From Primal Infon Logic with Individual
Variables to Datalog

Nikolaj Bjgrner!, Guido de Caso?, and Yuri Gurevich!

1 Microsoft Research, Redmond, WA, United States
2 DC, FCEyN, Universidad de Buenos Aires, Buenos Aires, Argentina
{nbjorner, gurevich}@microsoft.com, gdecaso@dc.uba.ar

Abstract. The logic core of Distributed Knowledge Authorization
Logic, DKAL, is constructive logic with a quotation construct said. This
logic is known as the logic of infons. The primal fragment of infon logic
is amenable to linear time decision algorithms when policies and queries
are ground. In the presence of policies with variables and implicit univer-
sal quantification, but no functions of positive arity, primal infon logic
can be reduced to Datalog. We here present a practical reduction of the
entailment problem for primal infon logic with individual variables to
the entailment problem of Datalog.

Keywords: infon logic, Datalog, PIV, translation

1 Introduction

The entailment problem for a logic L is a decision problem: Given a finite set
H of L formulas (the hypotheses) and one additional L formula g (the query),
decide whether H entails q. A reduction of logic Lq to logic L is a reduction of
the entailment problem for L; to that of L.

In [I], the entailment problem for the primal infon logic was reduced to the
entailment problem for Datalog. Primal infon logic is called there primal infon
logic with variables, in short PIV, to distinguish it from propositional primal
infon logic introduced earlier in [5]. We will use the abbreviation “PIV” as well.

Here we develop a more practical PIV-to-Datalog reduction. The reduction
itself is more efficient, and the resulting Datalog program runs faster; see §
in this connection. An implementation of the reduction is found at [3].

The definition of infon logic has been refined over time. Propositional primal
infon logic was introduced in [4] and investigated in [5]. Its extension with in-
dividual variables and the substitution rule, called PIV, was introduced in [IJ.
These logics employed two quotation constructs, namely said and implied. In
the meantime, implied was retired. The reasons for the original introduction
of two quotation constructs and subsequent retirement of one of them are re-
lated to the use of infon logic in Distributed Knowledge Authorization Language
(DKAL) [2] and will be addressed elsewhere. More precisely we retired said and
then renamed implied to said. This detail is irrelevant in the context of the
present paper, but it is relevant in the context of DKAL. In the rest of the

present paper, by default, PIV means the simplified version of the original PIV
of [I], without the implied construct.

In our main construction we take advantage of the retirement of implied.
But the work reported here started prior to the retirement of implied, and
we implemented two PIV-to-Datalog reductions; both of them are found at [3].
One of them reduces PIV with implied to Datalog, and the other reduces PIV
without implied to Datalog.

This paper is self-contained, but familiarity with [5], [I] and Datalog may be
useful. In §2] we recall the basic definitions of PIV. We also recall Datalog. In
we develop a succinct and economical representation of PIV formulas. Finally,
in §4) we reduce PIV to Datalog.

Acknowledgment

We are grateful to Andreas Blass and Thomas Eiter for useful comments.

2 PIV, Axiomless PIV, and Datalog

We recall PIV and narrow the entailment problem for PIV to that of the axiom-
less PIV, the fragment of PIV without the axioms. We also recall Datalog.

2.1 PIV

PIV is a logic calculus defined in [I]. In this subsection, we recall the definitions
of PIV while making the obvious simplifications to reflect the retirement of
implied. Also, in contrast to [I], this version of PIV is typed.

Terms and formulas. Terms are constants or variables. Each term has a type.
One required type is “principal”. Atomic formulas are formed as usual from
relational symbols and terms. Each argument place of a relational symbol has a
type and is supposed to be filled in with a term of that type. Compound formulas
are built from atomic formulas and T by the binary connectives of conjunction
(A) and implication (—) and unary connectives “p said” where p is a term of
type “principal”. Formulas of the form “p said o” are quotation formulas.

Example 1. Alice said friends(Alice, Bob) is a quotation formula. In this case
a principal named Alice is saying that Bob (another principal) is a friend of hers.
Quotations can be nested, as in Alice said Bob said friends(Bob, Chuck).

