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Abstract
In this paper, we present an approach to improve the accuracy of
multi-domain multi-turn spoken dialog system (SDS) by includ-
ing alternate results from automatic speech recognition (ASR).
Often, even if the top ranked result from the ASR is not correct,
the correct result may still be available in the NBest list or in the
word confusion network (WCN). Thus, the SDS performance
can be improved by considering beyond the top ranked choice
from the ASR. We employ late binding, such that multiple ASR
choices are propagated through the SDS and knowledge fetch
so that additional context can be utilized at later stages to deter-
mine the top choice that is good for the overall SDS. We rank
alternate domain dependent semantic frames, multiple seman-
tic frames per ASR choice, to determine the true SDS output.
Using real-world data, extracted from the logs of Cortana per-
sonal digital assistant deployed to millions of users, we show
that significant gains can be achieved in domain detection, in-
tent determination, and slot tagging, by considering additional
results from ASR.
Index Terms: dialog systems, natural language understanding,
speech recognition, hypotheses ranking, dialog state tracking,
multi-domain classification, contextual domain classification

1. Introduction
Personal digital assistants are gaining more popularity with Siri,
Google Now and Cortana being available on different mobile
platforms. These assistants typically involve the use of speech
for natural language interaction to accomplish various tasks
such as controlling the various device functions (e.g., alarm,
calendar, note, communication, device management) as well
as gaining information related to various entities (e.g., places,
weather, or web search). Thus, SDS for such scenarios require
multi-domain multi-turn dialog capabilities. Recent advances in
speech recognition have significantly improved the accuracy of
ASR, however, it is still possible that the top ASR choice may
not be correct which can adversely impact spoken language un-
derstanding (SLU) and dialog response. The use of multiple al-
ternates from the ASR (NBest list or word confusion network)
in addition to the top alternate can improve the performance of
SDS as the correct output is often available in this list of alter-
nates even if the top choice is incorrect. Access to these ASR
alternates downstream in SDS stack can help because additional
context and knowledge can be exploited downstream to rerank
multiple ASR alternates and improve the overall accuracy.

In this paper, we present an approach that considers alter-
nate choices provided by the ASR to improve domain detec-
tion, intent determination and slot tagging. More specifically,
we adopt the paradigm proposed in [1] that generates an alter-
nate hypothesis per domain during the SLU analysis, and then

these hypotheses are reranked post-SLU analysis by consid-
ering additional context and knowledge features to determine
the correct domain. We extend this approach to inject addi-
tional hypotheses corresponding to each ASR alternate, which
are then reranked post-SLU analysis to determine the correct
choice. Using multiple alternates per domain also allows us to
determine the correct semantic frame (combination of domain,
intent and slot) rather than only predict the correct domain as in
[1].

2. Related Literature
The idea of using multiple ASR alternates in SLU and SDS has
been widely considered to reduce the effect of mistakes result-
ing from only considering the top ASR choice. These alternates
may be in the form of an NBest list produced by the ASR in
addition to the top choice. They can also be in the form of a
word confusion network (WCN) that can then be considered ei-
ther on its own or otherwise to generate alternates as required.
Stolcke et al., [2] show that the word error rate for ASR can be
reduced by using NBest lists. In [3] it was shown the WER
can be further reduced by considering the use of a recognition
lattice. Erdogan et al., [4] use semantic analysis to improve
the accuracy of the ASR by using lexical and semantic infor-
mation and show reduction in WER. Lopez-Cozar and Calle-
jas [5] use a technique to correct the output of an ASR by ap-
plying various semantic, syntactic and lexical patterns,most of
which are provided by domain experts, on multiple ASR alter-
nates. Hazen et al., [6] use multiple alternates, along with their
confidence scores, from ASR to extract features that help im-
prove SLU. Various proposals have been presented to improve
SLU by considering WCN rather than NBest lists since they
can provide additional alternates and have a higher oracle ac-
curacy [7, 8, 9, 10, 11]. Multiple ASR results have also been
used for dialog state tracking [12, 13] as well as explicitly track-
ing hypotheses based on NBest list [14], reranking NBest hy-
potheses in dialog based on linear regression [15], and rerank-
ing NBest hypotheses based on contextual features [16].

