
SGStudio: Rapid Semantic Grammar Development for Spoken Language
Understanding

Ye-Yi Wang, Alex Acero

Speech Technology Group, Microsoft Research
One Microsoft Way, Redmond, WA 98052, USA

{yeyiwang, alexac}@microsoft.com

Abstract

SGStudio (Semantic Grammar Studio) is a grammar authoring
tool that facilitates the development of spoken dialog systems
and speech enabled applications. It enables regular software
developers with little speech/linguistic background to rapidly
create quality semantic grammars for automatic speech recogni-
tion (ASR) and spoken language understanding (SLU). This pa-
per introduces the framework of the tool as well as the compo-
nent technologies, including knowledge assisted example-based
grammar learning, grammar controls and configurable grammar
structures. Experimental results show that SGStudio not only
greatly increases the productivity, but also improves the quality
of the grammars developed.

1. Introduction
While hundreds of spoken dialog systems have been deployed
in many different sectors, it is still very costly and laborious
to develop such systems. To facilitate the rapid development of
spoken dialog system, it is important to identify the major barri-
ers that developers in the speech processing industry are facing.
[1] analyzed the “chasm” between SLU research and industrial
applications, and listed the potential areas of improvement that
the research community can provide:

1. There is little data for training in the design/development
phrase. This prohibits machine-learning techniques be-
ing used in the initial system developement. Develop-
ers often have to manually author grammars. Tools for
fast grammar handcrafting are very important. Other
tools like those for content word normalization/speech-
ification are also very desirable.

2. There is a huge amount of data available after deploy-
ment. It is extremely difficult to manually analyze the
data in order to find the problems in the initial deploy-
ment. Tools for automatic or semi-automatic adapta-
tion/learning/system tuning are very useful for improv-
ing the system’s performance.

SGStudio is a tool aimed at the problems in these areas.
While it focuses on the first problem, its compotent technolgy,
such as knowledge-assisted example-based modeling, can also
be applied to attack the second problem.

The following section presents the architecture of SGStu-
dio. The remaining sections describe the component technolo-
gies. Section 3 discusses the knowledge-assited data-driven sta-
tistical modeling; section 4 introduces the grammar controls;
and section 5 shows how the learning outcome can be cus-
tomized to fit different application scenarios.

2. SGStudio Architechture
Figure 1 shows the architecture of SGStudio. At the center is
a statistical model that adopts a pattern recognition approach
to SLU. Given the word sequence W , the goal of SLU is to
find the semantic representation of the meaning M that has the
maximum a posteriori probability Pr(M |W):

M̂ = arg max
M

Pr(M |W) = arg max
M

Pr(W |M)Pr(M)

In the equation, the semantic prior model Pr(M) assigns a

Statistical HMM/CFG
Composite Model (§3)

Pr(M)
(§3.1)

Pr(W|M)
(§3.2)

Grammar Configurator(§5)

Training
Data

Grammar for initial
deployment w/o data

Grammar for call
routing

Domain Semantic
Definition

CFG

Library Grammar
Controls(§4)

Configuration
Parameter

 …

Figure 1: SGStudio architecture. At the center is the
HMM/CFG composite model that incorporates domain knowl-
edge, in the form of domain semantic definition and PCFG rules
for domain-related concepts. The model can be configured with
the configuration parameters to produce different grammars ac-
cording to different application scenarios.

probability to an underlying semantic structure (meaning) M .
The lexicalization model Pr(W |M) assigns a probability to
the surface sentence W conditioned on the semantic structure.
HMM/CFG composite model is a specific statistical model un-
der this framework, which alleviates the data sparseness prob-
lem by incorporating domain knowledge.

To create the domain-specific PCFG rules, grammar con-
trols are introduced, which can automatically create quality
ASR/SLU grammars from high level specifications.

Different developers often face different application sce-
narios, like the availability of the data, the complexity of the
task, and the availability of human resources in system main-
tenance, etc. The grammar configuration module of SGStudio
customizes the general HMM/CFG composite model to fit these
scenarios.

9th European Conference on Speech Communication and Technology, pp. 1869-1872, ISCA, Lisbon, Portugal, 2005

3. Knowledge Assisted Example-based
Statistical Modeling

SGStudio adopts HMM/CFG composite model for data-driven
grammar learning. It integrates domain knowledge by setting
the topology of the prior model, Pr(M), according to the do-
main semantics; and by using PCFG rules as part of the lexical-
ization model Pr(W |M).

The domain semantics define the semantic structure of an
application with Semantic frames. Figure 2 shows a simplified
example of two semantic frames in the ATIS domain.

