
Key Recovery for LWE in Polynomial Time

Kim Laine1 and Kristin Lauter2

1 Microsoft Research, USA kim.laine@microsoft.com
2 Microsoft Research, USA klauter@microsoft.com

Abstract. We discuss a higher dimensional generalization of the Hidden Number Problem
and generalize the Boneh-Venkatesan method [BV96, Shp05] for solving it in polynomial time.
We then use this to analyze a key recovery (decoding) attack on LWE which runs in polyno-
mial time using the LLL lattice basis reduction algorithm [LLL82] and Babai’s nearest planes
method [Bab86]. We prove that success can be guaranteed with overwhelming probability when
the error distribution is narrow enough and q ≥ 2O(n), where n is the dimension of the secret
key. An explicit constant in the exponent is given, but in practice the performance is observed
to be significantly better.
Our focus is on attacking the search variant of LWE. Known attacks include combinatorial meth-
ods [BKW03, ACFFP13], polynomial system solving (Gröbner basis) methods [AG11, ACFP14],
and lattice reduction methods [LP11, LN13, BG14, LM09]. Typically the performance of the lat-
tice reduction attacks involves estimating the performance and complexity of BKZ-2.0 [CN11],
which is difficult. Still another option is to attack the decision version of LWE [MR09] and use
the search-to-decision reductions to break the search problem [BLPRS13, MP12].
Our key recovery attack is interesting because it is runs in polynomial time, and yields simple and
concrete security estimates for a wide range of parameters depending in a clear and explicit way
on the effective approximation factor in the LLL algorithm and in Babai’s nearest planes method.
We ran the attack for hundreds of LWE instances demonstrating successful key recovery attacks
and yielding information about the effective approximation factor as the lattice dimension grows
(see Figure 3). For example, we successfully recover the secret key for an instance with n = 350
in about 3.5 days on a single machine, provided that the modulus is large enough, and the error
distribution narrow enough.

Keywords: Hidden Number Problem, LWE, key recovery, lattice-based cryptography

1 Introduction

Learning with errors (LWE), introduced by Regev in 2005, is a generalization of the learning par-
ity with noise problem. Roughly speaking, the problem setting involves a system of d approximate
linear equations in n variables modulo q:

a0,0s0 + a0,1s1 + . . .+ a0,n−1sn−1 ≈ t0 (mod q)

a1,0s0 + a1,1s1 + . . .+ a1,n−1sn−1 ≈ t1 (mod q)

...
...

ad−1,0s0 + ad−1,1s1 + . . .+ ad−1,n−1sn−1 ≈ td−1 (mod q)

Two questions can now be asked. The decision version of LWE asks to distinguish whether a
vector t ∈ Zdq is of the form

[
t0, t1, . . . , td−1

]
or sampled uniformly at random from Zdq . The

search version asks to solve the system, i.e. to find s =
[
s0, s1, . . . , sn−1

]
.

In the seminal paper [Reg09] Regev proved that, in some parameter settings, if search-LWE can
be solved in time polynomial in n, then there are polynomial time quantum algorithms for solving
worst cases of the lattice problems GapSVP3 and SIVP4 with γ = poly(n). These problems are

3 GapSVPγ takes as input a lattice Λ and a rational number L. The problem is to decide whether the shortest
vector in the lattice has length λ1(Λ) < L or λ1(Λ) > γ · L. This is essentially a decision version of SVP.

4 SIVPγ is the problem of finding a basis {b1, . . . ,bn} for a lattice Λ, such that ||bn|| < γ · λn(Λ), where
λi(Λ) denotes the i-th shortest vector in the lattice.

widely believed to be hard with the best known algorithms having exponential complexity in
n. In the same paper he proved that when q = poly(n) there is a rather simple polynomial
time search-to-decision reduction when decision-LWE can be solved with exponentially good
advantage.

Later Peikert [Pei09] presented a purely classical reduction to search-LWE in the case q =
poly(n) from a new lattice problem GapSVPζ,γ , which is an easier variant of GapSVPγ . Most
importantly, there is no longer a reduction from the worst-case lattice search problem SIVP. When
the modulus is q ≥ 2n/2 the situation is slightly better: search-LWE can be classically reduced
from the usual worst-case GapSVP, but such a large q is typically not realistic for practical
applications. The combined work of several authors [Pei09, MP12, BLPRS13] also proves that
the problems decision-LWE and search-LWE are classically equally hard (up to a polynomial
factor) for practically any modulus q. However, one should be careful with these reductions
as they change the LWE parameters, so to solve a particular search-LWE instance using the
search-to-decision reductions one needs to be able to solve several possibly significantly harder
decision-LWE instances with exponentially good advantage.

In [Reg09] Regev also presented a public-key cryptosystem based on LWE. Since then, the LWE
problem and its variant ring-LWE (RLWE) [LPR13] have become hugely important as build-
ing blocks for homomorphic and post-quantum private and public-key primitives and proto-
cols [BV11, Bra12, BGV12, BV14, LP11, LNV11, GLN12, BLN14, LLN14, BCNS14].

In this work we define a higher dimensional generalization of the Hidden Number Problem
and construct a polynomial time algorithm in the spirit of Boneh and Venkatesan [BV96] (see
also [Shp05]) to solve it. We then adapt this same approach to target LWE and obtain a poly-
nomial time key recovery attack to solve search-LWE, which applies in the case of exponentially
large modulus q and narrow error distribution. For large enough n, we find that success can be
guaranteed with high probability roughly when log2 q > 2n, but that in practice significantly
smaller moduli are vulnerable. We should also mention that, independently of us, Galbraith and
Shani studied generalizations of the HNP in great detail in [GS15], but the methods used and
presented here suffice for our purposes.

Our polynomial time key recovery attack should be viewed in the context of the known attacks on
search-LWE, namely the embedding attack [LM09, BG14] and the enumeration attacks [LP11,
LN13, BG14]. These attacks typically use the BKZ-2.0 algorithm [LN14], which makes their
performance and complexity difficult to analyze. Instead we restrict to using the (polynomial
time) LLL algorithm [LLL82], whose performance and complexity are much better understood.
This is then combined with the well understood nearest planes method of Babai [Bab86] to
recover the secret key. We use clear, explicit and well-known results for these algorithms to
analyze the conditions for success. As a result we obtain new insight into the hardness of search-
LWE for certain parameter ranges. In particular, we prove that this polynomial time attack
succeeds almost certainly when the LWE modulus q is exponential in the dimension n and the
error distribution is narrow enough (see Theorem 6).

