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Abstract

A large shared computing platform is usually divided in-
to several virtual clusters of fixed sizes, and each virtual
cluster is used by a team. A cluster scheduler dynami-
cally allocates physical servers to the virtual clusters de-
pending on their sizes and current job demands. In this
paper, we show that current cluster schedulers, which op-
timize for instantaneous fairness, cause performance in-
consistency among the virtual clusters: Virtual clusters
with similar loads see very different performance char-
acteristics.

We identify this problem by studying a production
trace obtained from a large cluster and performing a sim-
ulation study. Our results demonstrate that when using
an instantaneous-fairness scheduler, a large VC that con-
tributes more resources during underload periods can not
be properly rewarded during its overload periods. These
results suggest that not using resource sharing history is
the root cause for the performance inconsistency.

1 Introduction

Data-intensive computing is important for a large num-
ber of applications, including large-scale data mining,
data analytics, and bioinformatics. At the same time,
clusters of commodity servers are a major computing
platform, powering these large-scale data-intensive ap-
plications. Driven by this trend, researchers and prac-
titioners have been developing various cluster comput-
ing frameworks to simplify the programming of clusters
and to use cluster resources efficiently. Prominent ex-
amples include MapReduce [7], Hadoop [4], Dryad [10],
and Cosmos [6], among others [19, 15, 17].

A large cluster is normally shared among several team-
s within an organization, rather than being dedicated to
a single team. The benefits of sharing are compelling:
First, sharing allows teams to exploit a large number of
servers that would be infeasible without sharing. Sec-

ond, from the system point of view, sharing improves
resource utilization by multiplexing the resources among
several teams. For example, the web document ranking
team in large commercial search engine runs its ranking
algorithm (e.g., PageRank) daily for a massive number
of crawled documents, running on thousands of servers
and lasting for a few hours. Without sharing, the ranking
team would need to provision a large dedicated cluster,
which will be underutilized.

As a concrete example we consider Cosmos [6], which
is a production system that executes jobs similar to those
in MapReduce and Hadoop and is used extensively in-
side Microsoft. A Cosmos cluster can span over 100,000
servers. Organizational units within Microsoft pay for
a portion of the cluster, and in return receive a “virtual
cluster” (VC). For example, a cluster user (i.e., an organi-
zational unit) pays the cost of 1,000 servers and in return
receives a VC of 1,000 servers to run its jobs. Servers
in a VC are not dedicated, but are allocated dynamical-
ly whenever the VC has jobs. Furthermore, additional
idle servers (if available) can be allocated to a busy clus-
ter temporarily. Therefore, although the size of a user
VC is only 1,000 servers, its VC can use many more idle
servers from other idle VCs.

Sharing brings a key challenge: long term fairness.
We want to ensure fairness within a large enough time
window among VCs when they compete for resources.
Figure 1 shows the performance of 115 VCs in a large
Cosmos cluster during one month. Each point represents
one VC. The X-axis shows the load, which is equal to the
total work (server hours) of the VC in the month divided
by its total capacity (number of servers). In other words,
load factor = 1 is equivalent to having 100% utilization
for the VC during the month. The Y-axis shows the av-
erage stretch of jobs in the VC. Stretch is response time
normalized to job size and VC capacity (as defined lat-
er). The figure shows both the merits and challenges of
sharing. On the positive side, sharing allows some VC-
s to use more than their capacity. VCs with load factor
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Figure 1: The performance of 115 virtual clusters (VCs) mon-
itored from a large Cosmos system during one month (Sep.
2011).

> 1 benefit from sharing: In particular 10 VCs have load
factor > 3, which is equivalent to 300% utilization. Fur-
thermore, overall system utilization is increased; without
sharing many clusters would be underutilized. On the
negative side, the figure shows a major problem: Some
VCs with less than 50% utilization have long stretches
(with response times over a few hours), and in contrast
some VCs with very high load have short stretches (with
very short response times in minutes).

The figure shows long-term unfairness: Two VCs with
similar load can have dramatically different responsive-
ness, and a much more heavily loaded VC may even have
much better performance (smaller stretch) than a lightly-
loaded VC. This causes several problems to the system
operator. Performance inconsistency is the most promi-
nent problem. Teams may even double the size of their
VCs with little or no performance improvement. This
has direct financial implications since teams are charged
for owning servers, and teams paying the same amount
of money may have very different performance experi-
ences.

