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ABSTRACT

In this paper, we evaluate the effectiveness of adaptation methods
for context-dependent deep-neural-network hidden Markov models
(CD-DNN-HMMs) for automatic speech recognition. We investi-
gate the affine transformation and several of its variants for adapting
the top hidden layer. We compare the affine transformations against
direct adaptation of the softmax layer weights. The feature-space
discriminative linear regression (fDLR) method with the affine trans-
formations on the input layer is also evaluated. On a large vocabulary
speech recognition task, a stochastic gradient ascent implementation
of the fDLR and the top hidden layer adaptation is shown to reduce
word error rates (WERs) by 17% and 14%, respectively, compared to
the baseline DNN performances. With a batch update implementa-
tion, the softmax layer adaptation technique reduces WERs by 10%.
We observe that using bias shift performs as well as doing scaling
plus bias shift.

Index Terms— Context-Dependent Deep-Neural-Networks,
HMM, speech recognition, speaker adaptation

1. INTRODUCTION

The context-dependent deep-neural-network hidden Markov model
(CD-DNN-HMM) is a recent acoustic modeling technique that sig-
nificantly outperforms the earlier state-of-the-art Gaussian-mixture-
model based HMMs (GMM-HMMs) on several automatic speech
recognition (ASR) tasks [1, 2]. CD-DNN-HMMs differ from the ear-
lier artificial neural network (ANN)/HMM hybrids in that they have
typically three or more hidden layers (hence deep) instead of one and
that the output layer is much larger. Specifically, CD-DNN-HMMs
model the tied context-dependent states (a.k.a. senones) directly.

Even though ASR systems are trained on large amounts of data,
mismatches between the training and testing conditions are still un-
avoidable due to the speaker and environment differences. Much
like other systems built upon statistical techniques, CD-DNN-HMM
based ASR systems may fail to produce the same level of perfor-
mance when tested under mismatched conditions.

A substantial amount of work has been conducted to improve the
performance of the GMM-HMM based ASR systems under the mis-
matched conditions. A comprehensive review of the existing adapta-
tion techniques designed for the GMM-HMMs can be found in [3].
The key idea of these techniques is to adapt either the model or the
feature so that the mismatch between the training and testing con-
ditions can be reduced. In the literature, several methods have also
been proposed to compensate for the mismatches in the ANN/HMM

hybrid systems [4, 5, 6]. Here we briefly review these techniques
that motivated this work.

The first technique applies affine transformations to the in-
puts and outputs of a neural network [4]. The linear input network
(LIN) [4, 7] augments a speaker-independent neural network (SINN)
with a linear input layer. The augmented layer has the same dimen-
sion as the original neural network input layer. Similarly, the linear
output network (LON) augments the SINN with a linear layer at
the output, right before the softmax functions are employed. It was
shown, however, in [4] that LON performs worse than the baseline
SINN. Transformations on the weights of both input and hidden
layers of an ANN are investigated in [5]. As the second technique
developed for ANN, the linear hidden network (LHN) in [5] applies a
linear transformation to the activations of the internal hidden layers.
Similar to the LIN and LON, the weights of the LHN are estimated
with the standard back-propagation algorithm [8] keeping frozen the
weights of the original network. Better results are reported in [5]
with LHN than with LIN. The third technique [6] changes the shape
of the activation function to better fit the speaker-specific features.

Effort has also been made to reduce the mismatch in the context
of DNN. For example, [9] investigates several widely used feature-
space transformations, such as the vocal tract length normalization
(VTLN) [10] and feature space maximum likelihood linear regres-
sion (fMLLR) [11], that are originally developed for GMM-HMMs.
The proposed feature-space discriminative linear regression or fDLR
is similar to LIN [4, 7, 12] with two differences. First, it is applied to
DNN instead of shallow networks. Second, the weights of the aug-
mented linear layer in fDLR is shared by all the frames in the input
window. The fDLR [9] was observed to perform similarly for DNNs
as fMLLR for GMM-HMMs.

This paper further investigates adaptation techniques on the top
hidden layer of CD-DNN-HMMs. The motivation is based on a view
of the DNN as a two-step process: nonlinear feature extraction at
lower layers followed by a log-linear classification layer at the top.
We report in this paper two variants of affine transformation in the
top hidden layer adaptation and report their results. In addition, we
investigate an adaptation method that directly changes bias param-
eters of the top-level log-linear model. We also report results that
combine the fDLR and the top layer adaptation.

