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ABSTRACT
Queries issued to a search engine are often under-specified or am-
biguous. The user’s search context or background may provide
information that disambiguates their information need in order to
automatically predict and issue a more effective query. The disam-
biguation can take place at different stages of the retrieval process.
For instance, contextual query suggestions may be computed and
recommended to users on the result page when appropriate, an ap-
proach that does not require modifying the original query’s results.
Alternatively, the search engine can attempt to provide efficient ac-
cess to new relevant documents by injecting these documents di-
rectly into search results based on the user’s context.

In this paper, we explore these complementary approaches and
how they might be combined. We first develop a general frame-
work for mining context-sensitive query reformulations for query
suggestion. We evaluate our context-sensitive suggestions against
a state-of-the-art baseline using a click-based metric. The resulting
query suggestions generated by our approach outperform the base-
line by 13% overall and by 16% on an ambiguous query subset.

While the query suggestions generated by our approach have
higher quality than the existing baselines, we demonstrate that us-
ing them naïvely for injecting new documents into search results
can lead to inferior rankings. To remedy this issue, we develop
a classifier that decides when to inject new search results using
features based on suggestion quality and user context. We show
that our context-sensitive result fusion approach (Corfu) improves
retrieval quality for ambiguous queries by up to 2.92%. Our ap-
proaches can efficiently scale to massive search logs, enabling a
data-driven strategy that benefits from observing how users issue
and reformulate queries in different contexts.

1. INTRODUCTION
An ambiguous query may be issued to a search engine when a

user has an inexplicit information need or when the user enters only
a few search terms in lieu of a longer, more complex query. A com-
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Table 1: Example contextual query suggestions
Session Context User Query Contextual Suggestion

Sports eagles philadelphia eagles
Music eagles eagles band

Physics pascal pascal unit
Computer Science pascal pascal programming

Video Games forge minecraft forge
Crafts forge metal forge

prehensive study of two search logs found that between 7% and
23% of queries could be considered ambiguous, depending on how
ambiguity is defined, and that such queries are typically short, aver-
aging 1.02 to 1.23 terms [31]. In such cases, user context may help
disambiguate the query and personalize search results [23]. For in-
stance, a user searching for [ eagles ] with a recent history of
sports-related queries may prefer the ‘Philadelphia Eagles’ Ameri-
can football team website over that of the rock band ‘The Eagles’.

In this paper, we build on existing query disambiguation work
by introducing user context. User context can encompass multiple
aspects such as age, gender, topic, or location and can be short-
term [9] or long-term [23]. In this work, we use categories from
the Open Directory Project (ODP)1 to represent the short-term top-
ical context of a user’s information need. In particular, by combin-
ing click information with categorized URLs retrieved for previous
queries in the session, we can interpret the most probable category
as the user’s short-term session context [4]. We then use this in-
ferred context together with observed query reformulations across
query log sessions to mine contextual reformulations for query sug-
gestion. Some examples of session context, original query, and the
top ranked contextual suggestion are shown in Table 1.

We generate contextual query suggestion candidates using a sim-
ilar utility-function based methodology to that employed by Oz-
ertem et al. [27]. In this framework, candidates are found by ex-
tracting consecutive pairs of queries from sessions in search logs.
These are then ranked according to the difference in utility value,
where utility is a measure of the query’s usefulness calculated us-
ing clicked documents. We also find that adding contextual features
leads to significant gains in query suggestion quality particularly
for ambiguous queries.

Moreover, we explore disambiguation approaches that go be-
yond simply offering contextual suggestions: we aim to improve
the user’s efficiency in a session by eliminating the need for a sep-
arate query reformulation altogether. Instead, we introduce meth-
ods for predicting when and how it is appropriate to incorporate

1http://www.dmoz.org/
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context-driven results directly into the initial ranking. This goal is
similar in motivation to previous work on whole-session relevance
that merged in results from a user’s predicted future queries for a
task [28]. Toward this goal, we first learn to predict which queries
are likely to benefit from this blending; then, given such a query,
we use a data fusion technique [3, 32] to incorporate relevant results
from the top ranking contextual suggestion with those of the origi-
nal query. Finally, we show that this fusion approach significantly
improves search results for ambiguous queries.

In particular, the problem of differentiating when a candidate
contextual query reformulation is best left as a suggestion, versus
when it is a good candidate for data fusion, is a key challenge un-
addressed by previous work. Good suggestion candidates may not
necessarily lead to a good result fusion. For example, the query
suggestion [ kmart ] for the original query [ target ] is rel-
evant and may help the user explore, but blending the results of
the former into the Search Engine Results Page (SERP) of the lat-
ter would be confusing, as the results of the latter are not directly
relevant to the original query. To mitigate this, we trained a novel
classifier using session, context and query-based features to iden-
tify instances in which fusing results is beneficial over simply sug-
gesting the query. Our experiments demonstrate that incorporating
this fusion classifier by selectively choosing when to blend yields
significant improvements in effectiveness.

In sum, the contributions of this work are as follows:

• The addition of contextual categorization (Section 2) to utility-
based query suggestion generation, resulting in improved con-
textual query suggestions (Section 3).

• Investigating and demonstrating the need for selective blend-
ing by analyzing the failure cases of blindly fusing candidate
suggestions with the original query in all cases (Section 4).

• The definition and evaluation of a fusion classifier that pre-
dicts whether to blend search results or suggest queries for
contextual disambiguation (Section 5).

2. CONTEXTUAL QUERY
DISAMBIGUATION

The aim of contextual query disambiguation is to use context
to improve the search experience of a user who has issued an am-
biguous query. Query suggestions provide the user with easily ac-
cessible reformulation options if they decide to issue a new query.
As such, the quality and ranking of suggestions is important. Sug-
gestions are used by users not only to disambiguate their original
queries, but also in cases where the user wishes to broaden or nar-
row the scope of their initial query or otherwise adjust their search
intent. Given this variability in usage, along with a relatively low
engagement rate (< 5% on the Bing search engine), an attractive
alternative to offering query suggestions as a separate interaction
step is to directly blend their results with those for the initial query.
This blending approach has at least two advantages. First, because
blending can incorporate search results from multiple suggestions,
the pool of potentially relevant documents is increased. Second, di-
rectly satisfying the user’s query with a blended result decreases the
total time required for a user to satisfy their information need. This
not only saves time, but also potential frustration and abandonment.