<frame name=“ShowFlight” type=“Void”>
<slot name=“DCity” type=“City”/>
<slot name=“ACity” type=“City”/>

</frame>
<frame name=“GroundTrans” type=“Void”>

<slot name=“City” type=“City”/>
<slot name=“Type” type=“TransType”/>

</frame>

Figure 2: Simplified semantic frames in the ATIS domain. The
type attribute of a slot restricts the type of its filler object. The
“Void” type of the “ShowFlight” frame indicates that it is a top
level command, a.k.a. a “task”.

3.1. Semantic Prior Model

The HMM topology and the state transition probabilities com-
prise the semantic prior model. The topology is determined by
the domain semantics defined by the frames and the transition
probabilities can be estimated from the training data. Figure 3
shows the topology of the underlying states in the statistical
model for the semantic frames in Figure 2.

a67 a76

<s> </s>

1: ShowFlightInit

3: DCitya13 a34

1

a12

4: ShowFlightFinal

a24

a23 a32

5: GroundTransInit

7: TransType
a57 a78

a56
6: City

8: GroundTransFinal

a68

2: ACity

Figure 3: The HMM/CFG composite model’s state topology, as
determined by the semantic frames in Figure 1. State 1 and state
5 are also called the precommands for the ShowFlight and the
GrandTrans frame, respectively. State 4 and state 8 are called
the postcommands. States 2, 3, 6 and 7 represent slots. They
are actually a three state sequence — each slot is bracketed by
a preamble and a postamble (represented by the dots) that serve
as the contextual clue for the slot’s identity.

3.2. Lexicalization Model

The HMM/CFG composite model attempts to strike a balance
between robustness and precision for spontaneous speech un-
derstanding. PCFG models, which impose relatively rigid re-
strictions, are used to model the slot fillers, which are more

crucial for correct understanding and less subject to disfluencies
because they are semantically coherent units. On the other hand,
the sub-languages for precommands, postcommands, pream-
bles and postambles, which glue different slot fillers together,
are normally domain dependent, hard to pre-build a model for,
and subject to more disfluencies. They also vary significantly
across different speakers. The n-gram models are more le-
nient and robust to cover these sub-languages. Furthermore, the
knowledge introduced by the PCFG sub-models greatly com-
pensates the data sparseness problem — there is no need for
the data to learn these ground level grammar structures. This
is a major difference from other statistical SLU models like the
one in [2]. Figure 4 shows a state alignment for the sentence
“show flights departing from Boston to New York City” accord-
ing to the “ShowFlight” network topology in Figure 3. The
original preambles and postambles are replaced by the rounded
rectangles. Since a slot is always bracketed by the preamble and
postamble (though both of them may cover empty strings), the
probabilities for the transitions between the preambles and the
slot fillers and between the slot fillers and the postambles are
always 1.0.

[3] introduced the learning algorithm for the HMM/CFG
compsite model.

City

Date

PreDCity PostDCity

PreACityPostACity

a13 1.0 1.0

a24 1.01.0

a32
to

departing from Boston

New York City

Show flights

1:ShowFlightInit

4:ShowFlightFinal

 3:DCity

2:ACity

Figure 4: A zoomed-in view of a state alignment for the phrase
“departing from Boston to New York City” according to the net-
work topology in Figure 3. The output distribution of the rec-
tangle states follows a PCFG, and that for the rounded rectangle
states follows an n-gram model.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 200 400 600 800 1000 1200 1400 1600 1800

Number of training samples

Sy
st

em
 E

rr
or

 R
at

e

Figure 5: End-to-end system error rate on text input vs. amount
of the training data

Figure 5 shows the effect of different amount of training
data on the model’s accuracy. With the standard ATIS evalu-
ation, it took around half of the annotated 1993 ATIS3 train-
ing data sentences to achieve the nearly optimal accuracy that
the system can achieve with more data. With a couple of sam-
ples per task, the system had a semantic accuracy at 60%, and
the error rate drops significantly for the first couple hundreds
of samples. Using all the 1993 training data, the error rate is
5.3%, which is comparable to the best system that used over
7300 ATIS2 and ATIS3 category A training sentences.

4. Grammar Controls
The HMM/CFG composite model exploits CFGs as the lexical-
ization models for slot fillers, which generally model a specific
concept. If the concept is domain-independent, the grammar
rules can be prebuilt in a grammar library. If it is domain-
dependent like insurance policy numbers, users have to either
use the closest generic CFGs in the library (e.g. generic al-
phanumeric sequence grammar), or build their own customer-
ized grammar. The generic grammar has higher perplexity,
which leads to higher error rate. The customized grammar is
hard to author for regular developers. It is hard to anticipate the
various expressions that refer to the same meaning; it is hard to
normalize the various expressions with the semantic interpreta-
tion (SI) tags; and it is hard to optimize the grammar structure
for best recognition performance. Grammar controls solve the
problems by encapsulating the expert-level grammar implemen-
tation details in the controls. The controls can be built for the
frequently used concepts. Users can customize the controls to
their own needs with control parameters. The implementation
details, including the anticipation of different expressions, the
SI tags, the grammar structure optimization and the SRGS syn-
tax, are all taken care of by the language technology experts
who implement the controls.