Most of the above approaches employ joint optimization
by considering the speech and knowledge results together. As
argued by Calvo et al., [17] this can result in an excessively large
search space and requires proper weighting for each component.
Therefore, we adopt a modular approach where multiple ASR
results are fed into the SLU and are then individually ranked.

The above work cited on using multiple ASR results in SLU
and dialog state tracking performs SLU for a single task or do-
main. Planells et al., [18] and Robichaud et al. [1], have de-
scribed the challenges in constructing a multi-domain dialog
system that integrates heterogeneous spoken dialog systems. In
this paper, we demonstrate that the use of multiple ASR results
is also helpful for such multi-domain multi-turn SLU and dialog
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state tracking, where it is not known a priori which domain/task
the user may want to complete. This is also the first study that
applies this approach to a truly web-scale application that han-
dles millions of queries everyday.

3. Using Multiple ASR Results in SLU
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(a) contextual signal, domain only
(b) contextual signal, domain, intent, 
entities
(R1) selected result of turn 1
(R2) selected result of turn 2

Figure 1: Architecture of the SDS where (R1) is selected result
of turn 1, (R2) is selected result of turn 2, and contextual signals
related to domain, intent and entities from turn 1 are passed to
(a) SLU and (b) Dialog engine

The high-level system architecture is shown in Figure 1.
NBest results from ASR are fed in to the SLU analysis module
(where N is the number of ASR alternates). The SLU analysis
module generates NxM semantic frames (where M is the num-
ber of domains) that are fed in to the dialog engine. The dialog
engine executes knowledge fetches and performs feature extrac-
tion to rank the NxM hypotheses and output the top choice. For
multi-turn queries, the results of the previous turn are also made
available to the system as it has been shown to improve the ac-
curacy in multi-turn, multi-domain scenarios [19, 20].

The SLU analysis module includes several components.
The first component is responsible for domain classification us-
ing a binary support vector machine (SVM) classifier per do-
main. This allows new domains to be added or existing do-
mains to be retrained in isolation without impact on other un-
related domains. For each domain, we also classify the intent
using a multi-class SVM classifier. Additionally, we also have
component that performs slot tagging (entity extraction) using
conditional random field (CRF) sequence taggers, with possibly
multiple slots per utterance. The models use linguistic signals
(unigrams, bigrams, trigrams, regular expressions, dictionaries
of domain specific entities) as well as contextual signals (do-
main detected in previous turn, system response to previous turn
output). The output of the SLU analysis module is one seman-
tic frame per domain per ASR input. The semantic frame com-
prises the combination of domain, intent and tagged slot value
pairs along with a confidence score for this combination.

The output of the SLU analysis module is propagated
through the dialog engine to augment each semantic frame with
any available knowledge fetch results as well as extracted fea-
tures. As in [1], we name these augmented semantic frames as
dialog hypotheses and a hypotheses ranker (HR) is responsible
for ranking alternate dialog hypotheses.

The key difference of our proposed approach compared to
the system described in [1] is that feeding multiple NBest ASR
inputs to the SLU analysis module and receiving back a list of

NxM semantic frames allow the hypothesis ranker to rank the
expanded the hypotheses by optimizing for the accuracy of se-
mantic frame rather than only predicting the correct domain.
This is possible because multiple semantic frames may be avail-
able per domain due to the use of NBest ASR results (with only
the top choice from SR, there is only one semantic frame per
domain available).

The hypotheses ranker uses an internal implementation of
LambdaMART [21], based on the concept of Gradient Boosted
Decision Trees [22], that ranks the various dialog hypotheses.
Any other ranking technique that can learn a (possibly non-
linear) model to map from a vector of features for each hy-
pothesis to a relative score for that hypothesis, given a list of
hypotheses, could be used. The objective of our ranker is to
ensure that the semantic frame (i.e., domain, intent and slot) is
correct. Thus, the order of ranking is 1) domain, intent and slots
are correct, and if no such hypothesis is available then, 2) do-
main and intent, or domain and slots, are correct, 3) domain is
correct, 4) all slots are correct, and finally 5) everything else.