Quotation prefires. A quotation prefiz is a string of the form
p1 said py said ...py said (1)

where every p; is a term of type principal. The depth d of quotation prefix (1)
may be zero in which case the quotation prefix is empty. We use pref and m,
sometimes with subscripts, to denote quotation prefixes.

Every formula g has a unique presentation of the form wa where 7 is the
maximal quotation prefix of # and the quotation prefix of « is empty (though
quotations may appear in «, for example a may be a conjunction of quotations).
The prefix 7 is denoted II(f) and « is called the body of 5.

Example 2. Following with our example with principals Alice, Bob and Chuck,
IT(Alice said Bob said friends(Bob, Chuck)) = Alice said Bob said.

Now we are ready to define the axioms and rules of inference of PIV. Let «
and [range over the formulas, pref range over the quotation prefixes, and &
range over the substitutions of terms for variables.

Azioms.

pref T

Rules of inference.

pref (a A B) pref (a A B)
pref o pref

(A elimination)

pref o pref 8

(A introduction)

pref (a A B)
f f —
(— elimination) prez @ pref (@ =)
pref 3
£

(— introduction) _ preff

pref (o — f)
(substitution) gia

A derivation D of a formula g from hypotheses H is a sequence o, aa, . .., Qy

of formulas such that a,, = ¢ and every «; is an axiom, a hypothesis or the result
of applying a derivation rule to one or two preceding formulas. The formulas «;
are the members of D. The number n is the length of D. We write H F ¢ and
say that H entails q if there is a derivation of ¢ from H.

So the entailment problem for PIV is to decide whether a given finite set
H of hypotheses entails a formula ¢. The pair (H,q) forms an instance of the
entailment problem. A substitution £ for variables is native to (H,q) if every
constant in the range of £ occurs in (H,q).

Proposition 3 (Theorem 18 in [1). A set H of formulas entails a formula
q if and only if there is a set H' of native-substitution instances of formulas in
H such that q is deducible from H' without using the substitution rule.

For a proof, see [Il, Theorem 18]. Note that the variables of the query ¢ are treated
as constants. Without loss of generality we may assume that ¢ is ground.

2.2 Local derivations

We adopt the definition of formula components from [5] (though there it was
restricted to propositional formulas).

Definition 4 (Components). The components of a formula v are defined by
induction:
— 7y itself is a component of ~.
— If 7(a* B) is a component of 7, where # is conjunction or implication, then
ma and 705 are components of .
The components of a set of formulas are the components of its members.

Check that a component of a component of v is a component of ~.
Example 5. The components of

Alice said (friends(Alice, Bob) A friends(Bob, Chuck))

are the formula itself as well as formulas Alice said friends(Alice, Bob) and
Alice said friends(Bob, Chuck).

Proposition 6 (Theorem 5.11 in [5]). If there is a substitution-free deriva-
tion of q from H then there is a derivation of q from H where all members are
components of H U {q}.

In [B], the term “local formula” was used in the connection to the
said/implied interplay. In the absence of implied, we are free to use the term
for a different purpose.

Definition 7 (Local formulas). A formula « is local to a formula v via a
substitution £ if a = £ for some component 5 of 7. And « is local to a set I" of
formulas via & if it is local to some member of I via &.

Example 8. If v = Alice said (friends(Alice, Bob) A friends(Bob, y)),
then formula Alice said friends(Bob, Alice) is local to ~.

Lemma 9. A component p of a formula &' local to a formula v via a substi-
tution & is local to v via .

Proof. Since v/ is a component of v, its components are also components of 7. It
suffices to show that ¢ = £ for a component 8 of /. We do that by induction
on ..

The basic case ¢ = 7' is obvious. In the induction step, we have a formula
(a1 * ag), where the operation * is either conjunction or implication, and ¢ =
ma; for some i, and (by the induction hypothesis) 7(a; * ag) = £ for some
component ¢ of 4'. Then § has the form /(51 * d2), so that m = &n', a; = &6,
and ¢ = ma; = (§n7)(€5;) = £(n'6;). So the desired § = 7'9;. O

Definition 10 (Local derivations). A derivation D of ¢ from H is local if
every member of D is local to (H, ¢) via a substitution native to (H, q).