In practice, for applications [LNV11, GLN12, BLN14, LLN14, BCNS14], LWE parameters are
selected very conservatively due to the difficulty in analyzing their security, and are of course
not vulnerable to our polynomial time key recovery attack. This is done at an immense cost
to performance however, so it would be crucial to understand precisely how difficult LWE is to
break using the best known methods. In this work we approach the situation from the other end
of the hardness spectrum, and establish a good understanding of when exactly LWE becomes
easy. We further observe that this typically happens close to when decision-LWE becomes easy.
This is not obvious, but also not too surprising due to the rather complicated search-to-decision
reductions of [BLPRS13, MP12].

But our attack is interesting for several additional reasons: First, it demonstrates that for sur-
prisingly small modulus q and narrow error distribution the classical security reduction ([Pei09],
see Theorem 5 below) is not relevant for cryptography in the sense that both the search-LWE
and GapSVP problems can be solved in polynomial time (see Remark 5 below).

Second, our attack is efficient enough that we were able to run it for hundreds of LWE instances
for different parameter sizes. The results are shown in Figure 3, where the green dots indicate
successful secret key recovery, while the red dots indicate failed attempts. These experiments
allow us to observe the effective approximation factor in the LLL algorithm for the particular
q-ary lattices that arise from the LWE problem. Although theory guarantees that LLL finds a
vector of length no more than γ times the length of the shortest vector, where γ = 2µN , N is
the lattice dimension and µ = 1/2, in practice it is known (see for example [NS06]) that µ can

be expected to be much smaller. More correctly, what we observe is the effective approximation
factor appearing in Babai’s nearest planes method given an LLL reduced basis.
Secure parameter selection for LWE depends heavily on the asymptotic behavior of the number
µ in the LLL-Babai algorithm, and our experiments shown in Figure 3 demonstrate the rough
growth of µ as the lattice dimension grows, up to dimension around 800.
Finally, we show how practical the attack is by running it on increasingly large parameter sets.
For example, the attack for n = 350 terminates successfully in roughly 3.5 days, running on
a single machine. The actual running time for the attack in practice matches very closely the
predicted running time for optimized LLL implementation, O(N4 log2 q), which makes it easy
for us to predict the running time of the attack for larger parameter sizes.
The paper is organized as follows. In Section 2 we study an n-dimensional Generalized Hidden
Number Problem (GHNP), which is closely related to search-LWE. We describe a generalization
of the method of Boneh and Venkatesan [BV96, Shp05] for solving it in polynomial time when
the parameters are in certain ranges. Most importantly the modulus q must be exponential in
the dimension n.
In Section 3 we use the results of Section 2 to mount a polynomial time key recovery attack
on search-LWE, which is guaranteed to succeed with overwhelming probability for certain LWE
parameter ranges, in particular depending on the width of the error distribution.
In Section 4 we study the attack in practice and present several examples up to key dimension
n = 350. We attempt to extrapolate these results to larger n to understand better when a
polynomial time attack can be expected to succeed.
In Section 5 we study the security implications of our attack. We observe that vulnerable param-
eters come up very naturally in applications of LWE to homomorphic cryptography and discuss
implications for LWE parameter selection.

2 Generalized Hidden Number Problem

We start by recalling the definition of the hidden number problem (HNP) and subsequently de-
scribe an n-dimensional generalization of it. Next we generalize the approach of [BV96, Shp05]
to find a polynomial time algorithm for solving this generalized hidden number problem (GHNP),
which is essentially solving an approximate-CVP in a particular lattice using LLL [LLL82] com-
bined with Babai’s nearest planes method [Bab86]. The main content of the result is to see that
while LLL-Babai is only guaranteed to solve CVP up an exponential approximation factor, it is
good enough in certain cases to solve the GHNP.

Notation. In all of this work we assume that q is an odd prime and r := log2 q. By Zq we denote
integers modulo q, but as a set of representatives for the congruence classes we use integers in the
interval (−q/2, q/2). By a subscript q we denote the unique representative of an integer modulo q
within this interval.

Definition 1. By MSB`(k) we denote the ` most significant bits of the integer k, not counting
the sign. For example, MSB4(175) = 160, and MSB5(−175) = −168. Most importantly, we
always have ∣∣k −MSB`(k)

∣∣ < 2blog2 |k|c+1−` .

Definition 2 (HNP). Let s ∈ Zq be a fixed secret number chosen uniformly at random. Given d
samples of the form (

a,MSB`
(

[as]q
))
∈ Zq × Zq

where a ∈ Zq are chosen uniformly at random, the problem HNPr,`,d is to recover s.

Boneh and Venkatesan [BV96] showed how HNP can be solved in polynomial time. Their
method used polynomial time lattice reduction [LLL82] combined with Babai’s nearest planes
method [Bab86] to solve an approximate-CVP in a particular lattice. The algorithm for solving
the HNP was then used to attack the Diffie-Hellman problem in cryptography. More precisely,

Theorem 1 ([BV96, Shp05]). If d and ` are chosen appropriately, HNPr,`,d can be solved in
time poly(r). For instance, this happens when d = ` =

√
2r.

We will generalize Definition 2 and Theorem 1 to n dimensions.

Definition 3 (GHNP). Let s ∈ Znq be a fixed secret vector chosen uniformly at random. Given d
samples of the form (

a,MSB`
(
〈a, s〉q

))
∈ Znq × Zq ,

where a ∈ Znq are chosen uniformly at random, the problem GHNPn,r,`,d is to recover s.

In the rest of this section we will describe a probabilistic polynomial time algorithm for solving
GHNPn,r,`,d when r, d ∈ O(n) and n, ` are big enough. Our approach is a direct generalization
of the method of [BV96].

Remark 1. Independently of us, Galbraith and Shani studied generalizations of the HNP in great
detail in [GS15], but the methods used and presented here suffice for our purposes.

Notation. We denote the i-th coefficient of a vector v by v[i].

We want to solve GHNPn,r,`,d with samples (ai,MSB` (〈ai, s〉q)), where i = 0, . . . , d − 1. The
first step is to make this into a lattice problem by considering the full (n+d)-dimensional lattice
Λn,r,`,d spanned by the rows of(

q1d×d 0d×n
A 21−`1n×n

)
, A := [a0,a1, . . . ,ad−1] ∈ Zn×dq . (1)

Clearly Λn,r,`,d contains the vector

v =
[
〈a0, s〉q, 〈a1, s〉q, . . . , 〈ad−1, s〉q, s[0]/2`−1, s[1]/2`−1, . . . , s[n− 1]/2`−1

]
. (2)

Denote
ui = MSB`

(
〈ai, s〉q

)
. (3)

The distance between 〈ai, s〉q and ui can be bounded using Definition 1:

|〈ai, s〉q − ui| < 2blog2 |〈ai,s〉q|c+1−` ≤ 2blog2(q/2)c−` < 2r−` . (4)

The vector
u =

[
u0, u1, . . . , ud−1, 0, . . . , 0

]
∈ Rn+d (5)

is not in Λn,r,`,d, but using (4) we can bound its Euclidean distance from v:

||v − u|| ≤
√
n+ d 2r−` .