To address these challenges, we perform a trace-driven
study based on a production trace of a large Cosmos
cluster to reveal the causes of performance inconsistency
in real systems. A traditional cluster scheduler [6, 18]
uses mainly the current demand and capacity to make
scheduling decisions, which we call an instantaneous-
fairness scheduler. The well-known MaxMin fairness
scheduler [13] and Hadoop fair scheduler [3] are exam-
ples of an instantaneous-fairness scheduler. We find that
such schedulers do not exploit VC usage and sharing his-
tory, and therefore, they do not provide performance con-
sistency among VCs over time (or “long-term fairness”).

The contributions of this work are two-fold: (1) We i-
dentify the performance inconsistency problem in shared
computing clusters. (2) We build a simulator and use
a production trace from a large cluster to show how

instantaneous-fairness schedulers cause performance in-
consistency.

The remainder of the paper is organized as follows:
Section 2 elaborates the scheduling model. Section 3
describes our evaluation methodology including work-
load, simulation design and performance metric. Section
4 uses the simulation results to illustrate performance in-
consistency of instantaneous-fairness schedulers and its
cause. Section 5 discusses related work and Section 6
discusses the design challenge of the solution. Finally,
Section 7 presents our conclusions.

2 Scheduling Model

We explain how users interact with Cosmos and model
the system in terms of resource distribution and alloca-
tion.

Each Cosmos user (a user here is a team) owns a virtu-
al cluster (VC) that has a capacity in terms of the number
of servers purchased by the team. A user submits jobs to
its VC, and the demand of all jobs in a VC constitutes the
VC’s demand. Instead of allocating a fixed number of
servers to VCs, most systems [3, 18] allow VC server al-
location to fluctuate dynamically: When a VC demands
less than its capacity, the VC gets what it demands and
the idle servers are allocated to other VCs as additional
servers. In return, the VC may receive, during overload,
additional servers from under loaded VCs. In our model,
we use ai, ci and di to denote the allocation, capacity and
demand of VCi at time t. We focus on the system sched-
uler that allocates servers to VCs instead of the VC-level
scheduler that schedules jobs within a VC. We assume
that the jobs are malleable: the number of servers allo-
cated to a job can be adjusted during the job’s execution;
Cosmos and MapReduce jobs belong to this category.

3 Experimental Methodology

We evaluate performance consistency using trace-driven
simulations with workload from a commercial data cen-
ter. We use the well-known MaxMin scheduler [13] for
instantaneous fairness. Notice that the widely adopt-
ed Hadoop Fair scheduler [3] is also an example of a
MaxMin scheduler.

3.1 Workload
Cosmos [6] is a large production data-intensive compu-
tation platform system similar to MapReduce systems.
Cosmos clusters contain tens of thousands of servers for
hundreds of users (VCs). We collect a one-month trace
(Sep 2011) of a commercial cluster containing about
50,000 servers shared by 115 users. We observe that job
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distribution does not follow the usual diurnal cycle, as the
system serves teams from all over the world. This fac-
t brings more challenges because the workload behavior
and size of jobs are more diverse.

To reproduce the diversity of workload behavior, we
choose six VCs (two under-utilized, three fully-utilized
and one over-utilized) with different load characteristics
to assess the performance inconsistency. Figure 2 de-
picts the daily aggregated load of the six VCs as well
as the daily load of each VCs. The figure shows that it is
common that one VC is over-demanding while another is
under-demanding. Under such circumstances, sharing is
a major factor that affects VC performance. Scheduling
resources to achieve performance consistency is critical
in such a sharing system.
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Figure 2: The load fluctuation of six VCs in the one-month
trace. The Y-axis is the amount of work of the day. One ma-
chine hour denotes the work done by one machine in one hour.

3.2 Simulation design
Trace-driven simulator. We build a trace-driven simu-
lator using desmoj [1], which is a discrete-event library.
Our simulator replays a trace from a trace file containing
job information, including the submission time, job size,
and parallelism. The output of the simulator includes de-
tailed execution information for each job as well as gen-
eral statistical information such as mean response time.