The accuracy of HR on the ASR 1Best is treated as the base-
line. We aspire to the accuracy of HR using transcription, with
no ASR errors. A more realistic upper bound is the HR accu-
racy of an oracle that can pick the correct ASR output if it is
available in the NBest list and choose ASR 1Best otherwise.
We measure domain precision and recall, intent accuracy, slot
F1 score as well as the semantic frame accuracy. The semantic
frame is considered correct if all domain, intent and slots are
correct for a given utterance, and incorrect otherwise.

The SLU analysis for each ASR alternate can be performed
in parallel so this design doesn’t result in latency overhead. We
do not consider any optimizations for any capacity constraints
as that is considered external to the scope of this paper.

3.1. Feature Extraction

The implementation of LambdaMART used for experiments is
capable of efficiently selecting relevant features. This allows
us to extract close to 1500 features for the purpose of training
and we let LambdaMART choose features that are useful for
ranking dialog hypotheses (around 250). We include all fea-
tures specified in [1]. These include 1) features specific to the
hypothesis such as the domain/intent scores, indicator features
to indicate presence/absence of different types of slots, and cov-
erage of tagged slots, 2) features relevant to the hypothesis list
(the list comprising one semantic frame per domain) such as
whether a particular semantic tagging occurred anywhere in the
hypotheses list, and 3) contextual features such as whether the
domain from the current hypothesis matches the previous turn
output. In addition, we add features that encode information
available from NBest list. The following are a list of the types
of features from ASR NBest list that we use:

• Features specific to the ASR alternate from which the
dialog hypothesis originated. These can include the in-
coming rank, the confidence score, the acoustic model
score and the language model score of the ASR alter-
nate. Additionally, we also consider the SLU analysis
scores weighted by the ASR confidence.

• Features that encode information about the NBest list,
such as size of the list, confidence (numerical or categor-
ical such as High/Medium/Low) of the top choice, and
the relative difference and ratio of the top vs. subsequent
ranked ASR choices.

• Features that indicate the agreement or diversity in the
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Table 1: Statistics to describe the data set used in experimental evaluation

Data Set Total Turns % of 2+ Turns Mean NBest 1Best Incorrect Oracle Correct WER
Train 30,653 12.7% 3.4 22.3% 83.9% 24.2%
Test 8,914 42% 3.7 25.9% 75.3% 26.8%

Table 2: Aggregated Results of HR accuracy using multiple
ASR alternates across all domains and all turns

Model Domain Intent Slot F1 Semantic Frame
Transcription 98.1 93.3 85.3 81.5

Oracle 95.0 87.3 72.9 67.1
1Best 93.9 85.0 67.7 61.1
NBest 95.7 86.4 67.9 63.3

SLU analysis of different ASR alternates. Examples of
these features include the SLU score of hypotheses from
various domains, the presence of the same slot type or
slot value across SR alternates in the same domain, or the
diversity in the SLU results when comparing them across
ASR alternates expressed using Gini impurity [23].

• Features that encode information about the top ranked
SLU alternate (winning hypothesis per alternate) from
each ASR alternate, as if it was considered indepen-
dently. Examples of such features include number of
winning hypotheses per domain, the diversity of domains
in winning hypotheses expressed using Gini impurity, or
the agreement among the winning hypotheses on the top
ranked semantic frame.

• Features that indicate the agreement or diversity of an SR
alternate with the top ASR choice, such as the difference
in the domain, intent and slot value pairs.

Note that none of the features used by HR are word-based
(e.g., no ngram or regular expression based features are used by
HR) as they are assumed to have been already covered in the
SLU analysis module. For the results presented in this paper,
post-knowledge features (database hits, access to user personal-
ization such as address book, locations and music library, or the
possible Cortana response for a given alternate) were not used
to train HR. The addition of such features, simple to add in this
paradigm, is expected to further improve the performance and
is left as future work.

3.2. Data Set

Data is sampled from logs collected from usage of real-world
Cortana users. Anonymized audio is transcribed to receive the
true user query. These transcriptions are annotated for SLU (do-
main, intent and slots) in a contextual manner, with the annota-
tors provided access to previous turns. The transcription and
ASR alternates for each query are independently propagated
through the SDS pipeline to perform feature extraction. We use
the labels generated by the annotators as ground truth and train
HR such that it can output the correct dialog hypothesis from
a list of dialog hypotheses (including dialog hypotheses from
multiple ASR results). For evaluation, we use a held-out set of
the transcribed and annotated data to test the performance of
the ranker. No development set is used as no model parameter
tuning was performed for the experiments described here.