Given a user query q, we seek a suitable contextual reformulation
candidate qc for suggestion or blending, where the context o ∈ Θ
belongs to a finite, discrete set of contextual labels (such as topic,
gender or location). Candidates are found by mining sessions in
query logs for consecutive pairs of queries qa, qb. Sessions are de-
fined as a series of queries issued by a single user over a period

Figure 1: Session context (o∗) example. The queries and clicks
observed throughout a session are used to update the context
model (Θ). Suppose that the user had already clicked on a
document related to Science/Biology in the previous query (q0).
Based on the clicks recorded on q1, the context model is up-
dated to c1 which will become available at the time q2 is sub-
mitted. Similarly, the context model is updated for the next
query based on the clicks recorded on q2.

of time, where we adopt the widely-used practice of demarcating
session boundaries by 30 minutes of user inactivity [41].

We use the ODP taxonomy as our classification labels O as they
are high quality, discrete and general enough for use on search log
data. Nonetheless, it is worth noting that our technique is applicable
to any classification space where meaningful labels can be attached
to queries. In this study, we limit ourselves to the top two levels of
the ODP hierarchy, giving us 17 topics (e.g. Arts, Sport) and 185
subtopics (e.g. Arts/Music, Sports/Baseball). This set of categories
gives us enough granularity to distinguish the different contexts in
which reformulations typically occur, while being broad enough to
represent the topical meaning of most content, and general enough
so that repeated similar behavior is pooled into statistically robust
sets of observations.

To create the context model in a session, we directly implement
the query classification technique used by Bennett et al. [4]. Their
method uses a conventional topic classifier that assigns labels to
individual URLs based on a given taxonomy. The classifier is ap-
plied to the clicked URLs from search results in a search log, where
click information, dwell time and a number of query-URL features
are combined to calculate a probability distribution over the 202
ODP categories described above. The session context model is then
formed at each point by aggregating the ODP probability distribu-
tions of documents clicked for previous queries in the session.

We define session context (o∗) as the ODP category with highest
probability (confidence) in this context model (Θ). Session con-
text takes into account all URLs and interactions of the preceding
queries meaning that it becomes more accurate and representative
of the user’s search intent as the session progresses.

Figure 1 gives an example of how session context is determined:
suppose that the user has already clicked on a document related to
Science/Biology in the previous query of the session. Once the user
clicks on the third document for q1 the context model is updated to
also capture Sports/American_Football and in this case gives simi-
lar weights to the two subtopics (the weights assigned to the other
200 categories are negligible). The observed click on next query
(q2) increases the confidence score for Sports/American_Football
subtopic in Θ for the future queries.



A drawback to using session context is that we cannot classify
(and thus disambiguate) a user’s query if it is the first in a session:
in this case we simply return its usual results without modification.
One potential way to alleviate this would be to classify queries in
the user’s longer-term search history in order to find personalization
labels. A balance of short and long-term labels could be used to
provide context from the start of a session, a topic explored more
completely by Bennett et al. [5]. We leave this long-term scenario
for future work.

3. QUERY SUGGESTION UTILITY
In this section we focus on query suggestion as a method for

contextual query disambiguation. Inspired by previous work [27]
we introduce a new utility function for measuring the effective-
ness of query suggestion candidates for a given query. We then
demonstrate how this function can be used to mine contextual (and
non-contextual) query suggestion candidates from past search logs.

It is often the case that search logs are used to find and score
query suggestions. The query-flow graph is one such example;
its nodes are queries, its edges are query reformulations and their
weights are the frequency of occurrence [7]. Variants include the
click-bipartite graph which links queries with clicked URLs, and in
both cases suggestion candidates can be found using random walks,
clustering and other graph-based techniques [1, 11].

A simple approach for extracting query suggestions from logs is
to mine query co-occurrences in search sessions [20]. For a given
query qa, suggestion candidates can then be ranked according to
their maximum likelihood computed as

P (qb|qa) =
P (qb, qa)

P (qa)
(1)

where qb is a query reformulation and P (qb, qa) represents its co-
occurrence probability with qa based on past searches. We can ex-
tend this to include context by also conditioning on the contextual
category, giving us

P (qb|qa, o) =
P (qb, qa, o

∗)

P (qa, o∗)
. (2)

Here the session context (discussed earlier in Section 2) is denoted
by o∗. At run-time the query and its session context are matched
against this probability distribution for ranking candidates.

3.1 Reformulation Utility
Ranking query suggestions by maximum likelihood encounters

two main issues. First, a suggestion candidate could be unrelated
and biased towards popular navigational queries (topic drift). Sec-
ond, the results for a suggestion may be low quality. Ozertem et
al. [27] addressed the problem of reformulation quality by defining
a relative utility function based on the click differences found in
both the original query (qa) and its reformulation (qb). Suppose qa
and qb have co-occurred consecutively2 in a session. Using clicks
from their impressions, they compute the utility of qb as a query
suggestion candidate for qa using

∆ =
∑

d∈C(qb)

(
1

log r(qb, d)
− 1

log r(qa, d)

)
. (3)

2The authors showed that relaxing this constraint does not improve
the results. Ozertem et al. also described an extended version of
their technique enhanced with task boundary detection and super-
vised utility inference. Both of these extensions are orthogonal to
our contributions and neither was reported to substantially improve
the quality of the top suggestion which is what we are mostly con-
cerned with in this work.

Figure 2: Example illustrating the utility function given by
Equation 4. In this case, qa = q2 and its interactions are given in
blue, whilst the candidate’s qc are given in green. Underlined
documents represent SAT clicks.