The total number of machines simulated is 4,000,
which is a sum of the capacity of the six VCs plus ad-
ditional 1,250 machines owned by Cosmos system. Cos-
mos has additional machines for providing fault toler-
ance and for running system maintenance jobs; these ma-
chines are available to the VCs when they are not running
system jobs.

3.3 Performance metric
We measure the performance of each job using the
stretch metric, which indicates normalized responsive-
ness of the job. Stretch is defined as the execution time
divided by the ideal execution time of the job. To com-
pute the ideal execution time, we divide the job size (in
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Figure 3: VC stretch with different loads under produc-
tion workload.

terms of server hours) by its ideal resource allocation —
when the job takes the entire VC capacity. We choose
ideal resource allocation as the capacity of its VC based
on two considerations. On one hand, if idea resource
allocation is smaller than the VC capacity, then the VC
may require at least two concurrently running jobs to ful-
ly use its resources. On the other hand, if it is higher than
the VC capacity, the VC will always over-demand its ca-
pacity (even with only one running job), which obviates
sharing opportunities. Therefore, the definition of job
stretch is as follows:

job stretch=
real execution time
ideal execution time

=
real execution time

job size/VC capacity
.

Notice that job stretch is a normalized performance met-
ric and thus overcomes the shortcomings of real-valued
metrics such as response time. As jobs have diverse
sizes, comparing the response time of jobs from two VC-
s may not be meaningful. Stretch eliminates this draw-
back. A larger stretch of a job indicates the job performs
worse. In particular, a job with stretch of 1 means that
the job is performing the same as the case that the job
owns the entire VC by itself. The VC stretch is the mean
stretch of all its containing jobs. In later experiments, we
distinguish between VC stretch and job stretch.

Stretch can be computed once the job has finished, as
job size can be obtained only after job completion.

4 Experimental Results

This section illustrates performance inconsistency and its
cause based on simulation results driven by Cosmos trace
of a commercial data center.

Figure 3 shows the results when simulated with the
MaxMin scheduler. We want VCs with similar load to
have similar performance, and we call this property per-
formance consistency. However, as shown in the results,
three fully-utilized VCs (VCc, VCd and VCe) with dif-
ferent burstiness patterns observe different performance.
In the meantime, the over-utilized VC (VCf ) has a better
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performance than two fully-utilized VCs. These results
show that instantaneous-fairness schedulers do not main-
tain performance consistency among VCs with similar
load; They fail to provide long-term fairness for practi-
cal workloads. Furthermore, to reveal the cause of this
performance inconsistency, we choose two fully-utilized
VCs with different performance and examine their load
and performance over time.
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(a) The load fluctuation.
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(b) The VC stretch. Lower is better.

Figure 4: Daily load and performance of two VCs with similar
overall load.

Figure 4 inspects the daily load fluctuation and perfor-
mance for the two VCs (VCc and VCe). The two VCs
have similar load but different capacities as well as load
characteristics. VCc is a large VC with a capacity of 900
servers while VCe is smaller with a capacity of 350. Al-
though both VCs are fully utilized (load = 1), their loads
fluctuate daily, as shown in Figure 4(a). As for the per-
formance, both VCs perform well (stretch = 1) during
underload days (load < 1). But for overload days, VCe
can still perform well while the performance of VCc is
largely degraded, which demonstrates an unfair situation.

The load-performance behavior seen in Figure 4 is
closely related to the scheduling algorithm. A tradition-
al instantaneous scheduler, such as the MaxMin Sched-
uler [13] and the Hadoop Fair Scheduler [3, 18], typically
maximizes the minimum allocation for all VCs at a given
time point. More specifically, an instantaneous scheduler
has the following four properties:

1) When a VC demands less than its capacity, the in-

stantaneous scheduler always fully satisfies the VC de-
mands. So in Figure 4, as long as the daily load of VCc
or VCe is smaller than 1, its stretch is equal to 1. The
free servers from these underloaded VCs will then be as-
signed to other over-demanding VCs if there are any.

2) When a VC is over-demanding, it competes with
other over-demanding VCs for free servers contributed
by underloaded VCs. So these VCs may not have a
stretch of one. This explains why VCc’s performance de-
grades for overload days.

3) When competing for additional free servers, smaller
VCs have a higher probability to be fully satisfied than
larger ones with similar load. This is because when the
load is the same, the exceeding demand is proportional
to VC capacity. So to maximize the minimum allocation
for all VCs, an instantaneous scheduler has to prioritize
satisfying less demanding VCs, which makes it harder
for large VCs to obtain extra allocation.