Theorem 2 (LLL-Babai). Let Λ be a lattice of dimension N . An approximate-CVP in Λ can
be solved in polynomial time up to an approximating factor 2µN . A value of µ = 1/2 is guaranteed,
but in practice significantly better performance (smaller µ) can be expected.

Proof. The value µ = 1/2 follows from the result of Babai [Bab86] and the performance guarantee
of LLL [LLL82]. The arguments in [NS06] about average perfomance of LLL on random lattices
explains why LLL yields in some sense much better bases than the theoretical result of [LLL82]
promises. Due to this, the algorithm of Babai can also be expected to yield significantly better
results than is guaranteed by theory. Both LLL and Babai’s method have complexity polynomial
in N . ut

The key to solving GHNPn,r,`,d in polynomial time is to argue that, in many cases, the algorithm
LLL-Babai in Theorem 2 actually solves approximate-CVP for u well enough to recover v, from
which s can be read.
Consider what happens if we run LLL-Babai with input u. By Theorem 2 it is guaranteed to
output a vector

w =
[
〈a0, t〉+ qk[0], 〈a1, t〉+ qk[1], . . . , 〈ad−1, t〉+ qk[d− 1],

t[0]/2`−1, t[1]/2`−1, . . . , t[n− 1]/2`−1
]
∈ Λn,r,`,d ,

(6)

where t ∈ Zn, k ∈ Zd, such that

||v −w|| ≤ ||v − u||+ ||u−w|| ≤
(

1 + 2µ(n+d)
)
||v − u|| ≤

(
1 + 2µ(n+d)

)√
n+ d 2r−` . (7)

If this is the case, then all differences (v −w)[j] must lie in the interval[
−
(

1 + 2µ(n+d)
)√

n+ d 2r−`,
(

1 + 2µ(n+d)
)√

n+ d 2r−`
]
. (8)

We can assume that t ∈ Znq . Namely, let tred denote a vector in Znq that is obtained by reducing
the entries of t modulo q. By replacing t with tred in the definition of w, we obtain a new lattice
vector which differs in the first d entries from w by multiples of q. But adding suitable multiples
of the first n generators of the lattice Λn,r,`,d (first n rows of the matrix) to this vector yields
a lattice vector wred whose first d entries are the same as those of w and whose remaining n
entries are possibly smaller of absolute value than those of w.
The first d differences (v−w)[j] are of the form 〈aj , s− t〉q + qk̃[j], where k̃ ∈ Zd. If we assume
that (

1 + 2µ(n+d)
)√

n+ d 2r−` <
q

2
, (9)

or equivalently that

` > log2

[(
1 + 2µ(n+d)

)√
n+ d

]
+ 1 , (10)

then k̃ = 0, so for the first d differences we obtain the simple conditions∣∣〈aj , s− t〉q
∣∣ ≤ (1 + 2µ(n+d)

)√
n+ d 2r−` <

q

2
. (11)

The last n differences (v − w)[j] are of the form (s − t)[j]/2`−1 and these also need to be
contained in the interval (8), but since we know that s ∈ Znq and we can assume that t ∈ Znq as
was explained above, then certainly (s− t)[j]/2`−1 are in the interval (8).
We now work backwards by fixing a vector t ∈ Znq , t 6= s, and estimate the probability that
there is a vector k ∈ Zd such that w ∈ Zn+d formed from these, as in (6), can be the output of
LLL-Babai with input u in the sense that for the first d differences (11) holds. As was explained
above, this is automatic for the last n differences, so we do not need to worry about those. If a
vector a ∈ Znq is chosen uniformly at random, then 〈a, s− t〉q is distributed uniformly at random
in Zq, so the probability that 〈a, s− t〉q is in the interval (8) is

2
⌊(

1 + 2µ(n+d)
)√

n+ d 2r−`
⌋

+ 1

q
. (12)

So for the fixed vector t, for each j = 0, . . . , d− 1 independently, the probability that (11) holds
is given by (12).

Lemma 1. The probability that there is a vector k ∈ Zd such that w ∈ Zn+d formed from t
and k, as in (6), can be the output of LLL-Babai with input u in the sense that all (11) hold is

≤

2
⌊(

1 + 2µ(n+d)
)√

n+ d 2r−`
⌋

+ 1

q

d .
The probability is taken over the d vectors aj chosen uniformly at random from Znq . ut

Next we compute the probability that in addition to v there are no other vectors w 6= v close
enough to u for LLL-Babai to find them. More precisely, we compute the probability that in
addition to s, there are no other vectors t 6= s that would yield a w (as in (6)) close enough to u.
There are qn− 1 possible vectors t 6= s for which the experiment of Lemma 1 can succeed or fail.
Using Lemma 1, we immediately get the following result.

Lemma 2. The probability that v is the only vector LLL-Babai can output is

> 1−
(
qn − 1

qd

)[
2
⌊(

1 + 2µ(n+d)
)√

n+ d 2r−`
⌋

+ 1
]d
,

where the vectors aj are chosen uniformly at random from Znq . ut

All we need to do is to ensure that the probability in Lemma 2 is very large so that the vector
returned by LLL-Babai with input u is almost certainly the correct vector v, from which s can
be read. To get a concrete result, we ask that this probability is at least 1− 1/2n, which yields
the inequality

2n
(
qn − 1

qd

)[
2
⌊(

1 + 2µ(n+d)
)√

n+ d 2r−`
⌋

+ 1
]d
≤ 1 .

A bit cleaner and just a tiny bit stronger is the inequality

2(r+1)n−rd
[(

1 + 2µ(n+d)
)√

n+ d 21+r−` + 1
]d
≤ 1 . (13)

To get an even simpler result, we instead ask that

2(r+1)n−rd
[
2µ(n+d)+2+r−`√n+ d

]3d/2
≤ 1 , (14)

which implies (13).

Remark 2. The exponent 3d/2 could be chosen to be significantly smaller. Namely, for large
enough n the exponent can be taken to be any arbitrarily small number bigger than 1. We will
discuss this later.

By taking logarithms in (14) we obtain

(r + 1)n+
rd

2
+

3d

2

[
µ(n+ d) + 2− `+ log2

√
n+ d

]
≤ 0 . (15)

For the sake of getting a neat result, we approximate

2 + log2

√
n+ d ≤ ε(n+ d) , ε =

2 + log2

√
n

n
,

to get

(r + 1)n+
rd

2
+

3d

2

[
µ(n+ d) + 2− `+ log2

√
n+ d

]
≤ (r + 1)n+

rd

2
+

3d

2
[(µ+ ε)(n+ d)− `] ≤ 0 .