Theorem 11. If H - q then there is a local derivation of q from H.

Proof. By Proposition [3| there is a set H’ of native-substitution instances of
the hypotheses such that ¢ is derivable from H’ in a substitution-free way. By
Proposition [6] there is a derivation D’ of ¢ from H’ such that all members of
D’ are components of H' U {q}. By virtue of Lemma @ every member of D’ is
local to (H,q) via a substitution native to (H,q). The desired local derivation
of q from H is obtained by listing H and then D’. a

2.3 Parse trees and parse forests

For future references, we give a few definitions and introduce some notation. In
particular, we will define parse trees of formulas in a way that is convenient for
our purposes in this paper. A labeled tree is a tree where nodes and edges may
have labels. Our trees grow downward, so that the root is the top node. A forest
is a sequence of disjoint labeled trees. (Making labeled trees disjoint will be no
problem as we will be interested in labeled trees only up to isomorphisms.)

The parse tree PT(7y) of a formula « is a labeled tree. We define PT(v) by
induction on ~. If 7y is atomic then PT(7) is a single node labeled with ~y. If 7 is
a quotation formula then PT(v) is obtained from PT(Body(7)) by creating an
unlabeled parent node u of the root and labeling the new edge with I7(7).

Suppose that v = «a * 8 where * is conjunction or implication, and let u =
Root(PT(«)), v = Root(PT(8)). The parse tree of 7 is obtained by turning the
forest

(PT(a), PT(B))

into a tree by creating a new node w labeled with * (that is with conjunction or
with implication) and attaching to it the parse trees for a and § as the left and
the right subtrees respectively. The attaching process is as follows.

If v is a quotation formula 7 ¢/, then the root u of PT(«) has a unique child
u’, and the edge (u,u’) is labeled with 7. In this case, merge u with w retaining
the label #* on w and retaining the label 7 on the edge (w,v’); the node u’
becomes the left child of w. Otherwise make u a left child of w and leave the
new edge (w,u) unlabeled. The parse tree of § is attached similarly.

That completes the inductive definition of PT(-y). The parse tree of a formula
can be constructed in linear time. Note that a node of PT(v) is unlabeled if only
if it is the root and + is a quotation formula.

Example 12. Figures and [3] contain example parse trees for different PIV
formulas.

For every labeled node u on a parse tree PT(v), we define a quotation prefix
II(u) and a formula F(u). Recall that some edges of PT(y) are labeled with
quotation prefixes and the others are unlabeled. Think of the unlabeled edges as
labeled with the empty quotation prefix. To obtain I7T(u), walk from Root(PT(7))
down to u and concatenate the labels on your way. To obtain F(u), let T be the

) O
pres oIy

[friends(Alice, Bob)] [friends(Bob, Chuck)]

Fig. 1. Parse tree for “Alice said (friends(Alice, Bob) A friends(Bob, Chuck))”

O

pres ooy

a

B,
0} Sazg

[friends(Alice, Bob)] [friends(Bob, Chuck)]

Fig. 2. Parse tree for “Alice said (friends(Alice, Bob) A Bob said friends(Bob, Chuck))”

[friends(Alice, Bob)] [friends(Bob, Chuck)]

Fig. 3. Parse tree for “(Alice said friends(Alice, Bob)) A (Bob said friends(Bob, Chuck))”

subtree of PT(v) rooted at u. It is easy to see that T is the parse tree of some
formula «; set F(u) = a.
The parse forest of a sequence ~1,...,7y, of formulas is the labeled forest

(PT(71), -+, PT(vn))-

2.4 From PIV to Axiomless PIV

Datalog, viewed as a calculus (see the next subsection), has no axioms. In that
connection, it is convenient (at least for expository purposes) to dispense with
the axioms of PIV first and then reduce the axiomless PIV to Datalog.