2. A BRIEF REVIEW OF CD-DNN

A DNN [1, 2, 13] consists of an input layer, an output layer, and
many hidden layers. Denote the input vector at time t at layer ` as
v`(t), the weight matrix as W` and bias vector as a`. The DNN
computes the posterior probabilities of conditionally independent
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hidden binary units h`(t) given the input vector. In practice, the
i-th element, h`i(t), is computed as follows

v`+1
i (t) = E`h|v{h`i(t)|v`(t)} = σ(a`i +W`

iv
`(t)), (1)

where σ(x) = (1+exp(−x))−1 is the sigmoid function. The above
elements are the inputs to the next layer `+1. The input to the lowest
layer ` = 0 is the observation vector o(t).

For CD-DNN-HMM [1], the top layer L is a softmax function
for each context-dependent phone state (a.k.a senone) id s; i.e.,

pLs (s|vL(t)) =
exp(aLs +WL

s v
L(t))∑

j exp(a
L
j +WL

j v
L(t))

. (2)

The DNN may be initialized using “pre-training”, which uses a
contrast divergence algorithm on restricted Boltzmann machine
RBM [14] for layers up to L − 1. Alternatively, it may use random
initialization. The top layer weights are usually randomly initial-
ized. Once the initialization is done, a fine-tuning process using
back-propagation algorithm updates all of the DNN parameters.

The DNN may be viewed from a discriminative feature learn-
ing perspective [9], in which the estimation of the posterior prob-
ability pLs (s|o(t)) can be considered as a two step process. The
first step transforms the observation vector o(t) into a feature vector
vL(t) through L layers of non-linear transformations, which may
use the sigmoid function. In the second step, the posterior probabil-
ity pLs (s|o(t)) is estimated using the log-linear model with feature
vL(t) as in (2).

The conventional log-linear model for ASR [15] uses observa-
tion vector o(t) and its derivatives such as second-order differen-
tials as the features. DNN, on the contrary, automatically learns the
feature through many layers of non-linear transformations that max-
imize a discriminative objective function. In fact, our adaptation
algorithms are motivated from this discriminative feature-learning
view.

3. THE DNN ADAPTATION ALGORITHMS

We consider the outputs from the layer L − 1 as the observation
vectors to the top level log-linear model. For notational convenience,
we denote the observation vector as x(t) as defined by

x(t) = EL−1
h|v {h

L−1(t)|vL−1(t)} (3)

with each element of xi(t) = EL−1
h|v {h

L−1
i (t)|vL−1(t)}.

We use hard alignment of senones and observations; i.e., at each
time t, there is only one senone associated with the observation x(t).
The objective function is frame-wise maximum mutual information
(MMI) over the T samples X = {x(t)} with ground-truth senone
labels s(t); i.e.,

D(X) =
∑
t

log p(s(t)|x(t)). (4)

We introduce an affine transformation of x(t) as follows:

x̂(t) = Mx(t) + c, (5)

where M denotes a rotation and scaling matrix. c is a bias shift
vector. Notice that this affine transformation formula is commonly
used as feature space maximum likelihood linear regression (fM-
LLR) [11] in GMM-HMM adaptation. There are two important dif-
ferences to the normal fMLLR; First, x(t) has much larger dimen-
sion than the normal MFCCs. In our case, the dimension of x(t) is

2048, versus 36 of MFCCs features. Second, the transformation M
and c are estimated discriminatively using the objective function in
(6), whereas fMLLR uses maximum likelihood estimates.

3.1. Gradients and updating formulae for M and c

The objective function is

D(X,M, c) =
∑
t

log p(s(t)|x(t),M, c) (6)

For ease of reading, we derive the estimation of c in more detail.
Estimations of M can be easily followed.

Expanding (6) with (2), we have the gradient with respect to c
as

∂D

∂c
=
∑
t

∂

∂c
(aLs(t) +WL

s(t)(Mx(t) + c)

− log
∑
j

exp(aLj +WL
j (Mx(t) + c)))

=
∑
t

WL
s(t)

T −
∑
j

exp(aLj +WL
j (Mx(t) + c)∑

j exp(a
L
j +WL

j (Mx(t) + c)
WL

j

T

=
∑
t

(
WL

s(t) −
∑
j

p(j|x(t),M, c)WL
j

)T
, (7)

where superscript T denotes transpose.
The gradient with respect to M is derived similarly to above as

∂D

∂M
=

∑
t

(
WL

s(t) −
∑
j

p(j|x(t),M, c)WL
j

)T
x(t)T .

