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ABSTRACT

This paper proposes an unsupervised training approach for SLU sys-
tems that leverages the structured semantic knowledge graphs of the
emerging Semantic Web. The approach creates natural language sur-
face forms of entity-relation-entity portions of knowledge graphs us-
ing a combination of web search retrieval and syntax-based depen-
dency parsing. The new forms are used to train an SLU system in an
unsupervised manner. This paper tests the approach on the problem
of intent detection, and shows that the unsupervised training proce-
dure matches the performance of supervised training over operating
points important for commercial applications.

Index Terms— spoken language understanding, intent detec-
tion, structured knowledge-based search, semantic web

1. INTRODUCTION

Spoken language understanding (SLU) has seen considerable ad-
vancements over the past two decades [1]. While understanding
language is still considered an unsolved problem, a variety of practi-
cal goal-oriented SLU systems have been built for limited domains.
These systems aim to automatically identify the intent of the user
as expressed in natural language, extract associated arguments or
slots, and take actions accordingly to satisfy the user’s requests. In
such systems, the speaker’s utterance is typically recognized using
an automatic speech recognizer. Then the intent of the speaker is
identified from the recognized word sequence using a SLU compo-
nent. Subsequent to the SLU processing, a dialog or task manager
interacts with the user to help the user achieve their desired task.

Early work that led to most modern SLU systems include the
DARPA project called Airline Travel Information System (ATIS) [2].
In the original ATIS project, the task consisted of spoken queries on
flight-related information. An example utterance is “I want to fly to
Boston from New York next week”. In this case, much of the SLU
problem was reduced to the problem of extracting task specific argu-
ments in a given (semantic) frame, such as Destination and Depar-
ture Date. And another aspect of SLU in ATIS was on the problem
automatic intent classification. While the primary intent (or goal)
was Flight, users also expressed other intents such as Ground trans-
portation or Airplane specifications.

Both statistical and knowledge-based approaches were used in
the ATIS project. Most of the knowledge-based approaches (e.g., [3])
originated from the field of artificial intelligence (AI). These meth-
ods leveraged deep semantics and relied heavily on rules and formal
semantic interpretations. The interpretations mapped sentences into
their logical forms: a context-independent representation of a sen-
tence covering its predicates and arguments (intents, slots). For ex-
ample, if the sentence is ”John loves Mary”, the logical form would
be Love(John, Mary). An important special case of logical forms

is an entity-relation representation. As defined in the 1997 W3C
Resource Description Framework (RDF), entity-relation representa-
tions can play an equivalent role to logical forms in many semantic
frame-based language understanding tasks.

While the concept of using semantic frames in ATIS were moti-
vated by the case frames of AI, the intents and slots were very spe-
cific to the target domain. In addition, labeled/annotated example
queries in sufficient volume for experimentation were made avail-
able for the task. Both of these factors enabled the SLU researchers
to employ well established statistical classification methods for in-
tent determination and slot filling(e.g., [4]). As a result, while the
initial SLU systems in the ATIS project employed knowledge-based
approaches, the statistical approaches began to dominate over time.
For the targeted language understanding tasks typical of ATIS, these
machine-learning methods proved to be more accurate and flexible
than purely knowledge-based approaches.

But statistical methods have been shown to have their limita-
tions as well. State-of-the-art statistical SLU systems require tasks
to be limited in scope; the SLU is performed over a small number
of narrowly defined, known domains, with hand-crafted domain-
dependent schemas (ontologies). In addition, high accuracy of sta-
tistical SLU methods rely on supervised training patterns (i.e., the
patterns are manually labeled with the true domains, intents, slots).
These characteristics of statistical SLU systems have forced devel-
opers to spend considerable energy crafting one domain at a time
and ultimately limit the ability of the systems to scale in breadth of
domains and external knowledge sources, as well as remain flexible
to changes in task definition.

As a result, there has been an increased level of research over the
past several years to address these limitations of statistical systems.
New lightly supervised and unsupervised training methods rely on
side information to automatically provide training labels (domain,
intent, and slots). An example is our previous work on leveraging
web search query click logs for mining additional training data and
enriching classification features. With these methods, we have seen
significant reductions in domain [5], intent [6], and slot filling [7]
error rates.