Here C(qb) represents the clicked documents on the results re-
turned for qb in that session and the r(q, d) function returns the
position of document d in the results returned for query q. A can-
didate is found useful whenever it returns a clicked document that
either did not exist in the ranked results for the original query, or
did exist but at a relatively lower position. The authors then ex-
tended Equation 1 and ranked suggestions based on the probability
P (qb|qa,∆ > 0).

In this work, we use their method as our baseline because (1) it
is state-of-the-art and has been reported to significantly outperform
other alternatives, (2) it applies a retrieval-based utility function
which fits well with fusion scenarios that we discuss later in this
work, and (3) we use a similar retrieval-based utility function that
relies on clicks for computing suggestion utilities. However, we
define a different relative utility function that unlike their approach
does not ignore the clicks recorded on the original query. To allevi-
ate data sparsity issues that arise when taking into account context
we also use clicks that occur later in the session. We follow the
common practice of considering clicks with longer dwell time than
30 seconds as satisfied clicks [4, 28]. Fox et al. [16] showed such
clicked documents are highly likely to be relevant. In this paper,
clicks always mean SAT clicks.

Our utility function measures the quality of queries and sugges-
tion candidates based on the click-statistics of their results in the
session and applies two reciprocal rank discounts, we thus refer to
it as cumulative reciprocal rank (CRR). Suppose that the user has is-
sued a query qa, the Iath query in the search session. Let us denote
Dc as the documents in the ranking for query suggestion candidate
qc. We define the CRR of qc with respect to qa as

CRRa(qc) =
∑
d∈Dc

1

r(qc, d)︸ ︷︷ ︸
Result Reciprocal Rank

× 1

(i(d, Ia)− Ia + 1)︸ ︷︷ ︸
Impression Reciprocal Rank

(4)

where r(q, d) is as described above and Ia is the impression posi-
tion of qa in the session. The function i(d, Ia) is the position in the
session of the first query including or after qa where d was clicked.
If no such click exists in the session then i is set to +∞.

In summary, the utility of a candidate query suggestion is a com-
bined function of the relevance of a document (measured by whether
it receives a click in the session at query qa or after) and the position
of the document in the ranking qc (weighted by reciprocal rank).



We follow Sakai and Dou [30] and degrade the pseudo-relevance
labels assigned to these documents by applying an impression re-
ciprocal rank discount for clicks that occur later in the session, em-
phasizing the current information need. The relative utility between
qa and qc is then simply

∆CRR(qc, qa) = CRRa(qc)− CRRa(qa). (5)

This function is illustrated in Figure 2, where q2 is the user’s current
query (so Ia = 2 in this case) in the session. The session context
model at this point is formed based on the documents clicked for
the previous queries in the session (q1). The next two queries in
the session (q3, and q4) are obviously unobserved at the time q2 is
submitted, but we use information about their clicked documents to
generate pseudo-relevance labels in order to measure the utility of
suggestion candidates. In this particular scenario, the underscore
indicates that d2 is the only document we have observed a satisfied
click on for q2. There are three more documents clicked later in this
session (d3, d4 and d6). While these documents can be regarded
as pseudo-relevant under their respective queries (q3 and q4) their
association with q2 is weaker due to the potential topic drift.

In the example above, applying the impression discount allows
us to consider d3 as a relevant document for q2 – albeit with dis-
counted weight – although it has not been clicked under q2 di-
rectly. We perform the same procedure for calculating CRR of
the current query (q2) and all suggestion candidates such as qc.
We compare suggestion candidates in terms of how they perform
against the original query with respect to their ∆CRR (in this case
∆ = +0.39)3. Note that in this example, even though the user
query ranks clicked document d2 in the same position as qc, qc
ranks d6 (which is clicked in the next impression) very highly,
which contributes to its improved score. By leveraging and weight-
ing all of the clicks that occur in the remainder of the session we
gain a broader view of the documents that are relevant to the query
and can reward those candidates that find relevant documents that
weren’t returned for the original query (which may often lack clicks
due to the query being ambiguous).

3.2 Ranking suggestions
For each given query (qa, qc) pair we compute the score as

P (qc|qa,∆CRR(qc, qa) > 0)

The probabilities are computed over historical logs and at run-time
are used to rank suggestions accordingly. The contextual extension
of our model considers the session category (o∗) of each historical
impression when computing these probabilities:

P (qc|qa, o∗,∆CRR(qc, qa) > 0)

At run-time, we match both query and its context against this prob-
ability distribution to rank candidates. We denote our approach
CosQus (short for Context Sensitive Query Suggestion). We refer
to the context-free version of our method that only computes prob-
abilities over query-candidate pairs as CosQus(P ), and to the con-
textual version that computes probabilities over query-category-
candidate triples as CosQus(T ). Note that we are only interested
in the top-ranked suggestion in our experiments. We also propose
a hybrid approach CosQus(H) that computes both of these proba-
bilities and at run-time selects the candidate with the highest prob-
ability across the two.

3The top-ranked results for each candidate can be obtained by is-
suing that query, or from historical logs. In our work, we use the
most recent SERP logged for a candidate in our logs.

3.3 Data
Our experiments are conducted over the query logs of the Bing

search engine. We use log data for mining query suggestions, com-
puting their utility values, evaluating the performance of different
query suggestion approaches and later in the paper for training su-
pervised result fusion classifiers. Therefore, it is important to care-
fully sample the logs at each stage to avoid the risk of leakage and
overfitting. Figure 3 depicts the time periods of the search logs used
in our work. For the query suggestion experiments in this part of
the paper, we are only using the first three segments, and the purple
and green boxes can be ignored.

