when dropping maps, some of the actual errors are
larger than the confidence intervals; only 95% of the estima-
tions are expected to fall in the 95% confidence intervals).
Datacenter (DC) Placement. We now explore the impact of
approximation on an optimization application. Specifically,
the application uses simulated annealing to find the lowest
costing placement of a set of datacenters in a geographic area
(e.g., the US), constrained by a maximum latency to clients
(e.g., 50ms) [18]. The area is divided into a two dimensional
grid, with each cell in the grid as a potential location for a
datacenter. In the MapReduce program, each map executes
an independent search through the solution space, outputting
the minimum cost placement that it finds. The single reduce
task outputs the overall minimum cost placement.

Note that this application itself is already an approxima-
tion: the optimization is not guaranteed to produce an opti-
mal result, but will produce better results as the search be-
comes more comprehensive and/or a finer grid is used. We
enhance the capabilities for approximations in this applica-
tion by allowing the dropping of map tasks. We use the Map-
per and Reducer classes implementing extreme value to es-
timate an approximate minimum value and the confidence
interval along with the actual minimum cost solution found.

Figure 8 shows the impact of map dropping on the opti-
mization with a 50ms maximum latency constraint and the
default grid size. We run the experiments with 80 map tasks,
with each server configured with only 4 map slots, which
is the most efficient setting for this CPU-bound application.
Note that the runtime decreases slowly with map dropping
(right-to-left) until about 50% of the maps are dropped. This
sharp drop in runtime results from the dropping of an en-
tire wave of maps. Error bounds also grow relatively slowly
until we drop more than 50% of the maps. Targeting error
bounds of at most 10%, we drop 70% of the maps to reduce
the runtime by 51%.

5.3 Results for user-specified target error bounds
We now demonstrate ApproxHadoop’s ability to achieve a
given target error bound by dynamically adjusting the drop-

0

20

40

60

80

100

0 20 40 60 80 100
0

100

200

300

400

500

P
er

ce
nt

ag
e

(%
)

R
untim

e
 (seconds)

Executed maps (%)

Approximate runtime
Approximation error

95% confidence interval

Figure 8. Performance and accuracy of DC Placement for
different dropping ratios. The optimization targets a network
of datacenters with a 50ms max latency.

ping/sampling ratios. We consider two applications, log pro-
cessing and optimization, which use multi-stage sampling
and extreme value theory for approximation, respectively.
Log Processing. Figure 9(a) plots the runtime and errors
as a function of the target error bound for Project Pop-
ularity. For small target errors (<0.05%), ApproxHadoop
decides that no approximation is possible. Thus, in these
cases, there are no errors and the runtimes are the same as
for the precise version (the overheads are negligible). From
0.05% to 0.5%, ApproxHadoop is able to use different in-
put data sampling ratios to reduce the runtimes by more than
37%. Above 0.5%, ApproxHadoop can start dropping maps
to further reduce the runtimes. For example, for a 1% tar-
get error, ApproxHadoop reduces the runtime from 908 to
360 secs (60%). Finally, for target errors above 2%, the re-
quired error bound is achieved after the 1st wave of map
tasks complete, allowing all remaining maps to be dropped.
Thus, ApproxHadoop cannot reduce runtime further, giving
a maximum runtime reduction of 79%. Importantly, Approx-
Hadoop achieved the target error bounds in all experiments,
as shown by the 95% confidence interval curve.

Page Popularity presents a more interesting case. The pre-
cise version cannot be executed without memory-swapping
in our cluster. In fact, our memory capacity is not even large
enough to run the first wave of maps precisely without swap-
ping. However, it is possible to compute Page Popularity ef-

0

2

4

6

8

10

0.01 0.1 1 10
0

200

400

600

800

1000

1200

P
er

ce
nt

ag
e

(%
)

R
untim

e
 (seconds)

Target error (%)

Precise runtime
Approximate runtime
Approximation error

95% confidence interval

(a) Project Popularity

0

2

4

6

8

10

0.1 1 10
0

500

1000

1500

2000

2500

3000

P
er

ce
nt

ag
e

(%
)

R
untim

e
 (seconds)

Target error (%)

(b) Page Popularity using a pilot sample

0

10

20

30

40

50

60

1 10 100
0

500

1000

1500

2000

P
er

ce
nt

ag
e

(%
)

R
untim

e
 (seconds)

Target error (%)

(c) DC Placement with 50ms max latency

Figure 9. Performance and accuracy for Project Popularity when targeting different maximum errors.

ficiently for this log by directing ApproxHadoop to use a
small pilot wave (see end of Section 4.4).