In our most recent work, we have begun to exploit the combi-
nation of statistical approaches with methods inspired by the deep
semantic methods from the AI community. These methods are made
possible by the emergence of semantically rich representations of
knowledge graphs (the so-called semantic web) created by the large
web search companies. In [8], we exploit the semantic structure of
the web pages users visited when completing tasks.

In this paper, we extend this idea in several ways. Rather than
relying on clicked web pages, we exploit the recent emergence of the
large-scale semantic graphs in the web search community. Specifi-
cally, we more directly leverage the structure of the semantic graphs
to automatically specify a semantic representation for SLU. The se-
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mantic representation guides the creation of entity-relation patterns
that are used to mine natural language (NL) surface forms from the
web. These NL surface forms are used to enrich the original se-
mantic graph; the forms are attached to each knowledge concept and
associated relations on the graph. Finally, these surface forms are
used to automatically train SLU systems in an unsupervised manner
that cover the knowledge represented in the semantic graph. In this
paper, we demonstrate the utility of the approach for SLU on the
problem of (unknown) intent detection.

Intent detection aims to find utterances that are in the domain of
the dialog system, but are not covered by the current application. For
example, while a spoken dialog system that aims to provide informa-
tion to users about movies may know about movie directors, it may
not know which awards are granted to which movies. So, detecting
an utterance such as ”Did Avatar get any of the Oscars?” as such
an utterance is the scope of intent detection. While the frequency
of such utterances depends on the scope of the application as well
as the user interface design, in human-initiative dialog systems, they
are expected to appear frequently.

2. EXPLOITING THE SEMANTIC WEB

The methods developed in this paper rely on the extensive com-
plementary literature on the semantic web [9, 10] and semantic
search [11]. In the 1997 W3C Resource Description Framework
(RDF), a simple yet powerful triple-based representation was used
for the Semantic Web. A triple typically consists of two entities
linked by some relation. As stated previously, this is an important
special case of the well-known predicate/argument structure of log-
ical forms used in the AI community. For example, Directed By
(Avatar,James Cameron) is included in the knowledge graph to state
that “the director of the movie Avatar is James Cameron”.

As RDFs became more popular, triple stores (knowledge-bases)
covering various domains like Freebase1 emerged. However, to cover
the entire web, the immediate bottleneck was the development of a
global ontology to represent all domains. Efforts to manually build
an “Ontology of Everything” include Cyc [12]. A more recent and
promising effort is being driven by companies with large-scale web
search engines (Microsoft, Google) and adopted by many academic
institutions. This effort is based on the initiative schema.org2. This
initiative provides a collection of schemas (ontologies) that web-
masters can use to semantically and uniformly markup their pages.
The collection is growing everyday, with new contributions from
many sources. Search engines like Bing, Google, and Yandex have
adopted the ontology of schema.org and are leveraging it to support
semantic search that will eventually grow to the scale of the web.
An example RDF segment pertaining the artist Yo-Yo Ma is shown
in Figure 1. One can easily see that he was born in Paris in 1955, and
is an author of the music albums Tavener and Appalachian Journey.

These semantic ontologies are not only used by search engines,
which try to semantically parse them, but also by the authors of web
pages. While the details of the semantic web literature is beyond the
scope of this paper, it is clear that these kinds semantic ontologies are
very close to the semantic ontologies used in goal-oriented natural
dialog systems.

2.1. Enriching Semantic Graphs with NL Surface Forms

Given the structured knowledge-bases of the web include entities
(e.g., movies, organizations, restaurants, etc.) and relations (e.g.,

1http://www.freebase.com
2http://www.schema.org

Fig. 1. A segment of a semantic web pertaining to Yo-Yo Ma [9]

Fig. 2. Extracting surface forms from semantically structured KB.

director, founder, menu), our goals for SLU are twofold: (1) enrich
these knowledge bases with natural language surface forms and (2)
use these surface forms to train statistical models in SLU systems.
Examples of surface forms are shown in Table 1.

Entity Relation Entity NL Surface Form
COMPANY Founder PERSON COMPANY is founded by PERSON

PERSON, founder of COMPANY
Who is the founder of COMPANY
Which company is PERSON a founder

MOVIE-NAME Director PERSON MOVIE-NAME directed by PERSON
PERSON’s MOVIE-NAME
The critically acclaimed movie MOVIE-NAME directed by PERSON

Table 1. Example NL surface forms from structured KBs.