Candidate generation. To generate the potential query sug-
gestions for a given query, we mine all consecutive query refor-
mulations submitted by Bing users between December 1st, 2012
and December 31st, 2013. Note that all our experiments are per-
formed on the query logs of the English-US market. We reduced
the space of query-candidates to a subset of up to 50 common refor-
mulations by only including the top contextual and non-contextual
suggestions based on Equations 1 and 2. For this, we selected the
top 25 most probable reformulations without any context for the
query (Equation 1). We also included the top 25 contextual refor-
mulations for each query (Equation 2). It is worth noting that the
same reformulation could appear for multiple contexts. Doing this
allowed us to generate candidates at different topic granularities,
capture instances where a non-contextual suggestion was ideal, and
allowed us to try out different candidate selection strategies in our
experiments. This pool of up to 50 unique candidates for a query
effectively provides us with a framework for comparing different
query suggestion rankings on the same dataset.

Utility computation. The blue box in Figure 3 specifies the
period over which candidate utilities are computed for CosQus and
our experimental baselines. We sampled 11.4 million search ses-
sions from Bing logs between Feb. 1st, 2014 and Feb. 28th, 2014.
In total there are roughly 23.5 million impressions in this set. We
use the logs in this period to compute the utility values (e.g.
P (qc|qa,∆CRR(qc, qa) > 0) for CosQus(P )) over all reformula-
tions that were extracted in the previous step.

Query suggestion evaluation. To compare the effectiveness
of query suggestion techniques we sample another set of 5.7 mil-
lion sessions (11.8 million impressions) from the query logs be-
tween March 1st, 2014 – March 14th, 2014. For each impression
during this period we use the SAT-clicks in the session as previ-
ously described (Section 2) to assign pseudo-relevance labels to
documents. These labels are later used to compute the CRR values
for the query and all its candidates.

Ambiguous queries. We also targeted a subset of Wikipedia-
derived ambiguous queries as ideal candidates for contextual query
disambiguation. We first consider the title of all Wikipedia disam-
biguation pages4 as ambiguous queries. We then used the Wikilinks
dataset5 containing millions of links and anchor text to Wikipedia
articles extracted from webpages. We found instances where ei-
ther different anchor text was used to link to the same Wikipedia
article, or where the same anchor text was used to link to differ-
ent Wikipedia articles. Combining all three approaches gave us a
set of 1,319,309 ambiguous queries, of which around 1/3 matched
queries in our candidate generation period. On our evaluation dataset,

4en.wikipedia.org/wiki/Wikipedia:Disambiguation
5code.google.com/p/wiki-link/

en.wikipedia.org/wiki/Wikipedia:Disambiguation
code.google.com/p/wiki-link/


Table 2: The effectiveness of different query suggestion ap-
proaches according to cumulative reciprocal rank (CRR) on
two experimental query sets (“Ambiguous” and “All”). The
suggestion utility approach of [27] is used as a baseline. For ref-
erence we also provide the average CRR values for the original
query CRRa(qa) on the two datasets. All pairwise differences
are statistically significant according to the t-test (p < 0.01).

Method Queries CRRa(qa) CRRa(qc) (% N/H)
Baseline [27]

All 0.530

0.336
Baseline+ 0.318 (H 5.4%)
CosQus(P ) 0.313 (H 6.8%)
CosQus(T ) 0.358 (N 6.5%)
CosQus(H) 0.378 (N13.0%)
Baseline [27]

Ambiguous 0.458

0.259
Baseline+ 0.245 (H 5.4%)
CosQus(P ) 0.244 (H 5.8%)
CosQus(T ) 0.278 (N 7.3%)
CosQus(H) 0.300 (N16.0%)

we report the results on the subset of impressions that match these
queries separately, as we find these queries to be most suitable for
disambiguation by definition.

3.4 Experimental results
As stated earlier, the first contribution in our work is a new ap-

proach for ranking query suggestions. We compare our approach
with the non-contextual utility function from Ozertem et al. [27] as
our baseline. We also tested against a variant baseline (Baseline+)
which incorporated the propagation of session clicks in a similar
way to our CRR function. This was to make sure our comparison
was fair and that both techniques had access to the same informa-
tion for candidate ranking.

Our results in Table 2 show that the use of context (CosQus(T ))
is clearly beneficial in helping to choose query suggestions, out-
performing the three non-contextual methods. We can also observe
significant gains by using the hybrid approach (CosQus(H)) and
switching between contextual and non-contextual candidates based
on their probabilities. Some additional conclusions we can draw
from our results: (1) Using clicks from later in the session does not
improve performance on non-contextual suggestions (Baseline+
and CosQus(P )), possibly because there is greater topic drift when
not conditioning on context; (2) The biggest gains were seen with
ambiguous queries, reinforcing our aim of contextual disambigua-
tion, but we still made significant gains on all queries; and (3) Over-
all the CRR values were lower for ambiguous queries, most likely
due to there being less high ranking clicks to learn from. Of note
is the fact that results from the query suggestions were generally
poorer than the original query. This will factor into our data fusion
experiments and is discussed further in the next section.

4. DATA FUSION
While improving contextual query suggestions significantly is

helpful, the level of user engagement with such suggestions is typ-
ically low. Therefore, we seek a way to translate these gains in
suggestion quality to direct gains in result relevance and/or a reduc-
tion in user effort searching. In particular, users have been found
to be more likely to click on suggestions when their query is rare
or a single term, after they have clicked on several URLs, or when
the suggestions themselves are unambiguous or a correction of the
original query [21]. Instead of suggesting queries, we can directly

perform contextual disambiguation by altering the search results of
the user’s query using data fusion.

In data fusion, we blend the search results from multiple rank-
ings into one list. In our setting, these rankings result from multi-
ple queries. This can range from injecting a single result into the
original ranking to completely replacing the original ranking. The
benefits are that we can find relevant documents from a number
of sources and combine them into one list, but it is also possible
to remove relevant documents in the process, so results blending
must be done carefully. Search rankings can come from a num-
ber of sources. For instance, in federated search the same query
is issued on multiple search engines and the results merged using
a utility function [35]. LambdaMerge [33] uses a two-layer neu-
ral network to learn a ranking function for merging results lists for
query reformulations based on query, document and reformulation
features. Their focus is to optimize over a retrieval quality met-
ric to produce effective merged lists whereas ours is on predicting
when contextual blending is going to be effective; thus we adopt a
simpler merging technique.