This simplifies into

3(µ+ ε)d2 − [3`− r − 3(µ+ ε)n] d+ 2(r + 1)n ≤ 0 , (16)

which is possible when the discriminant is positive:

[3`− r − 3(µ+ ε)n]2 − 24(µ+ ε)(r + 1)n ≥ 0 . (17)

We assume that 3` − r − 3(µ + ε)n > 0, i.e. ` > r/3 + (µ + ε)n. In this case solving (17) and
using r > ` yields

` ≥ r

3
+ (µ+ ε)n+

√
8

3
(µ+ ε)(r + 1)n , r >

(
9

2
+ 3
√

2

√
1 +

1

3(µ+ ε)n

)
(µ+ ε)n . (18)

To get a nicer looking result, we use instead the bound

r >
21

2
(µ+ ε)n , (19)

which implies the bound for r in (18). Write

r =
21

2
(µ+ ε)n+ C ∈ O(n) ,

where C is a constant, so q ∈ 2O(n). The optimal value for d is

d =
3`− r − 3(µ+ ε)n

6(µ+ ε)
<

2r − 3(µ+ ε)n

6(2 + log2

√
n)
n <

3

2
(µ+ ε)n2 +

Cn

6
∈ O(n2) .

The last thing to check is that the bound (10) is indeed satisfied, but this follows easily from (15).
We have now obtained an analogue of Theorem 1.

Theorem 3. Let ε =
(
2 + log2

√
n
)
/n and suppose

r >
21

2
(µ+ ε)n , ` ≥ r

3
+ (µ+ ε)n+

√
8

3
(µ+ ε)(r + 1)n , d =

⌈3`− r − 3(µ+ ε)n

6(µ+ ε)

⌋
.

Then GHNPn,r,`,d can be solved in probabilistic polynomial time in n. A value of µ = 1/2 is
guaranteed to work so that the algorithm succeeds with probability at least 1− 1/2n.

Proof. LLL-Babai finds the approximate closest vector in the (n+d)-dimensional lattice Λn,r,`,d
in polynomial time in n + d ∈ O(n2). By the arguments above, if r and ` satisfy the given
(loose) bounds, we can expect the vector given by LLL-Babai to be good enough to recover s
with probability at least 1− 1/2n. According to Theorem 2, LLL-Babai is guaranteed to return
the closest vector up to an approximating factor with µ = 1/2, although in practice significantly
better performance, i.e. smaller µ, can be expected. ut

As was mentioned in Remark 2, the exponent 3d/2 in (14) can be taken to be any arbitrarily
small number bigger than 1 as long as n is large enough. We consider now the extreme case
where the exponent is taken to be 1. Then instead of (16) we obtain

(µ+ ε)d2 − [`− (µ+ ε)n] d+ (r + 1)n < 0 .

The discriminant must be positive, which instead of (18) yields

` ≥ (µ+ ε)n+ 2
√

(µ+ ε)(r + 1)n , r >

(
4 +
√

15

√
1 +

4

15(µ+ ε)n

)
(µ+ ε)n .

When n is large enough, it suffices to take for example r > 8(µ+ ε)n. In this case d = O(n).
As was mentioned earlier, a choice of µ = 1/2 is guaranteed to work [Bab86], but if the parameters
of LLL are chosen appropriately, then in fact µ ≈ 1/4 will work as long as n is large enough.
This means that r > 2n should work when n is large enough.

3 Key Recovery for LWE

In this section we apply Theorem 3 to attack search-LWE.

Definition 4 (search-LWE). Let n be a security parameter, q a prime integer modulus, r :=
log2 q, and χ an error distribution over Zq. Let s ∈ Znq be a fixed secret vector chosen uniformly
at random. Given access to d samples of the form(

a, [〈a, s〉+ e]q

)
∈ Znq × Zq ,

where a ∈ Znq are chosen uniformly at random and e are sampled from the error distribution χ,
the problem search-LWEn,r,d,χ is to recover s.
This is commonly also expressed as follows. Write the d coefficients vectors a as columns of a
matrix A ∈ Zn×dq , the d errors e as a column vector e ∈ Zdq , and the samples [〈a, s〉+ e]q as a

column vector t ∈ Zdq . Then the problem search-LWEn,r,d,χ is to recover s from the pair (A, t).
Note that this means solving s from

A>s + e ≡ t (mod q) .

Definition 5 (decision-LWE). With A, s, and χ as in Definition 4, solving decision-LWEn,r,d,χ
is to distinguish with some non-negligible advantage whether a pair (A, t) ∈ Zn×dq ×Zdq is sampled
uniformly at random, or if it is of the form (A,A>s + e (mod q)), where A ∈ Zn×dq is sampled
uniformly at random and e is sampled from χd.

In practice, the distribution χ is always taken to be a discrete Gaussian distribution DZ,σ. This
is the probability distribution over Z that assigns to an integer x a probability

Pr(x) ∝ exp

(
− x2

2σ2

)
,

where σ is the standard deviation. It is efficient, but non-trivial, to sample from such a distribution
up to any level of precision [GPV08, Pei10].
The main result of [Reg09] was that when q = poly(n) LWE can be proven to be hard in the
following sense.

Theorem 4 ([Reg09]). If q = poly(n), σ >
√
n/(2π) and d = poly(n), then there exists a

polynomial time quantum reduction from worst-case GapSVPÕ(nq/σ) to search-LWEn,r,d,DZ,σ .

For very large q the following classical reduction can be used.

Theorem 5 ([Pei09]). If q ≥ 2n/2, σ >
√
n/(2π) and d = poly(n), then there exists a poly-

nomial time classical reduction from worst-case GapSVPÕ(nq/σ) to search-LWEn,r,d,DZ,σ . For
smaller values of q security can be based on a classical reduction to an easier and less studied
decision lattice problem GapSVPζ,γ , where again the hardness depends on nq/σ being small.

Remark 3. It is important to realize that the usefulness of these security reductions depends
crucially on the ratio q/σ being relatively small. In practical applications the standard deviation
σ is often taken to be a small constant, instead of a function of q, so the ratio q/σ becomes
very large. This means that for practitioners the reductions typically have unfortunately little
significance.

Remark 4. In fact, the problems search-LWE and decision-LWE are essentially equally hard
due to the polynomial time search-to-decision reductions of [BLPRS13, MP12, Pei09, Reg09].
However, these reductions typically change the parameters of the LWE instance so that to break
a particular search-LWE instance one must break several, possibly significantly harder, decision-
LWE instances with exponentially good advantage.