Figure 9(b) plots the behavior of Page Popularity, when
ApproxHadoop relies on a pilot sample ran with a 1% input
data sampling ratio. (The pilot takes an average of 93 ± 11
secs to complete for this application.) The results show that
we cannot target errors lower than 0.2%. Note that the execu-
tion time is somewhat variable at the 0.2% target error, as the
reduce tasks memory-swap in some experiments. For larger
target bounds, ApproxHadoop can approximate enough that
swapping does not occur. Overall, the use of the pilot sample
improves performance significantly. For example, assuming
a target bound of 1%, the pilot sample reduces the execution
time by 78% compared to the precise execution, and 80%
compared to ApproxHadoop without the pilot sample. (We
include the time to perform the pilot in these calculations.)
Finally, note again that all confidence intervals are smaller
than the target error bounds.
DC Placement. Figure 9(c) plots the runtime and errors, as a
function of the target error bounds, for an execution with 320
map tasks. Since this application uses only task dropping and
the errors introduced by dropping maps are relatively large,
ApproxHadoop cannot improve execution time until the tar-
get bound is larger than 2%. (Note that we are showing errors
for these cases, even though ApproxHadoop is not perform-
ing any approximation, because the application itself is an
approximation.) At 6%, ApproxHadoop reduces the runtime
by more than 80% by dropping 285 maps. For targets higher
than 6%, ApproxHadoop achieves the target error after pro-
cessing the first wave of maps, and so it drops all remain-
ing maps. Thus, ApproxHadoop can reduce runtime by up
to 87%, while consistently achieving the target bound.

5.4 Sensitivity analysis
Impact of the distribution of key values. An important fac-
tor when estimating errors is the distribution of the program
outputs (key values). We now evaluate the impact of this dis-
tribution by considering Log Processing on a log with differ-
ent characteristics, our department’s Web server access log.
The log spans 80 weeks from November 2012 to June 2014
and contains more than 40 million requests. The compressed
size of the log is 330MB, while the original size is 11GB.

The data is divided into 80 files (one per week), each of
which fits in a single data block (i.e., <64MB). Each unit
in the files is an access (a line), which contains information
like timestamp, accessed page, and page size.

We study two applications that analyze: (1) Request Rate:
computes the average number of requests per time unit (e.g.,
each hour within a week), and (2) Attack Frequencies: com-
putes the number of attacks (for a set of well-known attack
patterns) on the Web server per client.

Figure 10(a) plots a precise and an approximate execution
of Request Rate with an input data sampling ratio of 1%.
The figure shows the pattern of request rates that one would
expect for a Web site, as well as small errors and narrow
confidence intervals. For the same execution, Figure 10(b)
plots the request rates in descending order. This figure shows
that request rates are fairly stable (they vary by roughly
33%), i.e. quite a different distribution than what we see
in Figure 5. Despite this significantly different distribution,
Figure 11(a) shows that the impact of varying the input data
sampling ratio is very similar to Figures 6 and 7.

More interestingly, consider the precise and approximate
results for Attack Frequencies in Figure 10(c), again with
1% input data sampling ratio. Since this application com-
putes rare values, we see larger errors and wider confidence
intervals. Figure 11(b) shows that ApproxHadoop can re-
duce execution time significantly at the cost of higher errors
and wider intervals. This application emphasizes the fact that
approximation is most effective for estimating values com-
puted from a large number of input data items, rather than
those from only a few.
Impact of job size on energy consumption. One of the
goals of approximate computing is to conserve energy. By
reducing the execution time, as in the experiments so far,
and not increasing the power consumption, we save energy.
The energy savings is roughly proportional to the reduction
in execution time. However, in certain scenarios, Approx-
Hadoop can also save energy independently of reductions in
execution time.