Table 4 lists the basic grammar controls for some frequently
used concepts.

Name Description Parameter Example
ANC Alphanum RegExp ANC(\d{3}-\d{4})
CAR Card. num Range/Set CAR(1-31)
ORD Ord. num Range/Set ORD(1, 2, 4, 8)
LST Item list String Items LST(apple, pear)
LST DB entries Table Col. LST(Svr:DB:City:name)

Table 1: Basic grammar controls. The ANC control generates
grammars for alphanumeric concepts, such as insurance policy
numbers, auto part numbers, etc. Its parameter is a regular ex-
pression that describes the pattern of the alphanumeric string.
The CAR and ORD controls generate grammars for cardinal
and ordinal numbers (non-negative integers), specified by ei-
ther a parameter for the range of the numbers or a parameter
that lists the numbers in a set. The LST control generates the
grammar for a list of items. The parameter specifies either the
items in the list or a column in a database table. The example in
Table 4 shows the control that generates a City grammar from
the “DB” database that resides on the server “Svr”. Items are
taken from the “name” column of the “City” table in the data-
base to populate the grammar.

Besides the basic controls, we also introduced several con-
trol operations that yield more complicated grammars from the
basic controls.

The concatenation operator ⊗ combines two operand rules
sequentially to form a more complicated rule. “LST(April,
June, September, November) ⊗ LST(the) ⊗ ORD(1-30)” gen-
erates the date grammar for the months with 30 days.

The paste operator ⊕ pair-wisely concatenates the entries
in the operand rules. Assume that the table T of the database
DB on the server S has a column for employees’ first names
and a column for their last names, then the paste operation
“LST(S:DB:T:firstname) ⊕ LST(S:DB:T:lastname)” creates a
grammar that correctly models all legitimate employee names.

The normalization operator � associates, pair-wisely, an
entry in the second operand rule as the normalized seman-
tics of the corresponding entry in the first operand rule. As-
sume that the database table T in the previous example also
has an employee ID column eid, “(LST(S:DB:T:firstname) ⊕
LST(S:DB:T:lastname))� LST(S:DB:T:eid)” results in a gram-
mar that accepts an employee’s name and returns his/her em-
ployee ID.

The left operand of the composition operator • must be
an ANC control. “ANC•LST(Svr:DB:City:cityname)” accepts
spelling utterances like “S E A T T L E” or “S E A double T L
E” and returns “Seattle” as the semantics for the two utterances.

Table 2 compares the character error rates and the seman-
tic error rates between the library grammar and the customized
grammar created by grammar controls in the recognition of so-
cial security numbers (SSN), license plate numbers (LPN), and
Washington State driver license numbers (WADL). The generic
grammar rules that are closest to the concepts were chosen from
the grammar library of Microsoft Speech Application SDK in
the experiment. The customized grammars have higher accura-
cies on all tasks. The WASL task has higher error rate. This is
mainly due to the fact that WSDL has more (phonetically con-
fusible) letters and many subject chose to pronounce the last
names in WSDL instead of spelling them out.

220 Samples/Task Library Grammar Control

SSN
CER 7.5% 1.8%
SER 22.3% 13.2%

LPN
CER 10.8% 4.9%
SER 47.7% 22.7%

WSDL
CER 24.5% 23.6%
SER 81.4% 63.2%

Table 2: Character error rate (CER) and semantic error rate
(SER) for the library grammar and the grammar control created
grammar.

5. Grammar Configurability
The HMM/CFG model was designed for mixed-initiative sys-
tems. It requires labeled training data even though the inclusion
of the domain knowledge has significantly reduced the require-
ment. In many different application scenarios, simplified model
topologies that require even less or no training data is more suit-
able. The simplified topology can be obtained with configura-
tion paramaters in SGStudio.

There are two categories of parameters. The first in-
cludes one parameter that controls the overall model topol-
ogy. The “backbone” parameter takes one of the two values,
“Template HMM” or “Domain Ngram”. In the case of “Tem-
plate HMM” setting, different paths are kept for different tasks,
and the words that a state emits only depend on the history
of words from the same state. On the other hand, the “Do-
main Ngram” setting collapes all the paths for different tasks,
and the the history of a word may also include the previous state
or the words from the previous state, depending how the previ-
ous state is modeled. This is useful when the task identity is not
important, for example, when the model is going to be used as
a language model for speech recognition. The second category
of parameters determine how the submodels are modeled. It in-
cludes four parameters for the preambles, postambles, precom-
mands and postcommands. The parameters take one of the five

possible values. “None” means that the specific state should be
omitted from the general model topology (e.g., slot postambles
are often optional in English); “Wildcard” indicates that there is
no specific language model for the state. A phone loop model
should be used to accept any acoustic inputs; “PooledNgram”
ties the model with the models of all the other “PooledNgram”
states. The training data for all those states are pooled together.
These three values eliminate or reduce the requirement for the
training data. The value “Ngram” results in the standard com-
posite model described in the previous section; and the “Rule”
value lets the model use CFG rules instead of the n-gram models
for the state.