To find the LWE secret s directly using Theorem 3 we need a way to read MSB`
(
〈a, s〉q

)
from [〈a, s〉+ e]q. If σ is small enough and ` big enough, this is likely to be possible by sim-
ply reading the ` most significant bits of [〈a, s〉+ e]q since adding e is unlikely to change them.
It is not hard to bound the value ` that a particular σ permits (with high probability), but we
will instead take a different approach by slightly modifying the proof of Theorem 3. Instead of
taking ui to be the MSB` parts of the inner products in the LWE samples as in (3), simply take

ui = [〈ai, s〉+ ei]q (20)

from the LWE samples and form the vector u just as in (5):

u =
[
u0, u1, . . . , ud−1, 0, . . . , 0

]
∈ Rn+d . (21)

If the standard deviation σ is so small that the absolute values of ei are very unlikely to be larger
than 2r−`, we can form the vector v as in (2) and obtain inequalities

|〈ai, s〉q − ui| < 2r−`

as in (4), and the rest of the proof goes through without change.

One detail was ignored above. For the argument to work, we need

[〈ai, s〉+ ei]q = 〈ai, s〉q + ei .

In applications of LWE to cryptography this is typically needed for decryption to work correctly.
Since the errors are assumed to be small, the probability of this not being true is extremely small.
To make things simpler, we assume this to be the case for all LWE samples, although adding it
as an additional probabilistic condition would be very easy.

Definition 6. For all LWE samples in Definitions 4 and 5 we assume

[〈a, s〉+ e]q = 〈a, s〉q + e .

To connect ` to the standard deviation σ, we need to know something about the mass of the
distribution DZ,σ that lies outside the interval

(
− 2r−`, 2r−`

)
.

Lemma 3 ([Ban93]). Let B ≥ σ. Then

Pr [|DZ,σ| ≥ B] ≤ B

σ
exp

(
1

2
− B2

2σ2

)
.

According to Lemma 3, the probability that the error has absolute value at least 2r−` is

≤ σ−1 2r−` exp

(
1

2
− 22r−2`−1

σ2

)
.

Of course in practice we want the probability of this happening for none of the d samples to be
very close to 1.

Lemma 4. The top ` bits of 〈ai, s〉q can be read correctly from all d LWE samples with probability
at least [

1− σ−1 2r−` exp

(
1

2
− 22r−2`−1

σ2

)]d
.

Now we take ` to be the lower bound in Theorem 3 to obtain our main result.

Theorem 6. Let ε =
(
2 + log2

√
n
)
/n and suppose r > (21/2)(µ+ ε)n. Let

` =
r

3
+ (µ+ ε)n+

√
8

3
(µ+ ε)(r + 1)n , d =

⌈3`− r − 3(µ+ ε)n

6(µ+ ε)

⌋
=

⌈√
2(r + 1)n

3(µ+ ε)

⌋
.

Then search-LWEn,r,d,DZ,σ can be solved in probabilistic polynomial time in n. A value of µ = 1/2
is guaranteed to work so that the algorithm succeeds with probability at least(

1− 1

2n

)[
1− σ−1 2r−` exp

(
1

2
− 22r−2`−1

σ2

)]d
.

ut

Of course the discussion after Theorem 3 applies here also, meaning that success can (roughly
speaking) be guaranteed in the sense of Theorem 6 when n is large enough, r > 2n and d is
chosen appropriately.

Remark 5. It is important to understand that Theorem 6 does not contradict Theorem 5, be-
cause even if σ is large enough for the reduction to apply, for large q it is entirely plausible
that GapSVPÕ(nq/σ) is easy.

4 Practical Performance

In the proofs of Theorems 3 and 6 we performed several very crude estimates to obtain a provably
polynomial running time with high probability. In practice we can of course expect the attack
to perform significantly better than Theorem 6 suggests. In this section we try to get an idea of
what can be expected to happen in practice.
The estimate in (4) is very crude on average. In the proof of Theorem 6 the differences

∣∣〈ai, s〉q − ui∣∣
are exactly equal to the absolute values of the errors ei, which are distributed according to DZ,σ.
If instead of using the rows of a matrix like that in (1) we use the rows of(

q1d×d 0d×n
A dσe 21−dre1n×n

)
,

where again A := [a0,a1, . . . ,ad−1] ∈ Zn×dq as in Definition 4, to generate the lattice Λn,r,`,d,
the expectation value of ||v − u||2 is

≤ dE
[
D2

Z,σ
]

+ ndσe2 = d
(
σ2 + E [DZ,σ]2

)
+ ndσe2 ≤ (n+ d) dσe2 ,

so we can expect the distance ||v − u|| to be bounded from above by
√
n+ d dσe.

Another significant improvement to the running time is to define an (n+ d)× d matrix(
q1d×d

A

)
(22)

and let Aq be its d × d row-Hermite normal form, i.e. Aq is a triangular matrix whose rows
generate the same Z-module as the rows of the matrix (22). Let Λ be the full d-dimensional
lattice generated by the rows of Aq. As before, let ui = [〈ai, s〉+ ei]q and set

u =
[
u0, u1, . . . , ud−1

]
∈ Rd . (23)

Now use LLL-Babai to find a vector close to u in the lattice Λ, i.e. a vector which is an integral
linear combinations of the rows of Aq. Simply express this in the original basis, i.e. in terms of
the rows of the matrix (22), to recover a candidate for s as the coefficients of the last n rows.
This is the approach that we will work with for the rest of this paper.
In this case we use

v =
[
〈a0, s〉q, 〈a1, s〉q, 〈a2, s〉q, . . . , 〈ad−1, s〉q

]
and find that the expected distance squared ||v − u||2 is

dE
[
D2

Z,σ
]

= d
(
σ2 + E [DZ,σ]2

)
= dσ2 ,

so that the expected distance ||v − u|| is σ
√
d.

A straightforward modification of the calculation yielding (13) shows that to succeed with prob-
ability at least p we can expect to need

log2(1− p) + r(d− n) > d log2

[
2
(

1 + 2µd
)
σ
√
d+ 1

]
. (24)

Remark 6. Instead of asking for a high success probability, we might only want to ask to succeed
with some positive probability, in which case we take p = 0.

Remark 7. Lattices that contain all coordinate vectors of length q are called q-ary lattices. The
lattice Λ is obviously a q-ary lattice.

4.1 Successful Attacks

All experiments described in the rest of this paper are examples of our key recovery attack run
for varying parameter sets. All attacks were run on a 2.6 GHz AMD Opteron 6276 using the
floating point variant of LLL [NS06] in PARI/GP [PARI2]. All LWE samples were generated
using the LWE oracle implementation in SAGE.
These experiments are intended to demonstrate the key points about our key recovery attack:

1. The time required to recover the secret key is roughly the running time of LLL, which has
been estimated in [NS06] to be approximately O(d4r2), where d is the dimension of the
lattice and r := log2 q. This prediction approximates very closely the running time of the
attack in practice, which is shown very clearly by the roughly linear graph in Figure 1 when
the running time is plotted against d4r2.