4.1 Contextual CombSUM
Our data fusion for contextual disambiguation method involves

blending the results returned for a query with those returned for a
related query suggestion. Running many queries in parallel is pro-
hibitively costly in practice. Hence, we restrict ourselves to running
only one additional suggestion candidate per query, and use the top
candidate from CosQus(H) given its superior performance based
on the results reported in the previous section.

CombSUM is a simple merging technique that sums normalized
URL rank scores across queries, producing a new ranking in de-
creasing order of CombSUM scores [32]. The result is that highly
ranked URLs which appear in multiple lists are more likely to ap-
pear in the merged list. For a given qa, a query suggestion qc,
and a document d selected from one of their respective results, the
CombSUM scores are computed as

CombSUM(d) =
1 + ε

r(qa, d)
+

1

r(qc, d)
. (6)

The reciprocal rank takes the place of the rank score and ε is in-
troduced to give a priority to the URLs that appear in the original
ranking. We set a low weight for ε (0.01) primarily to serve as a tie-
breaking mechanism in favor of the original ranking. After ranking
the merged list by CombSUM, we keep the same number of results
as the original ranking.

4.2 Naïve Fusion
We applied CombSUM data fusion to the rankings of every user

query and CosQus(H) contextual query suggestion in our dataset
(over the memorization period). Overall, we found the performance
of these blended lists to be inferior to that of the original query
with no blending. On average the CRR value dropped by about 7%
on both datasets (“Ambiguous”, and “All”). This is expected as
we reported earlier, the CRR values for top query suggestions are
substantially worse than the original queries (see Table 2); conse-
quently the blended list will suffer.

To investigate whether the fusion between the results of a query
and its suggestion candidate can improve search results we mea-
sured ∆CRR(qc, qa), and ∆CRR(f, qa), where f signifies the Comb-
SUM fusion ranking between query qa and candidate qc. We plot-
ted ∆CRR for every suggestion and blended ranking in our scatter-
plot in Figure 4. Here, we observe a clear trend that shows that sug-
gestions with good rankings (x-axis) lead to better blended rank-
ings (y-axis), and bad suggestions hurt blending performance. There



Figure 3: The timeline for the logs used in our feature generation and evaluation pipelines. Historical frequency features are com-
puted between December 2012 and December 2013 (τh). Query suggestion utilities are computed based on the logs sampled in
February 2014. Query suggestion techniques are evaluated against the logs sampled between March 1st, and March 14th, 2014. The
same period is used for memorizing the effectiveness of blended result lists that are then used in our fusion baselines and as classi-
fication features (τv). The logs between March 15th, March 28th, 2014 are used for training (cross-validation) Corfu. The fusion
models are compared based on their performance on our test data (first two weeks of April 2014). The red line shows an example
query in our training period sampled from a session (τs) (represented by the shaded area). The data from the session before the
query are used for computing the contextual session features, and the clicks observed for the query and later in the session are used
for generating the pseudo-relevance labels in CRR.

are also more candidates with poor rankings than those with good
(observable from histograms along the upper and right sides), which
supports our finding in Table 2 that suggestion rankings on average
did not perform as well as the original ranking.

The conclusions that can be drawn from this experiment are that
the rankings for query suggestions can vary in quality with regard
to the original query. In many cases (such as the case with our
[ kmart ] example), a query suggestion may suffice as a form of
contextual disambiguation and data fusion should not be applied
naïvely across all such queries. The results are consistent with pre-
vious work [33] in suggesting that a more sophisticated data fusion
technique may not necessarily lead to improvements due to low
candidate quality.

5. FUSION CLASSIFIER
Based on the above findings, we developed a classifier to iden-

tify when a query suggestion’s results should be fused with those
of the original query. As we did in the previous section, we find
candidate suggestions using CosQus(H). If our classifier indicates
that it is better to fuse, we use CombSUM to merge the results of
the suggestion with the original query: otherwise, we keep the orig-
inal ranking We refer to our approach as Contextual Result Fusion
(Corfu).

To generate training data for our classifier, we sampled 6.2 mil-
lion sessions (13.2 million impressions) from Bing search logs be-
tween March 15th, 2014 and March 28th, 2014. This period is
distinguished in a purple box in Figure 3. For each of these im-
pressions we computed the ∆CRR value between the query and the
top-ranked candidate suggested by CosQus(H). For training the
classifier, instances with ∆ > 0 values are considered as positive
examples, and those with ∆ < 0 are considered as negative ex-
amples. We trained both logistic regression and gradient boosted
decision-tree models for classification (GBDT) [17]. Since GBDT
consistently outperformed logistic regression, we focus here on the
GBDT results only. We did a parameter sweep over the number
of trees {20, 100, 500}, number of leaves {2, 4, 8, · · · , 128}, min-
imum number of instances per leaf {1, 10, 50}, and learning rate
{0.02, 0.05, 0.1, 0.4} and picked the best model by 5-fold cross
validation. We evaluate the performance of Corfu classifiers on
test data comprising another mutually exclusive set of logs. Our
test data is comprised of 13.7 million impressions sampled from

6.4 million Bing search log sessions between April 1st, 2014 and
April 14th, 2014 (green box in Figure 3). We discard all impres-
sions with zero gain or loss from our test data, leaving 2.2 million
impressions, on which we report the final numbers.

5.1 Features
We trained our classifier using a range of query, context and ses-

sion features: the full list is given in Table 3. Many of the features
are self-explanatory and we give further insight into our choices be-
low. Different subsets of the features were collected from different
time periods in the Bing search logs owing to the different phases
of candidate generation, utility scoring, training and validation. A
breakdown of the timeline of the log, including when features were
extracted, is given in Figure 3 and also discussed below.