To see this, consider the experiments processing our de-
partment’s Web server log. They show that input data sam-
pling reduces the runtime (Figure 11), but dropping maps has

N
um

be
r

of
 a

cc
es

se
s

(in
 th

ou
sa

nd
s)

200

250

300

350

Hourly request rates (in descending order)

(b) Request Rate

0

50

100

150

200

N
um

be
r

of
 a

tta
ck

s

Attacker attacks (in descending order)

(c) Attack Frequencies

Approximate
Precise

N
um

be
r

of
 a

cc
es

se
s

(in
 th

ou
sa

nd
s)

200

250

300

350

Mon Tue Wed Thu Fri Sat Sun

(a) Request Rate

Figure 10. Results of processing our Web server log.

0

20

40

60

80

100

0.01 0.1 1 10 100
0

10

20

30

40

50

P
er

ce
nt

ag
e

(%
)

R
untim

e
 (seconds)

Input data sampling ratio (%)

(a) Request Rate

Precise runtime
Approximate runtime
Approximation error

95% conf interval

0

20

40

60

80

100

0.01 0.1 1 10 100
0

10

20

30

40

50

P
er

ce
nt

ag
e

(%
)

R
untim

e
 (seconds)

Input data sampling ratio (%)

(b) Attack Frequencies

Figure 11. Performance and accuracy of Web server log
processing: (a) Request Rate and (b) Attack Frequencies.

no significant effect when jobs have a single wave of maps.
(Recall that when the user specifies the dropping/sampling
rates, they can be applied in the first wave of maps.) The
same may occur for applications that have a few more waves
as well. For applications where dropping maps does not re-
duce the runtime, we can transition the servers that have
no maps to execute (corresponding to the maps that were
dropped) to a low-power state (i.e., ACPI S3) when they be-
come idle. Figure 12 shows the energy consumptions result-
ing from both dropping maps and input data sampling for
Request Rate and Attack Frequencies. As we would expect,
decreasing the amount of input data ApproxHadoop sam-
ples reduces energy consumption, as this reduces execution
time. However, dropping more maps also saves energy, even
though this does not reduce execution time.
Impact of data size. Finally, we evaluate the impact of the
dataset size on ApproxHadoop by running Log Processing
on a larger Wikipedia access log. The log has one file per
day of the year for a total of 365 files and 12.5TB, which
become 2.3TB when compressed. We experiment with dif-
ferent subsets of the log, as we list in Table 2. Our Log Pro-
cessing experiments on Wikipedia so far have only used the
first week’s data.

Because our Xeon cluster does not have enough disk
space, for these experiments, we use another cluster with
60 nodes and a total disk capacity of 14TB. Each server in
this cluster is a 2-core (with 2 hardware threads each) Atom
machine with 4GB of memory, one 250GB 7200rpm SATA
disk (200GB for data), interconnected with 1Gb Ethernet.

0

2

4

6

8

10

12

14

16

0.01 0.1 1 10 100

E
ne

rg
y

(W
h)

Input data sampling ratio (%)

(a) Request Rate

0

2

4

6

8

10

12

14

16

0.01 0.1 1 10 100

E
ne

rg
y

(W
h)

Input data sampling ratio (%)

(b) Attack Frequencies
Precise execution

100% maps
75% maps
50% maps
25% maps

Figure 12. Energy in processing our Web server log using
(a) Request Rate and (d) Attack Frequencies for multiple
dropping/sampling ratios.

We configure each Atom server with 4 map slots and 1
reduce slot.