Fig. 1: Timings for Key Recovery Attacks (σ = 8/
√

2π, p = 0)

0 2e14 4e14 6e14 8e14 1e15
d4 r2

0

1000

2000

3000

4000

5000

T
im

e
 (

m
in

u
te

s)

Fig. 2: Timings for Key Recovery Attacks (σ = 8/
√

2π, p = 0)

100 150 200 250 300 350
Dimension of secret key: n

0

1000

2000

3000

4000

5000

T
im

e
 (

m
in

u
te

s)

2. The attack is practical in the sense that even running on a single machine, an instance of
LWE with n = 350 can be successfully attacked in roughly 3.5 days. Figure 2 shows the
running time of the attack (in minutes) for various n up to size 350.

3. The range of LWE parameters which can be successfully attacked via this polynomial time
key recovery attack depends very intimately on the approximation factor 2µd in the LLL-
Babai algorithm (LLL followed by Babai’s nearest planes method). Theorem 2 ([Bab86])
only guarantees µ ≤ 1/2, or µ ≤ 1/4 (see the discussion after Theorem 3), but in practice
significantly smaller µ can be expected. Any improvement to the approximation factor in the
LLL-Babai algorithm will have a direct and significant impact on which LWE parameters
are attackable in polynomial time. Furthermore, it is crucial to understand how the q-ary
structure (see Remark 7) of the lattice Λ affects the expected performance.

4. Our attack gives an indirect way to measure the effective value of µ in the approximation
factor 2µd of LLL-Babai for q-ary lattices: Because we can predict whether our attack will
succeed or fail fairly accurately based on the value of µ, we can run it on various parameter
sets and test whether the secret key was successfully recovered or not. Because the attack
is extremely efficient we can run it hundreds of times, for varying parameters, thereby ob-
serving effective bounds on µ. We have run these experiments and the results are show in
Figure 3. The green dots represent attacks which succeeded, thereby indicating that the
effective approximation factor was no more than the plotted value. The red dots represent
key recovery attacks which failed. These dots indicate a strong likelihood that for each key
dimension n the effective value of µ in the approximation factor lies somewhere between the
adjacent green and red dots, although this boundary is fuzzy due to probabilistic effects.

More specifically, to measure the practical performance of LLL-Babai and consequently of the
polynomial time key recovery attack, we define a function which is an expression for µ derived
from the formula for the likelihood that the attack will succeed (Equation 24):

µLLL(n, r, d, σ, p) :=
1

d
log2

[
(1− p)1/d 2r(1−n/d) − 1

2σ
√
d

− 1

]
≈ 1

d
log2

[
1

2
√
d
· q
σ
·
(

1− p
qn

)1/d
]
.

This function measures the effective performance of LLL-Babai in the sense that for an attack
to succeed with probability at least p we can expect to need µ ≤ µLLL in the approximation
factor 2µd.
An interesting further simplification is obtained by setting p = 0, which we already mentioned in
Remark 6. It is clear from the form of µLLL that the effect of p is very small unless p is extremely
close to 1. We use this choice from now on:

µLLL(n, r, d, σ, p = 0) ≈ 1

d
log2

[
1

2
√
d
· q
σ
· 1

qn/d

]
. (25)

The graphs in Figure 3 show a relatively clear boundary in the values of µLLL between failed and
succeeded attacks, which can then be extrapolated to bigger examples. We present the values
µLLL as functions of both and n and d, where d is the dimension of the lattice Λ for which LLL
was performed. A green dot indicates that the attack succeeded (correct s was recovered) and a
red dot that the attack failed (incorrect s was recovered).

Fig. 3: Effective approximation constant µ in LLL-Babai algorithm (σ = 8/
√

2π, p = 0)

75 100 125 150 175 200 225 250 275 300 325 350
Dimension of secret key: n

0.014

0.016

0.018

0.02

0.022

0.024

0.026

µ
L
L
L

250 300 350 400 450 500 550 600 650 700 750 800
Dimension of lattice: d

0.014

0.016

0.018

0.02

0.022

0.024

0.026

µ
L
L
L

The dimension d of course affects µLLL very strongly, so we want to choose it in an optimal
way given all the other parameters, i.e. in a way that maximizes µLLL. We let dopt be such that
∂dµLLL(n, r, dopt, σ, p = 0) = 0 (rounded to an integer). Parameter selection in all of the attacks
we performed was done by taking d ≈ dopt. For a particular value of n the experiments differ
only in the choice of r, and d ≈ dopt is always computed case-by-case. It is not hard to see that
when the example size increases, the value dopt approaches 2n.
In Table 1 we show more details of the experiments in Figure 3 that lie at the boundary of
succeeding and failing. In all these experiments q is taken to be the smallest prime larger than
some power of 2, so the value of r given is a very close approximation but not the exact value.

Table 1: Key recovery attacks and running times (in minutes) (σ = 8/
√

2π, p = 0)

Succeeded︷ ︸︸ ︷ Failed︷ ︸︸ ︷
n log2 q d µLLL Time (min) log2 q d µLLL Time (min)

80 16 255 0.016602 10 15 265 0.013818 9
90 18 270 0.019443 16 17 280 0.016941 15
100 19 300 0.019510 25 18 310 0.017245 24
110 20 315 0.019594 37 19 325 0.017523 33
120 22 340 0.021610 54 21 350 0.019680 56
130 23 355 0.021578 70 22 360 0.019792 68
140 24 380 0.021563 98 23 385 0.019898 86
150 26 395 0.023131 135 25 400 0.021563 121
160 27 420 0.023050 173 26 425 0.021575 157
170 28 440 0.022990 213 27 445 0.021597 190
180 29 460 0.022944 263 28 465 0.021624 252
190 31 480 0.024169 353 30 485 0.022911 338
200 32 500 0.024085 430 31 505 0.022887 379
210 33 520 0.024014 520 32 525 0.022871 480
220 35 540 0.025052 691 34 545 0.023956 621
230 36 560 0.024956 758 35 565 0.023906 767
240 38 580 0.025882 968 37 585 0.024872 917
250 39 600 0.025769 1155 38 605 0.024798 1057
260 40 625 0.025667 1409 39 625 0.024733 1291
270 41 645 0.025576 1592 40 645 0.024674 1466
280 42 665 0.025493 1898 41 670 0.024623 1665
290 44 685 0.026260 2315 43 685 0.025418 2158
300 44 710 0.025350 2388 43 710 0.024537 2169
310 47 725 0.026867 3549 44 725 0.024498 2775
320 48 745 0.026762 3582 47 745 0.025996 3469
350 52 805 0.027193 5335 51 810 0.026491 4626

4.2 Practical Key Recovery

In practice, key recovery in polynomial time can be performed as follows. The LWE problem
determines n, r and σ. Now find dopt and see if the corresponding µLLL is small enough for there
to be a chance for the attack to succeed. This can be done e.g. by extrapolating the boundary
from Figure 3. For performance reasons you might want to decrease d to be as small as possible
so that the attack can still be expected to succeed based on the value of µLLL. Now observe d
LWE samples, form the matrix (22), find the row-Hermite normal form Aq, form the lattice Λ
generated by the rows of Aq and use LLL-Babai to find the closest lattice point to u (as in (23)),
express the closest vector in terms of the original basis (rows of (22)) and read the last n entries
to find s.