(8)

Because data for speaker adaptation may be limited, we usually only
use the diagonal elements of M. In this case, the formula above is
the same except that only the diagonal elements are updated.

The transformation M and c are updated iteratively with the
above gradients according to

M ← M+ εM
∂D

∂M
(9)

c ← c+ εc
∂D

∂c
, (10)

where εM and εc are the step size for updating M and c, respec-
tively. To decide these step sizes, we first compute the l2 norm of
the gradients, and then divide the gradient with the norm and multi-
ply each element with a constant (e.g. 0.1).

For the example of c, the step size for updating is

εc =
ξ

| ∂D
∂c
|
, (11)

where ξ is the small constant. In such a way, the change of c is
always a fraction of the norm of ∂D

∂c
.

3.2. Updating the top-level log-linear model parameters

Notice that by applying M and c we get

aLj +WL
j (Mx(t) + c) = aLj + ŴL

j x(t) +WL
j c

= âLj + ŴL
j x(t), (12)
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which corresponds to an indirect bias update âLj = aLj + WL
j c

and an indirect weight matrix update ŴL
j = WL

j M to the top-
level log-linear model parameters. This fact suggests that instead
of transforming x(t), alternatively, we can estimate and update the
top-level log-linear model parameters âLj and ŴL

j directly as the
mechanism for adaptation.

For the sake of speaker adaptation, the amount of adaptation data
is often not sufficient to update the weight matrix WL. Hence, we
only derive an update of aL, the bias vector in the log-linear model 1.
Without considering M and c and referring to (4) and (2), the gradi-
ent with respect to aLs is

∂D

∂aLs
=

∑
t

(δ(s(t) = s)− p(s|x(t)) . (13)

Similar to (9) and (10), the bias aL is updated as

âL = aL + εaL
∂D

∂aL
, (14)

where the step size εaL is derived similarly to (11) as ξ

‖ ∂D
∂aL
‖

.

3.3. The feature-space discriminative linear regression

A transformation may be applied to the DNN layers other than the
top one. In particular, [9] proposes the fDLR method that applies
affine transformation on the input vectors. The affine transformation
is estimated using back propagations (BP) [8]. This requires doing
back-propagation from the top layer to the bottom layer. In terms of
computational cost, it requires L-times of computations of adapting
on the top layer.

In case of using a context window of several frames of obser-
vations, the fDLR usually estimates a block-diagonal transformation
matrix, with each block corresponding to a frame of the observa-
tions. The fDLR averages the BP estimated transformations of these
blocks to have a smoothed transformation for the context window of
observations. We will report the results of the fDLR, together with
adaption of the top layer in Sec.4.2.

3.4. Discussions

Notice that for GMM-HMM adaptation of large vocabulary speech
recognition (LVSR), the feature dimension is usually much smaller
than the number of GMM parameters. Therefore it is reasonable to
do feature-space transformation in GMM-HMM, instead of chang-
ing model parameters. However, in adapting the top-level log-linear
model of CD-DNN, the dimension of the last hidden layer outputs is
either larger or comparable to the number of senones. We thus find
it is practical to change DNN parameters, especially our change is
only on the top layer.

We can either estimate the transformation M and c using a batch
update or using a stochastic gradient update. In the batch update, the
gradients are estimated and accumulated for each adaptation utter-
ance. On the other hand, the stochastic gradient method randomly
collects observation samples and forms mini-batches. The batch
mode update usually requires loading the whole adaptation data into
memory which may not be affordable under some conditions. In
contrast, the stochastic gradient update approach demands smaller
memory size. However, it is hard to do parallel updating on the
stochastic gradient method.

1Alternatively, we may introduce regularization similarly as in [16].