Figure 13 compares the runtime of the precise and ap-
proximate (targeting a 1% maximum error with 95% con-
fidence) executions of Project and Page Popularity. As one
would expect for these applications, the figure shows that the
runtime of the precise program scales linearly with the in-
put size. More importantly, approximating the results short-
ens runtimes significantly, especially for the larger input
sizes. For example, the approximate executions of Project
and Page Popularity for the year are more than 32× and 20×
faster, respectively, while always achieving error bounds
lower than 1%.

6. Related work
Researchers have explored numerous approximation tech-
niques at the language [6, 38] and hardware [39] levels,
for query processing [4, 10, 42], and for distributed sys-

Period Accesses Compress Uncompress #Maps
1 day 499M 5.7 GB 27.0 GB 92

2 days 1.1G 12.4 GB 58.7 GB 201
5 days 2.8G 32.1 GB 151.7 GB 518
1 week 4.0G 46.0 GB 216.9 GB 740

10 days 5.9G 67.5 GB 317.9 GB 1086
15 days 9.0G 103.2 GB 484.9 GB 1661
1 month 19.4G 221.8 GB 1.0 TB 3567

3 months 55.8G 633.1 GB 2.9 TB 10172
6 months 109.2G 1.2 TB 5.7 TB 19947

1 year 234.2G 2.3 TB 12.5 TB 38246

Table 2. Sizes of the Wikipedia access log [46] for different
periods starting on January 1st 2013.

102

103

104

105

10 100 1000

R
un

tim
e

 (
se

co
nd

s)

Log size (in GB)

Page Popularity 1% target error
Page Popularity precise
Project Popularity 1% target error
Project Popularity precise

Figure 13. Performance of Page and Project Popularity for
different log sizes. Both axes are in log scale.

tems [12, 21, 33]. They have also explored techniques for
probabilistic reasoning about approximate programs [7, 9,
23, 28, 34, 40, 47]. We discuss the most closely related
works on approximation in this section.
Approximation mechanisms. Slauson and Wan [43] have
studied map task dropping in Hadoop. Riondato et al. [36]
have used input data sampling with error estimation in a spe-
cific MapReduce application. However, these works have
not considered the two mechanisms together, nor did they
consider a general framework for error estimation in the
presence of both mechanisms. Rinard [35] has also studied
task dropping, albeit in an entirely different approach that
requires previous executions with known output and signifi-
cant pre-computation for estimating errors.

Our proposed sampling/dropping mechanisms are also
related to loop/code perforation techniques in SpeedPress for
sequential code [22, 29–31, 41]. Green [6] similarly provides
a framework to adapt the approximation level based on the
defined quality of service for sequential code. Bornholt et al.
[9] propose uncertain data types to abstract approximations
at the language level (e.g., C#) and estimate errors from
approximate data sources (e.g., GPS). Unlike these systems
for sequential code, ApproxHadoop proposes mechanisms
for distributed MapReduce programs.

Paraprox [37] creates approximate data-parallel kernels
using function memoization and runtime tuning. The execu-
tion is checked a posteriori using an easily checkable quality

metric. In contrast, ApproxHadoop provides statistical error
bounds around the computed approximate results within a
distributed MapReduce framework.
Approximations in query processing. In the domain of
database query processing, Garofalakis et al. [17] use wavelet-
coefficient synopses and Chaudhuri et al. [10] use strati-
fied sampling to build samples to provide bounded errors.
SciBorq [42] also builds samples based on past query re-
sults. BlinkDB [4] uses stratified sampling to produce data
samples with the desired characteristics before the execu-
tion of the queries. In contrast, we focus on the MapReduce
paradigm, and use multi-stage sampling (stratified sampling
is a subset) to compute approximations online without pre-
computation. Online sampling is a powerful tool for MapRe-
duce environments, where large data sets (e.g., logs) are of-
ten processed only a few times (or even just once).
MapReduce and Hadoop. MapReduce Online [12] mod-
ifies Hadoop to avoid the barrier between the Map and
Reduce phases, and outputs intermediate (called “approx-
imate”) results during the execution of the reduce tasks.
However, unlike ApproxHadoop, it does not attempt to com-
pute error bounds. GRASS [5] uses speculation to reduce the
impact of straggler tasks in jobs that need not complete all
their tasks. In contrast, ApproxHadoop drops remaining map
tasks when a target error bound has been achieved or a target
percentage of map tasks has been completed.