Figure 2 shows a semantically structured knowledge-base in
graph form, and the process used in this study for extracting NL
surface forms. Given an entity in the graph, the process starts by
forming web search queries through a simple conjunction with re-
lated entities. For example, the entity “Life is Beautiful” (a movie)
is related to the entity “Roberto Benigni” (a director), so the formed
web search query is “Life is Beautiful” and “Roberto Benigni”. Fig-
ure 3 shows a portion of the search results page for the query “Life
is Beautiful” and “Roberto Benigni”.

Once the web search queries are formed, the process retrieves
the top-N most relevant documents from the web using a standard
search engine (e.g., Bing, Google). The summarized captions or
snippets of the retrieved documents on the search results page are
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Fig. 3. Example search results for the query “Life is Beautiful” and
“Roberto Benigni”.

used as the source of NL surface forms. In this study we employ
the Berkeley Parser [13], a state-of-the-art parser trained from a tree-
bank following a latent variable approach by iteratively splitting non-
terminals. We use the LTH Constituency-to-Dependency Conversion
toolkit3 to form dependency parses from the output parse trees. Once
the sentences returned by Bing search are dependency parsed, the al-
gorithm picks the smallest dependency sub-tree that includes the two
entities of the branch on the semantic graph. For example, Figure 4
shows the dependency parse of the sentence “James Cameron di-
rected Titanic and he did the best job you could ask for”, and the
word sequence corresponding to the smallest sub-tree including the
two entities James Cameron and Titanic. From the knowledge repos-
itory, we know that one of the entities is the Director-name, and the
other is the Movie-name. The candidate pattern from this sentence
is obtained by replacing these entities with their entity tokens.

After the patterns are extracted using their dependency parses,
a score, s(p), for each pattern, p, is computed using the following
equation:

s(p) = P (rel1|p)− P (rel2|p)
where P (reli|p) is the probability of the ith most probable relation
given the pattern. The goal is to extract the set of most distinguishing
patterns for the specific type of entity relation. Hence, the patterns
with highest scores are assigned to their most probable relations.

2.2. Unsupervised Learning from Structured Knowledge

Traditional training of SLU systems requires queries to be manu-
ally labeled (domain, intent, and slots). But this supervised train-
ing limits the breadth of the SLU semantic coverage. Leveraging
the enriched semantic graphs described in the previous section, we
can automatically infer SLU labels on training data. With the auto-
matic labels, we can train SLU systems in an unsupervised manner.
Given the breadth of available semantic graphs (e.g., Freebase), we
can greatly expand the coverage of domains, intents, and slots of the
SLU system. Each branch of the semantic graph provides additional
coverage for the SLU system, and the training proceeds by crawling
through the graph until the knowledge-base is completely traversed.
Given the unsupervised, automated nature of our proposed method,
when a new structured knowledge source becomes available, the sys-
tem can learn the new knowledge, i.e., natural language patterns that
are frequently used when realizing the relation of entity pairs, in a
push-button manner. These patterns can then be used to generate
or mine additional training data or as features for machine learning.
In this work, we take the approach of exploiting sentences/search

3http://nlp.cs.lth.se/software/treebank converter/

snippets that include common patterns as additional training data for
enhancing the data for known intents, and creating data for unknown
intents. This provides an important methodology to scale conversa-
tional understanding systems to the scale of the web.

3. INTENT DETECTION

In spoken language understanding, an area of active research is de-
veloping methodologies to treat users’ utterances which cannot be
handled by the application or back-end system. This problem arises
because systems are typically designed to operate over limited and
narrow domains, which is often required to achieve accurate speech
recognition and understanding. Depending on the experience of the
user and the effectiveness of the dialog design, users may provide
utterances that cannot be handled by the application or back-end sys-
tem.

As a result, language understanding systems usually process the
input query with multiple passes, with the first pass used to detect
whether or not the system can satisfy the user’s intent, i.e., what the
user wants to accomplish. This processing step is called intent detec-
tion. For example, in the restaurant domain with the user query “I’d
like to make a reservation at Xahn Restaurant”, the system must de-
termine whether or not it can satisfy the intent of making a restaurant
reservation.