5 Security Implications

Key recovery for LWE in polynomial time is only possible when the ratio q/σ is very large, which
can be seen for example from (25), and is suggested by Theorems 4 and 5. It is possible that
such a situation might never occur, since one could always ensure that σ is linear in q.
For practitioners in the field of homomorphic cryptography the situation looks radically different.
LWE parameters with very large q and very small constant σ are necessary to allow deeper circuits
to be evaluated reasonably efficiently. To make performance of such cryptosystems practical one
needs to push the limits of the secure parameter range. The results presented here are one step
further towards understanding more precisely how the security of LWE behaves for such extreme
parameters, but much more work is still needed to explain how for instance slightly more powerful
lattice reduction would change the situation.

Typically the security of LWE-based cryptosystems is evaluated by estimating the complexity
and performance of the best known lattice attacks against either search-LWE or decision-LWE.
Recall (Remark 4) that these problems are essentially equally difficult, although the practicality
of the search-to-decision reductions for an attacker is not clear.
Unfortunately, it is very difficult to give tight security estimates since the best lattice reductions
algorithms, such as BKZ-2.0 [CN11], are complicated and not well enough understood. Often only
attacks against decision-LWE are considered [MR09] when parameters are selected, even though
there are arguments suggesting that in fact attacking search-LWE directly is more efficient [LP11,
BG14, LN13].
A series of papers presenting applications of homomorphic encryption ([LNV11, GLN12, BLN14,
LLN14]) give recommended parameter sizes for (R)LWE based on attacks against decision-LWE.
For example, [GLN12] recommend two parameter sets for simple machine learning tasks to ensure
80 bits of security, (n, q) = (4096, 2128) and (n, q) = (8192, 2340), and [BLN14] suggests in addition
(n, q) = (214, 2512) for evaluating the logistical regression function. In [LN14] several parameters
are presented that are estimated to achieve a security level of 80 bits against an advantage of
2−80 for solving decision-LWE. We list these in Table 2.

Table 2: Bounds on r = log2 q for 80 bits of security against 2−80

distinguishing advantage (σ = 8/
√

2π)

n 1024 2048 4096 8192 16384

r ≤ 47.5 95.4 192.0 392.1 799.6

We would like to stress that the true security level of these parameters using the best known
lattice reduction attacks is not clear, and that large n such as n ≥ 8192 makes most homomorphic
cryptosystems too inefficient for many practical purposes (but not all). Using larger q and smaller
n would quickly result in huge performance benefits.

Example 1. We can try to extrapolate the results of our experiments presented in Table 1 and
Figure 3 to guess how large q needs to be for our attack to work with n = 1024. More work and
experiments are clearly needed to say anything conclusive, but one should be very worried about
using anything even close to q = 2140. According to the complexity estimates of LLL [NS06] such
an attack would take around 4 years to run using our setup.

Example 2. In [LN14], homomorphic evaluation of encryption and decryption circuits for block
ciphers is discussed and two homomorphic encryption schemes are compared, the Fan-Vercauteren
scheme [FV12] and YASHE [BLLN13]. As soon as one wishes to perform more than one homo-
morphic multiplication, the lower bound on q increases significantly. For example, using the
Fan-Vercauteren scheme, to be able to do 10 homomorphic multiplications with n = 1024 one
needs to have q ≥ 2229 to ensure correct decryption. When n is increased, the required lower
bound for q does increase, but slowly enough so that eventually a set of parameters is reached
that resists all known attacks. For example, it suffices to take n ≥ 4096 to be able to perform
10 homomorphic multiplications with the Fan-Vercauteren scheme and be safe at least against a
polynomial time attack.

We conclude with the following interesting observation. Performance estimates for the standard
attack against decision-LWE (see e.g. [MR09, LP11]) suggest that the probability for succeeding
is given by

exp
[
− π

(δd√2π σ

q1−n/d

)2]
, (26)

where d =
√
nr/ log2 δ [MR09] and δ is the root-Hermite factor of a reduced basis of a certain

d-dimensional lattice5. In [NS06] it is explained that, for a random lattice, LLL can be expected
to yield a basis with δ ≈ 1.021.

5 The lattice in question is the scaled dual of the lattice Λ.

Formula (26) again clearly shows how the security level decreases when q increases, and other
parameters are held fixed. Setting δ = 1.021 and computing some values of (26), we observe that
the probability of successfully breaking decision-LWE becomes high as q increases almost exactly
when our key recovery attack can be expected to succeed. In other words, search-LWE seems to
become easy almost exactly when decision-LWE becomes easy, for the exact same parameters.

References

[ACFFP13] M. Albrecht, C. Cid, J.-C. Faugere, R. Fitzpatrick, L. Perret, On the complexity of
the BKW algorithm on LWE, Designs, Codes and Cryptography 74, no. 2 (2013), pp.
325–354.

[ACFP14] M. Albrecht, C. Cid, J.-C. Faugère, L. Perret, Algebraic Algorithms for LWE, Cryp-
tology ePrint Archive, Report 2014/1018, 2014, http://eprint.iacr.org.

[AG11] S. Arora, R. Ge, New algorithms for learning in presence of errors, In Automata, Lan-
guages and Programming, pp. 403-415, Springer Berlin Heidelberg, 2011.

[Bab86] L. Babai, On Lovász’ lattice reduction and the nearest lattice point problem, Combina-
torica 6 (1986), Issue 1, pp. 1-13.

[Ban93] W. Banaszczyk, New bounds in some transference theorems in the geometry of numbers,
Mathematische Annalen 296, no. 1 (1993), pp. 625-635.

[BCNS14] J. Bos, C. Costello, M. Naehrig, D. Stebila, Post-quantum key exchange for the TLS
protocol from the ring learning with errors problem, IACR Cryptology ePrint Archive
Report 2014/599, 2014.

[BG14] S. Bai, S. Galbraith, Lattice decoding attacks on binary LWE, In Information Security
and Privacy, pp. 322–337, Springer International Publishing, 2014.

[BGV12] Z. Brakerski, C. Gentry, V. Vaikuntanathan, (Leveled) fully homomorphic encryption
without bootstrapping, In Proceedings of the 3rd Innovations in Theoretical Computer
Science Conference, pp. 309–325, ACM, 2012.

[BKW03] A. Blum, A. Kalai, H. Wasserman, Noise-tolerant learning, the parity problem, and
the statistical query model, Journal of the ACM (JACM) 50, no. 4 (2003), pp. 506–519.