Definition 13. Aziomless PIV is a fragment of PIV obtained by dropping the
axioms.

The entailment problem for PIV reduces to that of the axiomless PIV in
linear time. But first let us note that instances (H, q) of the entailment problem
for PIV that arise in applications are almost invariably “topless” in the sense
that they do not contain T.

Proposition 14. If H entails q in PIV and if T does not occur in (H,q) then
H entails q already in the axiomless PIV.

Proof. This follows easily from Theorem [T but here is a direct proof that gives
some additional information. By default we work in the original PIV. Formulas,
sets of formulas and derivations are topless if they have no occurrences of T;
otherwise they are fancy.

Lemma 15. A shortest substitution-free derivation of a topless formula from
topless hypotheses is topless.

Proof (of Lemma . Proof by contradiction. Let D be a shortest derivation of
a topless formula g from topless hypotheses H. Assume that D is fancy and let
M be the set of the fancy members of D of the maximal length. We will prove
that any member v of M is redundant which gives the desired contradiction.
More exactly, we will prove this: if a derivation rule R uses v as a premise to
produce a formula ¢ then § occurs in D before ~.

So suppose that a member v of M is used as a premise for a derivation rule
R. By the length maximality of -, we have that
(i) either R is conjunction elimination, in which case has the form pref(a Ap)
and the conclusion is either pref a or pref 3,

(ii) or else R is implication elimination, in which case ~ is the major premise of
the form pref (o —) and the conclusion is pref S.

We consider only case (ii). Since ~ is an implication, it cannot be an axiom.
Since all hypotheses are topless, v cannot be a hypothesis. Thus v is obtained
by an application of a derivation rule @. By the length maximality, @) is an
introduction rule. Given the form of ~y, @ is implication introduction obtaining
v from pref 3, so that pref 3 is an earlier member of D. ad

To complete the proof of the proposition, suppose that a topless set H of
hypotheses entails a topless formula g. By Proposition [3| there exist a set H' of
native-substitution instances of formulas in H and a substitution-free derivation
of ¢ from H'. Clearly H’ is topless. By Lemma any shortest substitution-free
derivation of ¢ from H' is topless, and thus H entails ¢ in Axiomless PIV. O

Theorem 16. There is a linear-time reduction of the entailment problem for
PIV to that of Axiomless PIV.

Proof. The idea is to view T as just another nullary relation symbol and treat
axioms as additional hypotheses. The obvious problem is that there are infinitely
many axioms. Fortunately only few of them are relevant to a given instance (H, q)
of the PIV entailment problem. Let A be the set of axioms that are components
of H U {q}. Since the total number of the components of (H,q) is O(n), the
cardinality |A| = O(n). We show that H entails ¢ in PIV if and only A U H
entails ¢ in Axiomless PIV. The “if” direction is obvious. We prove the “only
if” direction.

Suppose that H entails g. It suffices to show that there is a derivation D of
q from H such that A entails every axiom in D. By Proposition [3] there is a
set H' of native-substitution instances of formulas in H such that ¢ is deducible
from H’ without using the substitution rule. By Theorem there is a local
derivation D of ¢ from H. Every member o of D is a substitution instance £
of a component « of (H,q). If ¢ is an axiom, then « is an axiom, and thus A
entails o/. O

2.5 Datalog

A Datalog program is a finite set of rules. A Datalog rule has the form
60 L 517527"'767’1 (2)

where each d; is an atomic formula in which every term is a constant or variable.
dp is the head of the rule, and the sequence 41,62, ..., d, is the body. The length
n of the body can be zero. The vocabulary of a Datalog program P consists of
the relation symbols and constants that occur in P.

Entailment. Let P be a Datalog program and let r be an atomic formula (a
query) in the vocabulary of P possibly extended with additional constants. The
vocabulary of (P,r) consists of the relation symbols and constants in (P, r). Call
a substitution & native to (P,r) if every constant in the range of £ occurs in
(P, 7). Let £ range over native substitutions. Construct a sequence

Py C P CPC ...

of sets of atomic formulas as follows. &y = 0. If @; is already constructed then,
for every rule of P and every substitution &, do this: if atomic formulas
£d1,...,&0, belong to @; then put £§y into @;41. The program P entails the
query 7 if and only if belongs to |J, @;.