7. Conclusions
In this paper, we proposed a general set of mechanisms
for approximation in MapReduce, and demonstrated how
to use existing statistical theories to compute error bounds
(95% confidence intervals) for popular classes of approxi-
mate MapReduce programs. We also implemented and eval-
uated ApproxHadoop, an extension of the Hadoop data-
processing framework that supports our rigorous approxi-
mations. Using extensive experimentation with real systems
and applications, we show that ApproxHadoop is widely ap-
plicable, and that it can significantly reduce execution time
and/or energy consumption when users can tolerate small
amounts of inaccuracy. Based on our experience and re-
sults, we conclude that our framework and system can make
efficient and controlled approximation easily accessible to
MapReduce programmers.

Acknowledgments
We thank A. Verma and his co-authors for the barrier-less
extension to Hadoop [44]. We also thank David Carrera and
the reviewers for comments that helped us improve this
paper. This work was partially supported by NSF grant CSR-
1117368 and the Rutgers Green Computing Initiative.

References
[1] Apache Hadoop. http://hadoop.apache.org.

http://hadoop.apache.org

[2] Apache Mahout. http://mahout.apache.org.

[3] Apache Nutch. http://nutch.apache.org.

[4] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden,
and I. Stoica. BlinkDB: Queries with Bounded Errors and
Bounded Response Times on Very Large Data. In Proceedings
of the European Conference on Computer Systems (EuroSys),
2013.

[5] G. Ananthanarayanan, M. Hung, X. Ren, I. Stoica, A. Wier-
man, and M. Yu. GRASS: Trimming Stragglers in Approxi-
mation Analytics. In Proceedings of the USENIX Symposium
on Networked Systems Design and Implementation (NSDI),
2014.

[6] W. Baek and T. M. Chilimbi. Green: A Framework for
Supporting Energy-Conscious Programming using Controlled
Approximation. In Proceedings of the ACM SIGPLAN Con-
ference on Programming Language Design and Implementa-
tion (PLDI), 2010.

[7] S. Bhat, J. Borgström, A. D. Gordon, and C. Russo. Deriving
Probability Density Functions from Probabilistic Functional
Programs. In Proceedings of the International Conference
on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS), 2013.

[8] S. Blanas, J. M. Patel, V. Ercegovac, J. Rao, E. J. Shekita, and
Y. Tian. A Comparison of Join Algorithms for Log Processing
in MapReduce. In Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data (SIGMOD), 2010.

[9] J. Bornholt, T. Mytkowicz, and K. S. McKinley.
Uncertain<T>: A First-Order Type for Uncertain Data.
In Proceedings of the International Conference on Architec-
tural Support for Programming Languages and Operating
Systems (ASPLOS), 2014.

[10] S. Chaudhuri, G. Das, and V. Narasayya. Optimized Stratified
Sampling for Approximate Query Processing. ACM Transac-
tions on Database Systems (TODS), 32(2), 2007.

[11] S. Coles. An Introduction to Statistical Modeling of Extreme
Values. Springer, 2001.

[12] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, K. Elmele-
egy, and R. Sears. MapReduce Online. In Proceedings of the
USENIX Symposium on Networked Systems Design and Im-
plementation (NSDI), 2010.

[13] J. Dean and S. Ghemawat. MapReduce: Simplified Data Pro-
cessing on Large Clusters. In Proceedings of the Symposium
on Operating Systems Design and Implementation (OSDI),
2004.

[14] A. Doucet, S. Godsill, and C. Andrieu. On Sequential Monte
Carlo Sampling Methods for Bayesian Filtering. Statistics and
Computing, 10(3), 2000.

[15] J. Ekanayake, S. Pallickara, and G. Fox. MapReduce for Data
Intensive Scientific Analyses. In Proceedings of the IEEE
International Conference on e-Science (e-Science), 2008.