3.1. Methodology

The basic components of an intent detector are shown in Figure 5.
The input query (spoken or text) is processed to extract features that
convey intent information. The intent detector employs a method
similar to a likelihood ratio test to distinguish between two hypothe-
ses: the input query is a known intent (target) or not known (non-
target). Features extracted from the input query are evaluated against
a model representing the known intents, generating a score. Sim-
ilarly, a score is computed against a model representing all other
unknown (background) intents. For a likelihood ratio test, a final
score,Λ, is computed as a ratio of likelihoods from each model (or
difference in the log domain). This score is then compared to a
threshold, θ: if greater, then make an “Accept” decision (the intent
is known) and if less, then “Reject” the intent as unknown.

Λ(X) = max
z
{Sz} − Sb (1)

where Sz is the score of the input query against the z-th intent model,
and Sb is the score of the background model (BGM).

Fig. 5. Intent Detector

3.2. Intent Modeling

The intent model is composed of models for all of the known intents,
as shown in Figure 6. In this paper, we use a discriminative Boosting
toolkit called icsiboost [14] to train N one-versus-others classifiers
for each of the N known intents. The toolkit implements a form of
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Fig. 4. Extraction of a pattern from a given sentence using dependency parsing. The two entities searched are shown in red fonts.

Adaptive Boosting [15] which uses one-level decision trees to im-
plement a greedy search over weighted linear combinations of weak
classifiers. The modeling of intents are completed over discrete word
N-grams.

Fig. 6. Intent Model
At runtime, the input query is evaluated against the weak classi-

fiers, each of which assign a score to the query for each intent, and
the top scoring intents are assigned to the query.

3.3. Background Modeling

3.3.1. Out-of-Domain Detection

For cases where the utterance is out of the domain, such as “where is
the closest hotel” to a movies application, the intent detection prob-
lem is referred to as out-of-domain (OOD). This problem has been
studied in previous literature and several effective methods have been
established (for example in [16]). The most common approach for
OOD detection is to simply train a background model on queries
from intent classes other than those from the target domain. It has
been shown that the performance of the detector is relatively insensi-
tive to the choice of the non-target domains as long as the distribution
and quantity of domains and queries are relatively large. And given
the readily available queries from non-target domains, high perform-
ing OOD detectors are relatively straightforward to develop.

3.3.2. In-Domain, Unknown Intent Detection

When the users’ utterance is in-domain but still not known or cov-
ered by the capabilities of the application, the system needs to detect
this condition and respond appropriately. We will call this lesser
known and more difficult problem in-domain unknown (IDU) intent
detection. An example of IDU detection is when the user queries
an application built to support movie theater showtimes with “what
was the box office revenue for avatar”. In this example, the utter-
ance is in the domain of movies but the system was not programmed
to understand “box office revenue”. When IDU queries are detected,
often the best system response is to indicate to the user that system
understood the domain of the request but was not able to complete
the action (e.g., “I’m sorry. I don’t know the box office revenue for
avatar”).

Compared to OOD detection, IDU detection is typically more
difficult. The challenges arise because many of the differentiating
features (e.g., lexicon representing entities, relations, actions) be-
tween target and non-target utterances in OOD detection are no longer
useful for IDU; many of these features now overlap between tar-
get and non-target utterances. For example, words such as “hotel”
and entity-types such as HOTEL-NAME and HOTEL-AMENITIES
may not be present in a movie theater show times application. But
the word “movies” is likely to overlap in queries about a movie’s
box office revenue and movie theater show times. This ambiguity
presents a significant and important challenge to commercial spoken
language understanding systems.

3.4. Performance

Targeted language understanding systems typically complete a first
pass on the query and decide whether to accept or reject it. The
decision is made by comparing the system’s confidence score to a
threshold. If the score exceeds the threshold, accept the utterance
for further processing, otherwise reject it. Rejections are often fol-
lowed by a reprompt or some other dialog with the user to clarify
their intent. The rejection may be due to various factors, including
excessive noise in the speech signal or linguistic ambiguity or uncer-
tainty.

Detection tasks trade off two types of errors: miss and false ac-
ceptance. A miss, or false rejection, occurs when the system in-
correctly misses a “target” query; one that should have been under-
stood by the system (e.g., in domain). False acceptances occur when
the system incorrectly accepts a “non-target” query and decides the
query is valid (in domain and known) when, in fact, the query should
have been rejected as OOD or IDU.