Lemma 17. Every @; is closed under native substitutions. In other words, if
0 € D; then nd € D, for every native substitution 7.

Proof. The case of ¢ = 0 is trivial. We suppose that the claim has been proven
for i, and we prove it for i+ 1. Let § € @;4; and 7 be a native substitution. Then
there is a rule (2) and there is a native substitution & such that £01,...,&0,
belong to @; and § = £§p. By the induction hypothesis, néd1, ..., nd, belong to
®;. By the definition of ®;11, we have nd = n&dy € ®;41.

3 Succinct representations of PIV formulas

In the rest of this paper, by default, PIV is Axiomless PIV. In this section, we
fix an instance (H,q) of the PIV entailment problem and develop a succinct
representation of PIV formulas local to (H, ¢) via substitutions native to (H, q).
We presume that H is ordered in some way so that the parse forest for the
sequence (H, q) of formulas is well defined. In this section, by default, components
are components of (H,q), local formulas are local to (H,¢q), substitutions are
native to (H,q), and nodes are nodes of the parse forest for (H,q).

If o is a formula or quotation prefix then Var(c) is the list zy,..., 25 of
different variables of ¢ in the order they occur in o, so that if i < j then the
first occurrence of x; precedes the first occurrence of x;.

Recall that, according to for every labeled node u, we have a quotation
prefix IT(u) and a formula F(u).

Lemma 18. For any labeled node u, IT(u)F(u) is a component with F(u) being
the body.

Proof. Any such node u belongs to the parse tree of some formula v in H U {q}.
Let ug be the root of PT(y). We prove the lemma by induction on the distance
d from ug to u.

If d = 0, then u = up. In this case, v is not a quotation formula, IT(u) is
empty, and F(u) = II(u)F(u) = ~.

Suppose that d > 0 and let v be the parent of u. If v is unlabeled then
v = ug, d = 1, and 7 is a quotation formula. In this case, IT(u) = II(y) and
F(u) = Body(7), so that IT(u)F(u) is again ~.

Suppose that the parent node v is labeled. Then F(v) has the form a5 where
* is either conjunction or implication. By the induction hypothesis, II(v)(a * 3)
is a component. We consider the case where u is the left child of v. Then IT(u) =
I (v)II(a), F(u) = Body(«), so that IT(u)F(u) = IT(v)a which is a component.

O

The formula IT(u)F(u) will be called the component of u and denoted
Component(u).

Lemma 19. For every component @, there is a labeled node u with
II(u) = II(p) and F(u) = Body(p).

Proof. Tt suffices to fix a formula v in H U {¢q} and restrict attention to the
components ¢ of 7. Recall Definition [f] of the components of ~.

First suppose that ¢ = ~. If v is a quotation formula then the desired «
is the unique child of the root of PT(7); otherwise w is the root itself. Second
suppose that 9 has the form 7(a * 8) where * is conjunction of implication and
@ is either wa or else 3. We consider the case when ¢ = ma. By the induction
hypothesis, there is a labeled node v on PT(v) with IT(v) = 7 and F(v) = ax*f.
The desired w is a child of v. We have IT(u) = 71l («) and F(u) = Body(a). O

The depth-first traversal of trees naturally extends to the depth first traversal
of forests: traverse the first tree, then jump to the root of the second tree, and
so on. As a result we have a linear order on our nodes, namely the depth-first
order.

Definition 20 (Lead nodes and components).

— A formula o dominates a formula 3 if 5 is a substitution instance of a.
— The lead node of a local formula « is the labeled node u satisfying the fol-
lowing conditions where ¢ is the component of .

e dominates «.

e If ¢ is another component that dominates « then the number of the
occurrences of variables in ¢ is greater than or equal to that of .

e In the depth-first order of nodes, u is the first labeled node whose com-
ponent dominates o and has the maximal number of the occurrences of
variables.