The data set used had 9 distinct domains with over 188 in-
tents and 142 distinct slots. Table 1 describes various statistics

related to the data set used for experiments. We can see over
30,000 utterances are used for training purposes and around
9,000 utterances are used for testing. The average size of the
NBest list available for theses utterances in the logs is 3.4. Both
training and test sets have multi-turn queries, though a bit more
in the testing set. It is worth pointing out here that the ASR al-
ternates available in the logs are in Display form (e.g., NE 12th)
whereas the transcriptions are manually transcribed in a lexi-
cal form (e.g., North East Twelfth). We use an internal tool to
perform text normalization and subsequently inverse text nor-
malization (TN/ITN) on the transcribed utterances, but do not
manually massage them to match the exact Display Form avail-
able in the logs, which is used for presenting the ASR output
on screen to the user. This explains the higher than expected
percentage of utterances for which the top ASR result does not
match the transcription and high WER as well as the relatively
low oracle match rate in Table 1.

3.3. Results

Table 2 shows results of our approach based on using multi-
ple ASR alternates compared with transcription, the ASR ora-
cle, and the top ASR alternate. We can see that the model im-
proves for domain (1.8%) and intent (1.4%) and semantic frame
(2.2%). However, there is less gain in the slot F1 score (0.2).
The NBest performance for domain even exceeds that of the
oracle accuracy for domain. This is possible because in some
cases the exact query matching user input is not in the NBest but
another slightly different query from the NBest list is chosen by
the model which has the correct domain. We see that 38.3% of
the possible oracle improvement is being recovered by HR for
semantic frame accuracy. Most of the remaining possible gains
are dependent on improvements in slot tagging. We are cur-
rently exploring additional features based on knowledge fetch
(such as personalizing the ranking to the user by considering
presence of names in the user’s address book or the songs in
personal music library, as well as third-party knowledge results
such as whether the value of particular slot in a weather or place
domain are really a place name or business name).

3.3.1. Sample Results from HR using ASR Alternates

We present some positive and negative examples of utterances
below where the HR with multiple alternates improves on the
top ranked ASR choice or otherwise is unable to disambiguate
the correct alternate in the NBest list. The correct output is the
transcription, the top ASR output is labeled as SR1, and the
NBest ranker output is italicized:

• {Transcription: “Drive home”, SR1: “I’m home”, SR2:
“Drive home” }. In this case, the higher domain score
for SR2 helps in correctly reranking the alternates.

• {Transcription: “Try again”, SR1: “Dragon ball”, SR2:
“Dragon age”, SR3: “Dragon”, SR4: “Try again”}. For
multi-turn queries, there is a higher chance that the user
is engaging in clarification, repetition, confirmation, re-
jection or selection that helps HR pick SR4 as the output.
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Table 3: Aggregated Results of HR accuracy using multiple ASR alternates across all domains separated by turns

Model Domain Intent Slot F1 Semantic Frame
Turn 1 Turns 2+ Turn 1 Turns 2+ Turn 1 Turns 2+ Turn 1 Turns 2+

Transcription 98.1 98.2 96.6 88.8 88.3 81.3 88.0 72.7
Oracle 93.5 97.1 89.9 83.9 77.5 66.9 73.2 58.8

ASR 1Best 92.0 96.9 87.5 81.6 72.6 61.3 67.0 53.2
ASR NBest 94.8 97.1 88.5 81.8 72.8 61.3 70.5 53.4

Table 4: Results of using multiple ASR alternates in ranking
HR for Communication domain

Model Precision Recall Intent Slot F1 SF

Transcription 97.9 96.2 90.6 87.4 88.2
Oracle 94.3 91.1 80.9 68.5 67.3
1Best 93.6 89.1 76.9 62.9 62.7
NBest 95.8 94.3 81.1 63.1 68.1

• {Transcription: “Driving directions to Costco”, SR1:
“Driving directions to Cosco”, SR2: “Driving directions
to Costco”}. In this case, the model sticks with the SR1,
even though SR2 is the correct choice. To avoid such
issues, features based on knowledge-fetch (database hit
for Costco as a place name and ability to formulate driv-
ing directions for Costco and not Cosco) are needed. We
are extending our approach to use such features.