[BLLN13] J. W. Bos, K. Lauter, J. Loftus, M. Naehrig, Improved security for a ring-based fully
homomorphic encryption scheme, In Cryptography and Coding, pp. 45–64, Springer
Berlin Heidelberg, 2013.

[BLN14] J. W. Bos, K. Lauter, M. Naehrig. Private Predictive Analysis on Encrypted Medical
Data, Journal of Biomedical Informatics (2014) DOI 10.1016/j.jbi.2014.04.003.

[BLPRS13] Z. Brakerski, A. Langlois, C. Peikert, O. Regev, D. Stehlé, Classical hardness of
learning with errors, In Proceedings of the forty-fifth annual ACM symposium on The-
ory of computing, pp. 575-584. ACM, 2013.

[Bra12] Z. Brakerski, Fully homomorphic encryption without modulus switching from classi-
cal GapSVP, In Advances in Cryptology–CRYPTO 2012, pp. 868-886, Springer Berlin
Heidelberg, 2012.

[BV14] Z. Brakerski, V. Vaikuntanathan, Efficient fully homomorphic encryption from (stan-
dard) LWE, SIAM Journal on Computing 43, no. 2 (2014), pp. 831-871.

[BV11] Z. Brakerski, V. Vaikuntanathan, Fully homomorphic encryption from ring-LWE and
security for key dependent messages, In Advances in Cryptology–CRYPTO 2011, pp.
505-524, Springer Berlin Heidelberg, 2011.

[BV96] D. Boneh, R. Venkatesan, Hardness of computing the most significant bits of secret
keys in Diffie-Hellman and related schemes, Advances in Cryptology—CRYPTO’96,
pp. 129-142, Springer Berlin Heidelberg, 1996.

[CN11] Y. Chen, P. Nguyen, BKZ 2.0: Better lattice security estimates, In Advances in Cryp-
tology–ASIACRYPT 2011, pp. 1-20, Springer Berlin Heidelberg, 2011.

[FV12] J. Fan, F. Vercauteren, Somewhat Practical Fully Homomorphic Encryption, Cryptology
ePrint Archive, Report 2012/144, 2012, http://eprint.iacr.org.

[GLN12] T. Graepel, K. Lauter, M. Naehrig, ML Confidential: Machine Learning on Encrypted
Data, International Conference on Information Security and Cryptology – ICISC 2012,
Lecture Notes in Computer Science 7839, pp. 1–21, Springer Verlag, December 2012.

[GN08] N. Gama, P. Nguyen, Predicting lattice reduction, In Advances in Cryptol-
ogy–EUROCRYPT 2008, pp. 31-51, Springer Berlin Heidelberg, 2008.

http://eprint.iacr.org
http://eprint.iacr.org

[GPV08] C. Gentry, C. Peikert, V. Vaikuntanathan, Trapdoors for hard lattices and new crypto-
graphic constructions, In Proceedings of the fortieth annual ACM symposium on Theory
of computing, pp. 197-206. ACM, 2008.

[GS15] S. Galbraith, B. Shani, The Multivariate Hidden Number Problem, Cryptology ePrint
Archive, Report 2015/111, 2015, http://eprint.iacr.org.

[LLL82] A. Lenstra, H. Lenstra, L. Lovász, Factoring polynomials with rational coefficients,
Math. Ann. 261 (1982), no. 4, pp. 515-534.

[LLN14] K. Lauter, A. Lopez-Alt, M. Naehrig, Private Computation on Encrypted Genomic
Data, LatinCrypt 2014 (GenoPri 2014).

[LM09] V. Lyubashevsky, D. Micciancio, On bounded distance decoding, unique shortest vectors,
and the minimum distance problem, In Advances in Cryptology-CRYPTO 2009, pp.
577-594, Springer Berlin Heidelberg, 2009.

[LN13] M. Liu, P. Nguyen, Solving BDD by enumeration: An update, In Topics in
Cryptology–CT-RSA 2013, pp. 293-309, Springer Berlin Heidelberg, 2013.

[LN14] T. Lepoint, M. Naehrig, A comparison of the homomorphic encryption schemes FV
and YASHE, In Progress in Cryptology–AFRICACRYPT 2014, pp. 318-335, Springer
International Publishing, 2014.

[LNV11] K. Lauter, M. Naehrig, V. Vaikuntanathan. Can Homomorphic Encryption Be Practi-
cal?, CCSW 2011, ACM Cloud Computing Security Workshop 2011.

[LP11] R. Lindner, C. Peikert, Better key sizes (and attacks) for LWE-based encryption, In
Topics in Cryptology–CT-RSA 2011, pp. 319-339, Springer Berlin Heidelberg, 2011.

[LPR13] V. Lyubashevsky, C. Peikert, O. Regev, On ideal lattices and learning with errors over
rings, Journal of the ACM (JACM) 60, no. 6 (2013), 43.

[MP12] D. Micciancio, C. Peikert, Trapdoors for lattices: Simpler, tighter, faster, smaller, In
Advances in Cryptology–EUROCRYPT 2012, pp. 700-718. Springer Berlin Heidelberg,
2012.

[MR09] D. Micciancio, O. Regev, Lattice-based cryptography, In Post-quantum cryptography,
pp. 147-191, Springer Berlin Heidelberg, 2009.

[NS06] P. Nguyen, D. Stehlé, LLL on the average, Algorithmic Number Theory, pp. 238-256,
Springer Berlin Heidelberg, 2006.

[PARI2] The PARI Group, PARI/GP version 2.7.2, 2014, Bordeaux, available online from
http://pari.math.u-bordeaux.fr/.

[Pei09] C. Peikert, Public-key cryptosystems from the worst-case shortest vector problem, In
Proceedings of the forty-first annual ACM symposium on Theory of computing, pp.
333-342, ACM, 2009.

[Pei10] C. Peikert, An efficient and parallel Gaussian sampler for lattices, In Advances in Cryp-
tology–CRYPTO 2010, pp. 80–97, Springer Berlin Heidelberg, 2010.

[Reg09] O. Regev, On lattices, learning with errors, random linear codes, and cryptography,
Journal of the ACM (JACM) 56, no. 6 (2009): 34.

[Shp05] I. Shparlinski, Playing ”hide-and-seek” with numbers: the hidden number problem, lat-
tices, and exponential sums, In Proceedings Of Symposia In Applied Mathematics, vol.
62, p. 153, 2005.

[vdPS13] J. van de Pol, N. Smart, Estimating key sizes for high dimensional lattice-based systems,
In Cryptography and Coding, pp. 290-303, Springer Berlin Heidelberg, 2013.

http://eprint.iacr.org
http://pari.math.u-bordeaux.fr/

	Key Recovery for LWE in Polynomial Time