— A lead node is the lead node of some local formula (e.g. its own component).
The lead component Lead(a) of a local formula « is the component of the
lead node of a.

Example 21. Figure [4| gives the parse tree for a formula

(Alice said friends(Alice,z) — (Alice said friends(Alice, Bob)) A
(Alice said friends(Alice,y) — (Alice said friends(Alice, Chuck)).

Nodes u, vy, v, w; are all lead nodes, and w; is the lead nodes of all the leaves.

For every local formula «, the lead node of o and the lead formula are well
defined. Indeed « is a substitution instance of and thus dominated by a com-
ponent. So the set S of nodes whose components dominating « is not empty. A
nonempty subset S’ of these nodes have components with the maximal possible
number of the occurrences of variables. The first node u in S’ is the lead node
of a, and the component of u is the lead component of a.

Unification As usual, formulas ¢1, oo without common variables are unifiable
if there is a substitution £ such that £p1 = €po. Such a substitution £ is a unifier
of p1, 2. It is a most general unifier if it is a substitution instance of any other
unifier of 1, 2.

w1y w2 w3 wyq
friends(Alice, x) friends(Alice, Bob) friends(Alice, y) friends(Alice, Chuck)

Fig. 4. Domination example

Example 22. Formulas P(a,y,z1), P(x,b,22), where a,b are constants and
x,, 21, 22 are variables, are unifiable by means of a substitution £ such that

g(l’) = a, £<y) = ba 5(21) = z1, 6('22) = z2.
The following proposition is well known.

Proposition 23. Formulas @1, p2 are unifiable if they have a common instan-
tiation instance. If they are unifiable, they have a most general unifier.

Here is a simple construction of a most general unifier for unifiable formulas
©1, P2 with no common variables. Note that (1,2 have the same form ob-
tained by replacing all terms with some symbol, e.g. @Q. Define a graph on the
terms (constants and variables) in the two formulas. Two distinct terms form
an edge if they occur, in different formulas, at the same position (corresponding
to the same occurrence of @ in the form). In Example there are three edges:
(a,z), (b,y), (z1,22). Since @1, 2 are unifiable, every connected component C' of
the graph contains at most one constant. If C' contains a constant ¢, let tc = ¢;
otherwise let t be the lexicographically first variable in C. For every variable z
in our formulas, set £(z) = t¢ where C' is the component of z. It is easy to see

that £(¢1) = §(p2)-

4 Reduction to Datalog

Again PIV is by default Axiomless PIV. Given an instance (H,q) of the PIV
entailment problem, we construct an instance (P, r) of Datalog such that

— The constants in (P,) are exactly those in (H,¢), so that a substitution is
native to (P,r) if and only if it is native to (H, q).

— The set H of hypotheses entails the query ¢ in PIV if and only if the program
P entails query r in Datalog using only native substitutions.

Below, by default, components are components of (H, q), local formulas are
local to (H, q), substitutions are native to (H,¢), and nodes are labeled nodes
of the parse forest for (H,q).

4.1 The vocabulary of (P,r)
We describe the vocabulary of (P,r).

— One relation symbol D,, for every lead node u. The arity of D,, is the number
of different variables in the component IT(u)F(u) of u.
— The constants that occur in (H,q).

4.2 Rendition of local formulas

We translate every PIV formula « local to (H,q) into atomic formula Re, the
rendition of «, in the vocabulary of (P,r).

Definition 24.

— If « is the component of a lead node w and if X = Var(a) = (21,...,2x)
then Ra = Dy (X) = Dy (1, - - ., Tg)-

— Let ¢ be the lead component of a. It follows that o = £ for some substitu-
tion xi. In this case, Ry = ERe.

Lemma 25. For any local formula a and any native substitution n,
if Lead(a)) = Lead(na) then R(na) = nRa.

Proof. Let ¢ be the lead component of . Then a = £y for some . We have
R(na) = R(nge) = nER(p) = nRa. O
4.3 Program P and query r

Bodyless rules Every hypothesis ¢ in H is rendered as a bodyless Datalog
rule with head Re.