• {Transcription: “What’s the temperature like in Cel-
sius”, SR1: “What’s the temperature in Celsius”, SR2:
“What’s the temperature in San Jose”, SR3: “What’s the
temperature in San Jews”, }. In this case, the SR1 is
correct but the model incorrectly switches to SR2.

Most of the regressions of HR using multiple alternates are
related to slots especially with a slot being added, removed or
modified. We anticipate that the use of features based on knowl-
edge fetch will also help reduce such mistakes.

3.3.2. Analysis of Turn 1 vs Turn 2+ Results

Table 3 presents the results of using multiple ASR alternates
segregating first turn and 2+ turn queries. We can see that the
overall trend of improvement in the accuracy of domain predic-
tion, intent determination and semantic frame accuracy persists
across first and 2+ turns. We can see a couple of interesting
things to note. The domain accuracy is slightly higher for 2+
turns for oracle, 1Best and NBest. This can be explained by the
nature of some shorter prompts that are present in 2+ turns that
involve confirmation, rejection or selection of items. If the top
ASR is incorrect, they are usually present in the NBest list. We
do see bigger differences in intent determination, slot F1 and
semantic frame accuracy with the first turn results being consid-
erably higher. This can be due to the cascading nature of errors
where if the previous turn is incorrect, the errors will propagate
across turns impacting intent and slot more than domain.

3.3.3. Analysis of Results for Individual Domains

We also analyze the results across 3 different Cortana domains.
These domains are Communication (calling and texting) , Cal-
endar (create, edit, view , delete appointments) and Device Con-
trol (apps, music, and settings). The results for these domains
are respectively shown in Tables 4, 5, and 6. We see that we

Table 5: Results of using multiple ASR alternates in ranking
HR for Calendar domain domain

Model Precision Recall Intent Slot F1 SF

Transcription 96.1 97.4 85.8 83.2 73.4
Oracle 89.1 96.6 81.3 73.1 64.9
1Best 87.4 96.6 81.2 68.1 61.2
NBest 94.1 96.3 81.1 71.2 62.4

Table 6: Results of using multiple ASR alternates in ranking
HR for Device Control domain domain

Model Precision Recall Intent Slot F1 SF

Transcription 97.6 99.5 96.5 86.1 90.9
Oracle 91.8 95.0 89.4 53.5 70.1
1Best 89.9 94.0 85.9 38.6 62.7
NBest 91.5 95.7 86.3 38.7 63.4

get an improvement of 4.4% for communication, 1.2% for cal-
endar and 0.7% for device control on semantic frame accuracy.
We also see gain in domain precision and domain recall, intent
accuracy and semantic frame accuracy for almost all domains
(accuracy is similar on calendar intent).

4. Conclusions and Future Work
In this paper, we have demonstrated that multiple ASR alter-
nates can improve the robustness of multi-domain, multi-turn
SDS. We used a data set extracted from the logs of Cortana to
show absolute gains of 1.8% on domain detection, 1.4% on in-
tent classification and 2.2% on semantic frame accuracy (38.3%
of the possible gain considering an ASR oracle). Most of the
gains are due to correctly analyzing the domain and intent. In a
multi-domain SDS, it is imperative to reduce domain and intent
errors, otherwise it can initiate an incorrect task. Once the cor-
rect task from the correct domain has been initiated, it is easier
to recover from potential errors in slot tagging in subsequent
turns.

To close the gap between the semantic frame accuracy of
HR using multiple alternates with that of the oracle, we need
to improve slot tagging. We plan to extend our approach by
adding features based on knowledge-fetch results that can help
slot tagging by resolving slot values in the NBest list. We also
plan to investigate increasing the potential for improvement by
considering alternates from WCN instead of an NBest list. The
alternates from a WCN can be significantly more and knowl-
edge fetch for multiple alternates can be expensive, so we are
also examining the possibility of pruning NBest alternates for
which knowledge results are fetched to minimize any latency or
capacity concerns.
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