
The Hint Mechanism in Code Hunt

Daniel Perelman
University of Washington

perelman@cs.washington.edu

Judith Bishop
Microsoft Research

jbishop@microsoft.com

Sumit Gulwani
Microsoft Research

sumitg@microsoft.com

Dan Grossman
University of Washington
djg@cs.washington.edu

Abstract
How does one help students who become stuck on a problem?
Specific hints for specific solutions can miss the point when one
has thousands of students with different needs. We use data mining
and program synthesis to generate hints that are tailored to the
progress of the student. Our results indicate that we can provide
accurate hints and also nudge the student along. Yet problems
remain: should hints be given at all? Should students be able to
turn them off? Do we have evidence that students read the hints? Is
there a plateau after which the hint system will not improve even
when more data is provided? Our work is based on Code Hunt
from Microsoft Research, using data similar to the recently released
public data set.

1. Introduction
Students sometimes get stuck on a problem, so feedback is a nec-
essary part of the educational process. In order to teach students
at scale we need to automatically produce feedback. But without
experimentation and data we cannot know exactly what form this
feedback should take.

In the Code Hunt programming game[5] we implemented a
couple of new forms of feedback which we refer to as the hint
system. Our “line hints” use program synthesis paired with data
mining known solutions to find the nearest solution to a player’s
attempt and tell them they are close by letting them know which
line they can change to reach a solution. Our “recommendation
hints” use statistics on known attempts to determine if the player
is using a method call associated with a dead-end solution strategy
and warn them away from it or alternatively suggest a method call
that will point them in the direction of the solution.

These two forms of feedback were designed based on our in-
tuition of what might be helpful to a player and what we could
meaningfully extract from the data we had.

But this raised multiple questions:

1. Is this is right form of feedback? Our intuition could be wrong.
Maybe the general concept is right but our wording is poor?
Maybe more or less detail would be better? Maybe some com-
pletely different form of feedback would be better?

2. When should this feedback be given? Can we guess when a
player is struggling and give them a hint then? Or how long
should we let the player struggle before they pass from feeling
challenged to just feeling frustrated?

3. What should the UI look like? Currently hints are always shown
as soon as they are generated. Maybe the player should have to

request them? Or at least have an option to turn them off or
otherwise not see hints they weren’t expecting? Some players
might be discouraged by seeing hints when they wanted to solve
the puzzles without help.

We made a first attempt at answering these questions by running
an A/B test where we disabled hints for some players and compared
the behavior of players that saw hints versus those that did not.
These initial results were positive—players that saw hints played
the game for longer—but only give a small glimpse into answering
those questions.

Luckily, with the platform we have we can run additional such
tests on other aspects of our hint system once we have the right
questions to ask.

2. Related work
There has been a recent burst of interest in automated feedback
techniques for introductory computer science assignments.

Singh et.al. [3] take as input a reference solution and an error
model, which consists of a set of rewrite rules inspired from com-
mon errors and corresponding fixes, and corrects an incorrect stu-
dent submission using the SKETCH program synthesizer [4]. The
feedback they generate is a set of changes to the program which
they output in a few forms of varying detail (e.g. the exact change,
just the location of the change, etc.).

Alur et. al. [1] restrict themselves to the easier problem of au-
tomated personalized feedback for finite automata. Unlike general
programs, many properties of finite automata are computable, al-
lowing them to generate fairly detailed feedback.

CodeWebs [2] takes a large number of submissions along with
the results of a test suite on each one and groups them by syntactic
similarity. By clustering submissions they can figure out which
expressions are equivalent in the context of the assignment (even
if they aren’t equivalent in general) and other information that can
be useful for generating assignment-specific feedback.

References
[1] R. Alur, L. D’Antoni, S. Gulwani, D. Kini, and M. Viswanathan. Auto-

mated grading of DFA constructions. In Proceedings of the Twenty-
Third international joint conference on Artificial Intelligence, pages
1976–1982. AAAI Press, 2013.

[2] A. Nguyen, C. Piech, J. Huang, and L. Guibas. Codewebs: Scalable
homework search for massive open online programming courses. In
Proceedings of the 23rd International World Wide Web Conference
(WWW 2014), 2014.



[3] R. Singh, S. Gulwani, and A. Solar-Lezama. Automated feedback gen-
eration for introductory programming assignments. In Proceedings of
the 34th ACM SIGPLAN conference on Programming language design
and implementation, pages 15–26. ACM, 2013.

[4] A. Solar Lezama. Program Synthesis By Sketching. PhD thesis, EECS
Department, University of California, Berkeley, Dec 2008.

[5] N. Tillmann, J. Bishop, R. N. Horspool, D. Perelman, and T. Xie. Code
hunt: Searching for secret code for fun. In SBST, 2014.


	Introduction
	Related work