Table 1. Word error rates by adaptation on the DNN using the
stochastic gradient implementations

Methods WER WERR (in %)
GMM-HMM 43.6
DNN 34.1 -
DNN + c 29.4 13.9
DNN + fDLR 28.5 16.8
DNN + fDLR + c 28.3 17.0

4. EXPERIMENTAL EVALUATION

4.1. Setups

We conduct automatic speech recognition (ASR) experiments on an
internal Xbox voice search data set. The scenario supports distant
talking voice search (of music catalog, games, movies, etc.) using
a microphone array. The training set consists of 40 hours of the
voice search data. The evaluation was conducted on data from 6
speakers. For each speaker approximately 200 utterances are used
for supervised adaptation and approximately 200 utterances are
used for testing. The total number of tested words is 5185. There
is no overlap among training, adaptation and test sets. The fea-
tures are 13-dimension Mel filter-bank cepstral coefficients (MFCC)
with delta and delta-delta coefficients, further transformed from
52-dimension to 36-dimension by heterogeneous linear discrimi-
nate analysis (HLDA) [17]. Per-device cepstral mean subtraction
is applied. The speaker independent (SI) acoustic model has 7k
Gaussian components and 1509 senones trained with the standard
maximum likelihood estimation (MLE) procedure. The trigram
language model used in the system was trained on the transcriptions
of all the data to ensure no out-of-vocabulary word exists in the
language model. The baseline CD-DNN-HMMs system was trained
on the same training data, excluding HLDA, as the GMM-HMMs
system. The input has a context window size of 9, forming a vector
of 468-dimension (52× 9). On top of the input layer, there are three
hidden layers with 2048-dimension each. The output layer has a
dimension of 1509. The DNN system was trained using the senone
alignments from the GMM-HMM system.

4.2. Results: Stochastic gradient implementation of the adapta-
tion techniques

Table 1 reports the WERs by GMM-HMMs and DNNs. The base-
line GMM-HMM has WER of 43.6% on average of the test set. Us-
ing DNN, the WER is reduced to 34.1%, corresponding to 21.8%
relative WER reduction (WERR). The table also shows results ob-
tained using a stochastic gradient implementation of the affine trans-
formations. Adapting on the top layer by the bias shift c reduces
WERs to 29.4%, a 13.9% relative WERR compared to the speaker-
independent DNN system. Using fDLR, the WERs are reduced to
28.5%, a 16.8% relative WERR. We also combine updating c on the
top layer with fDLR. Using fDLR on top of updating c, the WER is
reduced to 28.3%.
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Table 2. Word error rates on the top layer adaptation using batch
updates implementations

Methods WER
DNN + c (Eq. 10) ) 30.9
DNN + diagM+ c (Eqs. 9 and 10 ) 30.8
DNN + a (Eq. 14) 31.9

4.3. Results: Batch-update implementation of the adaptation
techniques

Table 2 reports the WERs achieved by adapting the top layer. These
results were obtained using batch updates2. The step sizes for esti-
mating c and M are set to 0.1 and 0.01 respectively. The algorithms
update estimates of affine transformations in 20 iterations. The
results show that two variations of affine transformations achieve
almost the same performances, reducing WERs approximately by
9.7% compared against the speaker-independent DNN system. This
indicates that much of the performance gains are obtained by the
bias shift c. Adaptation on the log-linear model bias a directly
reduces WERs to 31.9%, a relative 6.4% WERR. We conjecture that
this is because when using affine transformations of the top hidden
layer activations, the bias shift c is shared by all the senones and
thus can be more reliably estimated than the log-linear model bias a,
whose element can be robustly estimated only if the corresponding
senone is observed many times in the adaptation data. However,
numerical effects can also cause performance differences so further
experiments on other datasets may be necessary.

5. CONCLUSIONS AND DISCUSSIONS

Adaptation of neural networks is known to be more difficult than the
GMM counterpart for ASR. In this paper we report our recent inves-
tigation on several adaptation techniques for CD-DNN-HMM based
ASR. The techniques we have developed work by transforming the
outputs of the final hidden layer of the DNN, amounting to modi-
fying parameters of the log-linear (softmax) model at the final layer
of the DNN. We have developed two types of implementation for
the above adaptation techniques. Both implementation types lead to
significant reduction of ASR word error rates on top of a baseline
DNN-HMM system. The batch update of the adaptation method
achieves 10% relative WER reduction. A stochastic gradient ascent
implementation of the method reduces the WER by 14% relatively.
We also evaluated the fDLR method, leading to 17% relative WERR.
These results seem to suggest that adaptation on CD-DNN-HMMs
not only is possible but also can be very effective at least on some
LVSR tasks.

Note that the results may be further improved by sharing the
affine transformations based on regression trees. We also plan to
investigate the effectiveness of affine transformations at other layers
in the DNN than have reported in this paper.

2A pilot experiment indicated that, to estimate affine transformations, si-
lence segments should not be excluded. Notice that this is different from
fMLLR estimation that usually excludes silence segments.
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