Memorization. The memorization features are computed over
the candidate utility computation period τv (white box in Figure 3).
We averaged and recorded the blended ∆CRRµ(f, qa) scores for
each query pair (qa, qc) and contextual triple (qa, qc, o) (the values
shown in Figure 4). From this we were able to create a white-list
of queries where we found positive ∆CRRµ. We use these white-
lists as static fusion baselines against our Corfu classifier and re-
spectively refer to them as Memorized(P) and Memorized(T). The
experimental results summarized later in this section confirm that
our classifier generalizes beyond what simple white-listing attains.

Session and context. Our session features are a mix of lexical
and context-based attributes obtained from sessions τs containing
qa during the training and validation period (an example segment
is given by the shaded area within the purple box in Figure 3). The
lexical features measure the similarity of qa and qc with the queries
preceding qa in the session, an indicator of whether topic drift is
occurring in the session. The context features revolve around the
context model (Θ) at query time and the top category in this model
(o∗) which represents the session context.

Historical. We derived our historical features over the candidate
generation period τh captured over 13 months of query logs. These
statistics capture the long-term frequency of qa and qc indepen-
dently and together along with the typical overlap of their rankings.



Figure 4: Scatterplot of the gain in CRR between the original
query ranking and its suggestion against the gains between the
original and the blended ranking.

Cross source. We also recorded the typical context model for
qc over τh and compared its similarity to that of Θ in τs, a measure
of the topic alignment of qc with qa.

Next we show how a classifier trained based on these features
can effectively decide when to blend the search results of a query
with those returned for a related query suggestion.

5.2 Evaluation
Our evaluation results for Corfu and the Memorized variants are

given in Table 4. We define wins and losses only on cases where
fusion improves or hurts performance. That is, the correct cases of
backing off to the original ranking do not contribute to the wins.
Similarly, missing out on good fusion candidates does not count
as a loss.6 Using Corfu we were able to make significant gains
over the original ranking, clearly alleviating the problems caused
by naïvely using fusion on all query candidates. Our gains also ap-
ply across both ambiguous and general queries, although consistent
with our previous experiments they are higher on the former set.
This confirms our initial hypothesis that ambiguous queries should
benefit more from contextual disambiguation. Simply memorizing
good blendings was shown to not be an effective alternative. mem-
orization generally leads to negative changes in all cases except a
very slight gain in the case of context-independent memorization
for ambiguous queries.

It is worth noting that the numbers in Table 4 are averaged over
all impressions in our evaluation set. However, Corfu triggers fu-
sion only in 5.68% of all impressions, and 9.52% over the ambigu-
ous subset. This means that in a great majority of the cases, Corfu
does back off to the ranking of the original query. If we average
∆CRR only over impressions that Corfu recommends for fusion,
6We ignore the costs associated with running an extra query here.
In practice, zero gain might be considered as a slight loss.

Table 3: The features used for training the contextual blending
classifier. Here, s is the search session containing the query qa;
Qa represents all queries that appear in the session up until
impression Ia; Θ(s, a) denotes the context model of s before
receiving qa which consists of pairs of ODP categories o and
their associated confidence value p(o). The category with the
highest confidence value in Θ is distinguished by o∗, and the
last query inQa is denoted by ql.

Name Description
Memorization (τv)
∆CRRµ(f, qa) Average fusion utility of (qa, qc).
∆CRRµ(f, qa|o∗) Average fusion utility of (qa, qc, o∗).
Session and Context (τs)
Ia Position of query qa in the session.
pµ(o) Average category confidence values in Θ.
p(o∗) Confidence of top category in Θ.
H(Θ) Entropy of category confidence values in Θ.
Sim(qa, ql) Lexical similarity between qa and ql.
Sim(qc, ql) Lexical similarity between qc and ql.
Simµ(qa,Qa) Avg. text similarity of qa andQa queries.
Simµ(qc,Qa) Avg. text similarity of qc andQa queries.
Simmax(qa,Qa) Max. text similarity of qa andQa queries.
Simmax(qc,Qa) Max. text similarity of qc andQa queries.
I(qa ∈ Qa) Has qa appeared previously inQa?
I(qc ∈ Qa) Has qc appeared previously inQa?
I(c∗, L1) Is c∗ a 1st-level ODP category?
I(c∗, L2) Is c∗ a 2nd-level ODP category?
I(qa == ql) Is qa the same as ql?
Historical (τh)
F (qa) Historical query frequency for qa.
F (qc) Historical query frequency for qc.
Ω(qa, qc, 1) No. common docs in top-1 of qa and qc.
Ω(qa, qc, 5) No. common docs in top-5 of qa and qc.
Ω(qa, qc, 10) No. common docs in top-10 of qa and qc.
F (qa, qc) Number of times qa is followed by qc.
δF (qa, qc) F (qa)− F (qc).
ρF (qa, qc) F (qa)/F (qc).
Cross source (τs,h)
cos(Θ,Θh(qc)) Cosine similarity between Θ and Θh(qc)

we get a better picture of f-segment (fusion-segment) gains. On the
Ambiguous queries dataset, Corfu achieves ∆CRR = 0.141, im-
proving over the results returned for the original query by 30.72%.
Similarly, the f-segment ∆CRR on the All-queries dataset is 0.126
representing a 23.87% improvement over the no-fusion baseline.

Our results indicate that the causes of query ambiguity and fu-
sion effectiveness are complex and it is not enough to simply mem-
orize which contextual candidates work and which do not. Ranking
the features from Corfu over ambiguous queries gives us insight
into which are important when learning when to perform data fu-
sion (Table 5). The ranking is based on the normalized reduction in
residual squared error and the weights are normalized with respect
to the top feature. The strongest feature is the Memorized utility
score for query pairs, which is not surprising given the positive re-
sults for Memorized(P) on ambiguous queries. This demonstrates
that Corfu is able to build on its success with the introduction of
the other features. Of note is the fact that 3 of the top 5 features re-
late to the distribution of category confidence scores. The success
of Corfu is strongly tied to the quality of the context model and
a clear sign that context plays a part in determining whether data
fusion will be successful during query disambiguation. Finally, the
2nd highest ranked feature is the frequency of qc in τh, potentially
a sign of confidence in qc as a fusion candidate.