To tradeoff the two error types, a single performance number is
inadequate, and a performance curve over multiple operating points
is used. One approach used for this purpose is ROC (Receiver Oper-
ating Characteristic) curves. The ROC curve plots the probabilities
over the two error types on a linear scale. Another approach that
has gained traction and been adopted in the speech processing com-
munity is the DET (Detection Error Tradeoff) curve [17]. The DET
curve plots the probabilities of miss versus false accept on a normal
deviate scale: the x- and y-axes are scaled non-linearly by the stan-
dard normal deviates between the score distributions for targets and
non-targets, yielding tradeoff curves that are more linear than ROC
curves.

For intent detection, the operating point on the DET curve is typ-
ically selected to minimize a cost measure, where the cost combines
the separate costs (e.g., to the user experience) of the two error types.
This can be written as

C = Cmiss· PTgt· Pmiss|Tgt + Cfa· PNonTgt· Pfa|NonTgt (2)

where the total cost, C, is a probabilistic combination of the cost of
a miss Cmiss of a target intent, and the cost of a false accept Cfa of
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Query Intent
“create a list of the top ten banks by employees” Find Company (General)
“what is the price of your common preferred and adjustable stock” Find Stock Information
“show how much money was spent by Microsoft on advertising” Find Finances
“what are analysts saying about investing in the Coca Cola company stock” Find News
“can you tell me about the sales revenue from the last quarter” Find Revenue
“which cell phone model had the largest number of complaints in 2011” Find Products
“show the highest paid tech CEO and his salary versus company revenue” Find Leadership
“chart Apple’s sales for last year” Find Annual Sales
“show me any history and info on the treasurer of Dell” Find People
“find me all the overseas offices for Apple and rank them by highest market cap then by liabilities” Find Location

Table 2. Example queries and intents from the business domain.

a non-target intent. Here, the prior probabilities of a target and non-
target are given as PTgt and PNonTgt, respectively, and the curve of
operating points that represents the quality of the intent detection is
given by the likelihood measures Pmiss|Tgt and Pfa|NonTgt.

4. EXPERIMENTS

We considered the problem of intent detection in the business do-
main. Example queries for the 10 known intent classes of the busi-
ness domain are shown in Table 2. We define 27 other intents to
represent unknown classes. To study the effectiveness of our un-
supervised training methods of this paper, we train separate intent
classes for the 10 known target intent classes shown in Table 2, and
then a train a single background model (BGM) in an unsupervised
manner to represent the remaining unknown non-target classes.

The training data for the intent models consists of 4,032 queries
distributed across the 10 known intent classes of Table 2, with the
Find Company (General) class having the most tokens (35.8%) and
Find Location having the least (3.1%). For each set of models, we
use icsiboost to discriminatively train the intent detector. Specifi-
cally, all detectors use bigram features, and are trained with 1000
Boosting iterations with the default smoothing value of 0.5.

The test data for the IDU detection experiments consists of 899
queries covering both the 10 known intent classes as well as the other
(unknown) 27 intents. The distribution of queries over the known in-
tent classes in the test data was approximately the same as the train-
ing data.

Each query for both training and testing was processed with a
named-entity recognizer (NER). The NER used a multi-pass, longest
string match method against a large collection of entities from Mi-
crosoft Bing’s enriched version of freebase.org.

Referring to the intent detection cost measure in Equation 2, the
prior probability of the known, target intent class PTgt and unknown
intent PNonTgt as well as the cost of errors Cmiss and Cfa determine
the operating point on the system’s performance DET curve. To be
most illustrative, we will show the entire DET curve. But it should
be noted that the portion of the DET curve that is likely more impor-
tant for many applications is the upper left (lower Pfa|NonTgt). This
is because a false accept typically leads to the system taking an erro-
neous action, whereas a miss simply generates a reprompt. To high-
light this region of the DET curve, we will compute the Pmiss|Tgt

for low Pfa|NonTgt for each curve.
The first experiment compares the tasks of OOD and IDU de-

tection. We seek to confirm the supposition that IDU detection rep-
resents an inherently more difficult task. Figure 7 shows the per-
formance of the two tasks on the DET curve. The upper right DET
curve with the highest error rates is the baseline IDU system trained
over the 10 known intent classes with no background model. The
OOD detector’s performance is the second curve from the upper
right. For comparison, the same system was used for both the OOD