4) The scheduling decision is only made at a given
time point. So even if a large VC contributes more re-
sources during underload periods, it has to compete e-
qually with other VCs during overload periods. As a
result, a bursty large VC may fail to receive enough re-
source during busy hours regardless how many resources
it has contributed earlier.

This case study demonstrates how an instantaneous
scheduler casues long-term unfairness. A large VC
that contributes more resources during underload periods
cannot be properly rewarded during its overload periods.
And this situation is caused by the nature of instanta-
neous fairness, where the sharing history is not consid-
ered for scheduling decision.

5 Related Work

The Hadoop Fair Scheduler is widely adopted in multi-
user Hadoop clusters [18, 3]. It divides the Hadoop clus-
ter into pools and assigns a pool to each user. The sched-
uler computes the fair share of each pool according to
instantaneous information such as the weight, minimum
share and demands of pools, without considering the re-
source usage history. Hadoop Fair Scheduler is an exam-
ple of MaxMin Fair Scheduler used in datacenters; other
schedulers in this category, including the Hadoop Capac-
ity Scheduler [2], and Quincy [11], consider fairness at
the moment of allocation rather than cluster usage histo-
ry. The Dominant Resource Fair Scheduler [8, 9] sched-
ules multiple types of resources to improve fairness and
utilization. When there is only one type of resources,
it performs exactly as a MaxMin fair scheduler. Varia-
tions of MaxMin scheduler are also used for scheduling
shared-memory multiprocessor systems [14, 5]. All of
the above prior work do not consider usage history, and
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therefore, they cannot guarantee performance consisten-
cy, which is the focus of this work.

6 Discussion

We show in our experiment that not considering usage
history serves as the root cause of performance inconsis-
tency. So here we first present several existing history-
based schedulers that can be potentially useful for our
scenario. Then we explain the particular requirement of
such a scheduler in large-scale data processing systems
such as Cosmos. The discussion focuses on designing a
practical history-based scheduler for similar systems.

Deficit Round-Robin (DRR) scheduler [16] proposes
a technique that allows each flow passing through a net-
work device to have a fair share of network resources. As
packet size may differ, simple round robin algorithm may
not be fair; DRR uses a deficit counter as a representa-
tion of usage history to revise the round robin algorithm
to achieve long-term fairness. The Xen credit scheduler
[12] applies similar mechanisms to allow multiple virtual
machines to fairly share CPU resources.

Both schedulers regulate user’s future resource allo-
cation using a counting scheme that measures the pre-
vious usage. The counting scheme ensures that a user
that overuses its fair share in previous time slot will be
charged evenly (or even more) in the future. This guar-
antees long-term fairness, i.e., over-demanding users will
not hurt other users. However, from the view of system
operators, promoting overall system utilization is as im-
portant as maintaining fairness among users. We argue
that using existing strict history-based schedulers will
harm the overall utilization to a certain extent. For ex-
ample, in order to promote overall utilization, the system
operators should encourage users to use the system when
it is under-loaded. However, by using existing scheduler-
s, over-demanding users will always be penalized in the
future regardless of how under-loaded the overall system
is. As a result, these schedulers fail to provide incentive
for users to use the system during idle periods, which
in turn reduces the overall utilization. Thus balancing
the system utilization and fairness is an important design
challenge for long-term fair schedulers in large-scale da-
ta processing systems.

7 Conclusion

A large computing cluster is normally shared among
users within an organization to have high system utiliza-
tion and to offer more computing resources. However,
sharing comes with an important fairness problem, re-
sulting in performance inconsistency among users. We
identify this problem by conducting a simulation study

using a production trace from a large cluster. The result-
s show that traditional cluster schedulers that optimize
for instantaneous fairness cannot guarantee performance
consistency in the long term. The main reason for this
is that instantaneous-fairness schedulers do not consider
the sharing history of users. As a result, users with large
and bursty workloads do not gain credits for contributing
to the system during idle periods. In contrast, they may
observe bad performance during busy periods. Our study
demonstrates that instantaneous-fairness schedulers may
incur performance inconsistency in long run so sharing
history should be utilized to provide a better scheduling
decision.
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