Table 4: The performance of different fusion methods on the
testing dataset. The numerical columns respectively represent
number of wins (#W), number of losses (#L), accuracy (Acc.)
and ∆CRR. All numbers are computed with respect to the re-
sults of the original query (no fusion). All differences are sta-
tistically significant according to the paired t-test (p < 0.01).
For reference, the CRR of a naïve system that always blends is
about 7% worse than the no fusion baseline on both testbeds.

Method #W #L Acc. ∆CRR (% N/H)
All queries
Memorized(P) 128K 144K 0.776 -0.007 (H1.32%)
Memorized(T) 154K 199K 0.762 -0.021 (H3.96%)
Corfu 50K 32K 0.803 0.007 (N1.35%)
Ambiguous queries
Memorized(P) 55K 53K 0.778 0.001 (N0.21%)
Memorized(T) 69K 76K 0.768 -0.009 (H1.96%)
Corfu 50K 26K 0.804 0.034 (N2.92%)

Table 5: The top five most important features according to the
Corfu model trained on Ambiguous queries. Similar trends can
be found for the other dataset (not presented here). All fea-
ture weights are normalized with respect to the feature with
the highest weight.

Feature Weight Description
∆CRRµ(f, qa) 1.000 Memorized fusion utility of (qa, qc).
F (qc) 0.572 Historical frequency of the candidate.
pµ(o) 0.433 Mean of confidence values in Θ.
H(Θ) 0.285 Entropy of confidence values in Θ.
p(o∗) 0.200 Confidence of the top category in Θ.

Beyond CRR. The results presented so far confirm the effective-
ness of Corfu in deciding when to apply contextual fusion, and
demonstrate the improvements in retrieval quality as measured by
CRR. However, evaluation metrics do have their shortcomings [29].
Given that our models are optimized for CRR, it would be reassur-
ing to re-evaluate our results using alternative metrics. For this
purpose, we define two metrics based on the first7 and the last sat-
isfied clicks in the session. We refer to the document that receives
the last satisfied click in the session as dL. Likewise, the document
that receives the first satisfied click is denoted by dF . Our first met-
ric (RRL) measures the reciprocal rank of dL in the original and
blended rankings for a given query. This is inspired by observa-
tions in prior work that considered the last click of the session as
a proxy for the user’s intended destination [14, 42]. Our second
metric (RRF ) is similarly defined based on dF . Here, the idea is
that boosting the position of these documents would allow users to
satisfy their information needs more quickly.

The results are consistent with our previous findings. Corfu im-
proves RRL from 0.340→ 0.351 (N2.3%) across all queries, and
from 0.326 → 0.338 (N3.6%) on the ambiguous subset. The f-
segment gains are more substantial, as expected: 0.214 → 0.351
(N64.2%) on all queries, and 0.232 → 0.357 (N53.7%) on the
ambiguous subset. The RRF trends are consistent: Corfu im-
proves RRF from 0.535 → 0.544 (N1.5%) across all queries,
and from 0.541 → 0.556 (N2.8%) on the ambiguous subset. The
f-segment gains are: 0.477→ 0.622 (N30.2%) on all queries, and
0.462 → 0.621 (N34.3%) on the ambiguous subset. Overall, the
RRF numbers confirm that Corfu successfully places the first sat-

7That is the first satisfied click after issuing the current query.
Clicks for previous queries in the session are excluded.

isfied clicks higher in the ranking, allowing users to access high
quality documents faster. The improved performance on RRL also
suggests that the blended rankings selected by Corfu are able to
place these target documents higher in the ranking compared to the
no-fusion baselines.

6. RELATED WORK
We group prior research by the three key problems we address in

this paper: query disambiguation, finding effective query reformu-
lations, and selectively blending results from multiple queries.

Contextual query disambiguation. Word disambiguation is
an ongoing topic of research in Natural Language Processing and
information retrieval (IR). In IR, disambiguation is usually applied
to focus search results for queries that are either polysemous (have
multiple senses) or that belong to a number of subtopic categories
[36]. For instance, queries that are abbreviations and acronyms can
be matched to their expanded forms by mining word associations in
anchor text from a corpus and query reformulations from query logs
[40]. Semantic graphs are commonly used to model word senses
and are usually built using thesauri or lexical databases such as
WordNet8. In these cases, supervised and unsupervised approaches
such as PageRank, HITS or node similarity can be used to find al-
ternative queries [24, 38]. While our approach is also unsupervised,
we do not require an external ontology or corpus-learned language
model. Similar work by Mihalkova and Mooney [25] makes use
of prior queries within a session to perform disambiguation, al-
though in their case at least 5 clicks on URLs with distinct host-
names are required before disambiguation can be achieved. They
use a Markov logic network to re-rank for the user’s ambiguous
query, whereas in our fusion approach we can both re-rank and in-
ject relevant URLs into the user’s ranking. We note that intention-
ally ambiguous queries can be issued by users in a session when
exploring an intrinsically diverse topic [28]: in these cases it would
be beneficial to use session context to assist the user in narrowing
or adjusting their information intent.

As well as disambiguation, web search ranking can be improved
by incorporating user context. This context can include explicit
features based on demographic identifiers such as age, gender, and
location, or implicit features that are inferred from search behavior
and history. For example, the predicted reading ability of a user,
combined with an estimation of the technical difficulty of docu-
ments, can be used to improve search results, especially for educa-
tional documents [10]. Long-term user search histories can person-
alize search results [37] and even identify cases in which users are
behaving atypically [15]. All of these categorical contextual mark-
ers can be used in our technique, both long-term and short-term.
We focus our study on short-term, session subtopic categories as
these are easy to interpret and useful in identifying the ambiguous
queries from search logs that our method specifically targets.