Fig. 7. DET curves for OOD and IDU intent detection

and IDU detectors; the only difference was the testset. The IDU
testset is described above. For the OOD system, a testset was con-
structed using 3,627 queries from the Movies domain (e.g., “when
is the second season of vampire diaries coming out”), along with
the same set of in-domain queries as the IDU test. The equal-error-
rates (EER), or the operating point where the two detection errors are
equal, and the Pmiss|Tgt at Pfa|NonTgt = 10% for the two tasks are
shown in Table 3. As can be seen, the OOD performance is consis-
tently better (lower detection error) across all of the operating points
as compared to the IDU system. The EER drops from 36.5% of the
IDU detector to 31.3%, and the Pmiss@Pfa=10% drops by 29.8% (rel.)
from 73.4% to 51.5%.

EER Pmiss@Pfa=10%

Baseline IDU (no BGM) 36.5% 73.4%
Baseline OOD (no BGM) 31.3% 51.5%
OOD (w/ BGM) 9.5% 9.1%

Table 3. Comparison of OOD and IDU intent detection

For comparison to OOD systems reported in the literature, we
include results on an OOD detector with a background model (BGM).
The BGM was trained with 4,732 queries from the other domains
(Hotels, Restaurants). Example OOD queries from this testset in-
clude “four star affordable suites of america that have a separate
reading area” and “find the phone number of bamboo garden belle-
vue”. With the BGM, the EER drops to 9.5%, which is comparable
to the best OOD reported [16].

Given the relative complexity of IDU detection and importance
for commercial conversational understanding systems, and the ease
of building an effective OOD detector, the primary focus of this pa-
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Fig. 8. DET curve of the proposed unsupervised SLU method

per is IDU detection. With the increased ambiguity of in-domain but
unknown intent classes, we require higher precision training queries
for the BGM. Figure 8 and Table 4 compare four systems: a Base-
line IDU detector with no BGM (same baseline as the IDU vs OOD
experiments above), a Baseline IDU detector trained with queries
processed by the named-entity recognizer as described above, and
two IDU detectors with BGMs trained with and without supervised
intent class labels. For the unsupervised training, we used 23,561
NL surface forms from the enriched semantic graphs. These were
produced with the procedure described in Section 2. The number of
retrieved search results (and associated captions) used was N = 10.
Example queries for the Find Founder intent class are shown in Ta-
ble 1. For the supervised training of the BGM, we used hand-crafted
queries, following the same procedure used to create the training
queries.

EER Pmiss@Pfa=10%

Baseline IDU (no BGM) 36.5% 73.4%
(no BGM, Named Entity Recognition) 35.1% 72.2%
IDU (w/ Supervised BGM) 26.4% 54.3%
IDU (w/ Unsupervised BGM) 27.0% 53.5%
IDU (w/ Combined BGM) 25.2% 47.8%

Table 4. Results of the proposed unsupervised SLU method

As can be seen, the performance of the unsupervised semantic
graph-based method developed in this paper approximately matches
the performance of the supervised training in the EER and upper left
(low Pfa) regions of the DET curve. The unsupervised method’s
EER is 27.0% compared with 26.4% for supervised, and 53.5% at
Pmiss@Pfa=10% for unsupervised training, compared with 54.3% for
supervised. The unsupervised EER is 26% better (rel.) than the
baseline, and it is not significantly different than supervised (z-test).
The supervised BGM does, however, perform significantly better in
the high Pfa (low Pmiss) region of the curve. When the supervised
and unsupervised training data is combined, the resulting system im-
proves, with an EER of 25.2% and the Pmiss@Pfa=10% is 47.8%,
which is 34.9% better (rel.) than the baseline and significantly better
than either the supervised or unsupervised BGM.

5. CONCLUSIONS

This paper proposed an unsupervised training approach for SLU sys-
tems that exploits the structure of semantic knowledge graphs from

the web. The approach enriched the semantic graph with NL surface
forms created from entity-relation-entity portions of the knowledge-
base. Realizations of intents were created using a syntax-based de-
pendency parsing method. This paper tested the approach on the
problem of intent detection, and showed that the unsupervised train-
ing procedure matched the performance of supervised training over
operating points important for commercial applications. Future work
will extend the approach to intent determination and slot filling.
Acknowledgements: The authors would like to acknowledge Ash-
ley Fidler for the data collection and annotation efforts, and Gokhan
Tur for many helpful discussions.
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