As an example, we show how a concept spotting model can
be created by SGStudio. When there is no data available for
initial system development, developers often opt to write the
core grammars and let the system handle the non-critical part
of an utterance. For example, in a pizza ordering application,
developers may want to just write the grammar for topping and
size.However, users may say “I want to have a large pizza with
mushroom and cheese.” The SLU component needs to spot
the word “large” and “medium” for size and “mushroom” and
“cheese” for toppings from the user’s utterances. A concept
spotting model can fulfill this task, with a phone loop model
that picks everything except for the key phrases (Figure 6).

* *large,small,mushroom,ham,...

Toppings | Size

Figure 6: The concept spotting model: the key phrase model is
bracketed by the wildcards (*) that can match anything a user
may say. The task of recognition/understanding is to extract the
key phrases from the user’s utterance.

Figure 7 shows the grammar configuration that generates
such a model.

<GrammarConfiguration>
<Preamble>Wildcard</Preamble>
<Postamble>None</Postamble>
<PreCommand>None</PreCommand>
<PostCommand>Wildcard</PostCommand>

< /GrammarConfiguration>

Figure 7: The grammar configuration that creates the wildcard
model. The precommands and the postambles of the general
topology in Figure 3 are omitted. All preambles are modeled
with the wildcard so they collapsed into the left wildcard node
in Figure 6, and all postcommands collapsed into the right wild-
card node.

While the concept spotting model is robust and requires no
training data, it often has high insertion error rate. Because the
wildcard model is very flat, it tends to assign lower probability
to the matched acoustic frames. Therefore the input acoustics
are more likely to be matched with the key phrase model, which
results in false positive errors. This model can be used to deploy
an initial system, and more sophisticated systems can be built as
the data are available after deployment.

The HMM/CFG composite model can also be configured
for the call routing applications. If the command frames do not

contain any slots, and the configuration omits all the preambles,
postambles and postcommands and uses n-grams for precom-
mands, we end up with the topology shown in Figure 8. For
an input sentence W , the decoder picks the task that maximizes
the a posteriori probability in equation 1, which is the n-gram
classifier described in [4].

Task = arg max
taski

Pr(taski) × Pr(W |taski) (1)

Task1 command n-gram

Taskn command n-gram

Task2 command n-gram

Pr(Task1)

Pr(Taskn)

Pr(Task2)

Figure 8: HMM/CFG model’s call-routing topology.

6. Conclusions
We have introduced SGStudio, a semantic grammar author-
ing tool that enables regular application developers to rapidly
create ASR/SLU grammars. It exploits the technologies of
the knowledge-assisted, example-based statistical modeling and
grammar controls. The statistical HMM/CFG composite model
integrates the domain knowledge in the data-driven gramamr
learning framework. It significantly reduces the requirement
for a large amount of traning data. Grammar controls, together
with the control operations, are very powerful in generating
various grammars for concepts that can be used in a system-
initiatied dialog or as the filler of a slot in a mixed-initiative sys-
tem. Coupling the two technologies together strikes a balance
between the robustness and the constraints on overgeneraliza-
tions/ambiguities, achieves the accuracy better than or compa-
rable to the best manually developed system, and greatly im-
proves the grammar development productivity. We further de-
scribed the configurability feature of SGStudio, which allows
the creation of grammars customized to different application
scenarios.

7. References
[1] R. Pieraccini, “Spoken language understanding, the re-

search/industry chasm,” in HLT/NAACL Workshop on Spo-
ken Language Understanding for Conversational Systems,
Boston, 2004.

[2] S. Miller, R. Bobrow, R. Ingria, and R. Schwartz, “Hid-
den understanding models of natural language,” in the 31st
Annual Meeting of the Association for Computational Lin-
guistics, New Mexico State University, 1994.

[3] Y.-Y. Wang and A. Acero, “Concept acquisition in
example-based grammar authoring,” in ICASSP, Hong
Kong, China, 2003.

[4] Y.-Y. Wang, A. Acero, C. Chelba, B. Frey, and L. Wong,
“Combination of statistical and rule-based approaches for
spoken language understanding.” in ICSLP, Denver, Col-
orado, 2002.