Query reformulation. The prevalence of session search in query
logs [19] has resulted in a wealth of research on the interpretation
of query reformulations. While it has been found that as many
as 10-20% of reformulations are simply spelling corrections [12],
our underlying retrieval system helps correct for this with a ro-
bust spelling-correction system, meaning the observed reformula-
tions are useful as observations of user progress and intent. Huang
and Efthimiadis [18] performed an in-depth analysis of term-based
query changes during a session in order to create a reformulation
taxonomy. This was taken further by Kato et al. [22] who used a
8http://wordnet.princeton.edu/

http://wordnet.princeton.edu/


questionnaire and search log analysis to define six cognitive search
intents that users exhibit when reformulating queries, which they
incorporated into a machine learning-based query expansion algo-
rithm. In our work, we do not attempt to differentiate between
reformulation types: we record effectiveness scores for all query-
context-reformulation triples.

Early work on query reformulation involved query expansion, a
classic IR technique that automatically replaces, re-weights or adds
terms to queries to improve ranking and retrieval. Early methods
searched for term co-occurrences within the document collection as
candidates for expansion [26]. Modern techniques find term asso-
ciations in thesauri, semantic graphs and query logs to create better
expanded queries [13]. Typically, these expansion approaches re-
place the initial search results entirely with those of the expanded
query, whereas our method can selectively fuse ranked results from
multiple query variations.

A less intrusive method than query expansion, and one widely
deployed for Web search, is to suggest new queries to the user.
Two main avenues for providing new contextual queries to the user
have been personalized query auto-completions [2, 34], which are
estimated using previous queries from the same user, or query sug-
gestions. Query suggestions occupy space on the SERP and are
found by mining sessions in search logs [27], traversing query/click
graphs [7, 11] or extracting phrases from corpora [6].

The query reformulation research most similar to ours is by Cao
et al. [9], who proposed an unsupervised approach to cluster search
log queries into unlabeled concepts and demonstrated their method’s
scalability by evaluating over a large search log. While their goal
was to perform query suggestion, our goal is to find good refor-
mulation candidates for contextual blending. In turn, our use of
blending gives our method more fine-grained control over the na-
ture of the final search results at the level of individual documents,
whose rankings are influenced by the query disambiguation results.
Our addition of a taxonomy to label concepts also makes interpret-
ing query results easier. Finally, our technique has an even smaller
computational footprint and we demonstrate its scalability in our
evaluation over an even larger search log.

In later work, Cao et al. [8] use a taxonomy combined with click
information, similar to our use of the ODP and clicks to create ses-
sion context. While they also use other query and term features to
train a prediction method offline to categorize search queries, their
focus was on predicting faceted vs. vertical search, not performing
selective blending of query suggestion results. Also, our method is
trained offline but can be dynamically updated as searches occur in
order to find new reformulations and reinforce established ones.

Other related reformulation work includes Wang and Zhai [39]
that mined a search log for reformulations and then determined
whether the user’s original query under-specified (the user did not
know which terms to use) or mis-specified (the user used the wrong
terms) their search intent by mining term co-occurrences in a cor-
pus. Ozertem et al. [27] followed a similar approach, but with query
co-occurrences in a machine learning framework. Like these ap-
proaches, our method mines search logs for reformulations as a
means for disambiguation, but does not operate on a term-by-term
basis. In addition, the method in Ozertem et al. is mostly concerned
with identifying effective individual terms and posits term sugges-
tion as a potential use, whereas we directly learn reformulations to
improve rankings for the user’s original query.

Blending results from multiple queries. Data fusion tech-
niques merge relevant results from related or expanded queries so
as to improve the original ranking [32, 33]. While effective, these
methods have not taken user context into account. Instead, state

of the art research has investigated the blending of results from ex-
panded queries; for instance, LambdaMerge is a supervised learn-
ing method that learns how to optimally blend results from query
reformulations found using a click graph [33], whilst Xu et al. [43]
implemented a kernel-based method for learning blending weights
for results from query reformulations found using click-through
data. Optimal blending strategies are an active area of research
and not the focus of this paper, so we adopt a fixed blending strat-
egy that allows us to evaluate the reformulation technique more
effectively. Our novel contribution related to blending is the de-
velopment of the contextual fusion classifier that uses session, con-
text, historical and other features to learn when to selectively apply
blending. To the best of our knowledge, ours is the first work to
develop a context-based classifier of this type.

7. CONCLUSIONS
In this paper we investigated methods for improving the search

experience for ambiguous queries by using user context. We de-
fined user context as the topical categorization of the user’s ses-
sion and query. We began by focusing on contextual query sug-
gestion. Unlike other methods which find suggestion candidates
based on query/click graphs, we mined search logs for commonly
co-occurring queries in sessions. We defined a utility function that
accounted for the sparsity of clicks on ambiguous queries by in-
cluding and weighting those that occur later in the session. Con-
ditioning this utility on contextual categories and aggregating over
search logs allowed us to rank and select a contextual query sug-
gestion candidate. In our evaluation we found that a hybrid of both
contextual/non-contextual queries (the CosQus(H) method) gave
significant gains over a state-of-the-art baseline.

Next, we looked at data fusion as a means of directly improving
search results for ambiguous queries. We blended results from our
contextual query suggestions with those of the user’s query and ob-
served that naïvely blending on all suggestions led to poor overall
performance. To resolve this, we proposed a novel fusion classi-
fier (Corfu) that could distinguish when to perform data fusion and
when to suggest a query instead. We trained it using session, con-
text and query features extracted over a large-scale search log from
bing.com. Our approach showed significant improvements over
the rankings of the original query, for both ambiguous and gen-
eral queries, and also made gains over simply memorizing which
queries to blend on. An analysis of our feature set highlighted the
importance that context plays in classifying when to use data fusion
for contextual query disambiguation.

This work could be extended by exploring different types of
contextual information for disambiguation. For instance, location
would provide a suitable classification space and would lead to a
different set of candidate queries and feature set for the classifier.
Additionally, user history (rather than session context) could be
used as a means for results personalization and a way to use con-
text in the first query of a session. Also, more complex data fusion
methods could be explored, potentially by taking context into ac-
count during the merging itself, though our approach of contextual
query suggestion combined with a fusion classifier demonstrates
that a simple fusion technique is sufficient.
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