[16] Z. Fadika, E. Dede, M. Govindaraju, and L. Ramakrishnan.
Adapting MapReduce for HPC environments. In Proceedings
of the International ACM Symposium on High-Performance
Parallel and Distributed Computing (HPDC), 2011.

[17] M. N. Garofalakis and P. B. Gibbons. Approximate Query
Processing: Taming the TeraBytes. In Proceedings of the
International Conference on Very Large Databases (VLDB),
2001.

[18] I. Goiri, K. Le, J. Guitart, J. Torres, and R. Bianchini. In-
telligent Placement of Datacenters for Internet Services. In
Proceedings of the International Conference on Distributed
Computing Systems (ICDCS), 2011.

[19] I. Goiri, R. Bianchini, S. Nagarakatte, and T. D. Nguyen.
ApproxHadoop: Bringing Approximations to MapReduce
Frameworks. Technical Report DCS-TR-709, Department of
Computer Science, Rutgers University, 2014.

[20] P. J. Haas, J. F. Naughton, S. Seshadri, and L. Stokes.
Sampling-Based Estimation of the Number of Distinct Values
of an Attribute. In Proceedings of the International Confer-
ence on Very Large Databases (VLDB), 1995.

[21] J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online Aggre-
gation. In Proceedings of the ACM SIGMOD International
Conference on Management of Data (SIGMOD), 1997.

[22] H. Hoffmann, S. Sidiroglou, M. Carbin, S. Misailovic,
A. Agarwal, and M. Rinard. Dynamic Knobs for Respon-
sive Power-Aware Computing. In Proceedings of the Interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2011.

[23] O. Kiselyov and C.-C. Shan. Embedded Probabilistic Pro-
gramming. In Proceedings of the IFIP TC 2 Working Confer-
ence on Domain-Specific Languages (DSL), 2009.

[24] J. Lin. Cloud9: A Hadoop Toolkit for Working with Big Data.
http://lintool.github.io/Cloud9.

[25] J. W. Liu, W.-K. Shih, K.-J. Lin, R. Bettati, and J.-Y. Chung.
Imprecise Computations. Proceedings of the IEEE, 82(1),
1994.

[26] S. Liu and W. Q. Meeker. Statistical Methods for Estimating
the Minimum Thickness Along a Pipeline. Technometrics,
2014.

[27] S. Lohr. Sampling: Design and Analysis. Cengage Learning,
2009.

[28] T. Minka, J. Winn, J. Guiver, S. Webster, Y. Zaykov, B. Yan-
gel, A. Spengler, and J. Bronskill. Infer.NET 2.6. Mi-
crosoft Research Cambridge, 2014. http://research.

microsoft.com/infernet.

[29] S. Misailovic, S. Sidiroglou, H. Hoffmann, and M. Rinard.
Quality of Service Profiling. In Proceedings of the ACM/IEEE
International Conference on Software Engineering (ICSE),
2010.

[30] S. Misailovic, D. M. Roy, and M. C. Rinard. Probabilistically
Accurate Program Transformations. In Proceedings of the
International Static Analysis Symposium (SAS), 2011.

[31] S. Misailovic, S. Sidiroglou, H. Hoffmann, M. Carbin,
A. Agarwal, and M. Rinard. Code Perforation: Automat-
ically and Dynamically Trading Accuracy for Performance
and Power, 2014. http://groups.csail.mit.edu/cag/

codeperf/.

[32] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageR-
ank Citation Ranking: Bringing Order to the Web. Technical

http://mahout.apache.org
http://nutch.apache.org
http://lintool.github.io/Cloud9
http://research.microsoft.com/infernet
http://research.microsoft.com/infernet
http://groups.csail.mit.edu/cag/codeperf/
http://groups.csail.mit.edu/cag/codeperf/

report, Stanford InfoLab, 1999.

[33] N. Pansare, V. R. Borkar, C. Jermaine, and T. Condie. Online
Aggregation for Large MapReduce Jobs. Proceedings of the
VLDB Endowment (PVLDB), 4(11), 2011.

[34] A. Pfeffer. A General Importance Sampling Algorithm for
Probabilistic Programs. Technical Report TR-12-07, Harvard
University, 2007.

[35] M. Rinard. Probabilistic Accuracy Bounds for Fault-tolerant
Computations That Discard Tasks. In Proceedings of the
Annual International Conference on Supercomputing (ICS),
2006.

[36] M. Riondato, J. A. DeBrabant, R. Fonseca, and E. Upfal.
PARMA: A Parallel Randomized Algorithm for Approximate
Association Rules Mining in MapReduce. In Proceedings of
the International Conference on Information and Knowledge
Management (CIKM), 2012.

[37] M. Samadi, J. Lee, A. Jamshidi, A. Hormati, and S. Mahlke.
SAGE: Self-Tuning Approximation for Graphics Engines. In
Proceedings of the IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2013.

[38] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam,
L. Ceze, and D. Grossman. EnerJ: Approximate Data Types
for Safe and General Low-Power Computation. In Proceed-
ings of the ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI), 2011.

[39] A. Sampson, J. Nelson, K. Strauss, and L. Ceze. Approx-
imate Storage in Solid-State Memories. In Proceedings of
the IEEE/ACM International Symposium on Microarchitec-
ture (MICRO), 2013.

[40] A. Sampson, P. Panchekha, T. Mytkowicz, K. S. McKinley,
D. Grossman, and L. Ceze. Expressing and Verifying Prob-
abilistic Assertions. In Proceedings of the ACM SIGPLAN

Conference on Programming Language Design and Imple-
mentation (PLDI), 2014.

[41] S. Sidiroglou-Douskos, S. Misailovic, H. Hoffmann, and
M. Rinard. Managing Performance vs. Accuracy Trade-offs
with Loop Perforation. In Proceedings of the Joint Meeting of
the European Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of Software Engi-
neering (ESEC/FSE), 2011.

[42] L. Sidirourgos, M. L. Kersten, and P. A. Boncz. SciBORQ:
Scientific data management with Bounds On Runtime and
Quality. In Proceedings of the Conference on Innovative Data
Systems Research (CIDR), 2011.

[43] J. Slauson and Q. Wan. Approximate Hadoop, 2012. http:

//www.joshslauson.com/pdf/cs736_project.pdf.

[44] A. Verma, N. Zea, B. Cho, I. Gupta, and R. H. Campbell.
Breaking the MapReduce Stage Barrier. In Proceedings of the
IEEE International Conference on Cluster Computing (Clus-
ter), 2010.

[45] Wikipedia. Wikipedia Database, 2014. http://en.

wikipedia.org/wiki/Wikipedia_database.

[46] Wikipedia. Wikimedia Downloads, 2014. http://dumps.

wikimedia.org.
[47] D. Wingate, A. Stuhlmueller, and N. D. Goodman.

Lightweight Implementations of Probabilistic Programming
Languages Via Transformational Compilation. In Proceed-
ings of the International Conference on Artificial Intelligence
and Statistics (AISTATS), 2011.

[48] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, and
I. Stoica. Improving MapReduce Performance in Heteroge-
neous Environments. In Proceedings of the USENIX Sym-
posium on Operating Systems Design and Implementation
(OSDI), 2008.

http://www.joshslauson.com/pdf/cs736_project.pdf
http://www.joshslauson.com/pdf/cs736_project.pdf
http://en.wikipedia.org/wiki/Wikipedia_database
http://en.wikipedia.org/wiki/Wikipedia_database
http://dumps.wikimedia.org
http://dumps.wikimedia.org

	Introduction
	Background
	Approximation with error bounds
	Aggregation
	Extreme values

	ApproxHadoop
	Developing ApproxHadoop programs
	Job submission
	The ApproxHadoop framework
	Estimating and bounding errors for aggregation
	Estimating and bounding errors for extreme values

	Evaluation
	Methodology
	Results for user-specified dropping/sampling ratios
	Results for user-specified target error bounds
	Sensitivity analysis

	Related work
	Conclusions