Rules related to conjunction Each lead component « of the form 7(a’ A ')
gives rise to three Datalog rules

Ry :— Ra RS,
Ra :— Ry (3)
REB :— Ry

where o = Lead(wa’) and 8 = Lead(n3’).

Rules related to implication Each lead component v of the form 7(o’ — ')
gives rise to two Datalog rules

RSB :— Ra, Ry
Ry :— Rp
where o = Lead(na) and 8 = Lead(n’).

(4)

Unification rules In addition to derivation rules related to conjunction and
implication, PIV has the substitution rule. Of course Datalog has its own built-in
substitution rule. But it does not suffice to establish that R(«) entails any R(n«)
in Datalog. The problem is that a and na may have different lead nodes and so be
expressed via different relations. For example, we may have that « = P(a,y, z1),
a is its own lead component with a lead node u, na = P(a,b, 21), and the lead
component of na is P(x,b, z2) with a lead node v, so that Ra = D, (y, z1) while
Rna = 0D, (x, z2). To this end, we provide program P with additional rules, the
unification rules. This would allow us to derive Rna from Ra; see Lemma

Every pair of unifiable lead components ¢, 1 gives rise to two Datalog rules.
We assume without loss of generality that ¢ and ¥ have no common variables.
The two rules are

Ry = ERY
§RY = &Ry
where £ is a most general unifier for ¢, .

()

That completes the construction of P.

Datalog query The desired Datalog query r = R(q).

Remark 26 (On a single Datalog program). It may seem that by converting
Dy(X) into D(u,X) we get a single Datalog program independent from the
given instance of the PIV entailment problem. But note that different relation
symbols D,, may have different types and widths (a.k.a. arities). The trick would
allows us, however, to use one relation symbol for all relations D,, of the same
type. Besides, there is a prospect of enabling Datalog to deal with sequences of
elements.

4.4 Soundness and completeness

Lemma 27. By virtue of the unification rules, Ra yields any R(na) for any
local formula o and any native substitution n.

Proof. If the lead component of na is that of o then, by Lemma[25] Rna = nRa,
and so Ra yields Rna. So suppose that the lead components ¢ and ¥ of a and
na respectively are distinct. Without loss of generality, ¢ has no variables in
common with ¢ or a.

By the definition of lead components, o = 19 and na = 1’4y for some 79, n'.
By the definition of renditions, Ra = noR¢p and R(na) = n’Re. Substitutions
n and 1’ have disjoint domains and can be fused into one substitution that we
call n. So na = ny. Then R(na) = nR.

Let & be a most general unifier for o and v, so that (o = &Y and n = x¢&
for some y. We have £ngp = £a = £1). Clearly £ng is a most general unifier for
¢ and 1. By the unification rules, {ngRe yields €nyRe which is equal to ERp.
Hence ¢Ra yields ERp.

We have Ra - ERa - ERY F xERY = nRyY = R(na). O

Theorem 28 (Soundness). For any local formula v,
if H&F 4 in PIV then P F R(y) in Datalog.

The proof the soundness theorem proceeds by induction on the given deriva-
tion in PIV. The induction step splits into a number of cases depending on the
rule used to derive 1. The proof is rather tedious but routine, and we skip it.
Lemma [27] covers the case of substitution rule in the induction step.

Theorem 29 (Completeness). For every local formula 1,
if PE R(¢) in Datalog then H & 1 in PIV.

Again, the proof is rather tedious but routine, and we skip it.

4.5 Complexity considerations

Our purpose in this paper was to reduce primal logic with individual variables
(PIV) to the standard Datalog so that any any off-the-shell Datalog tool could
be applied to the output. Alternatively one may want to design a specialized
Datalog-like tool to work directly on PIV but that is a different direction that
we may want to take in future.

The reduction time of our algorithm, that is the time it takes to construct
an instance of the Datalog entailment problem from a given instance of the PIV
entailment problem, is linear in the output size. The size of the output is O(N-W)
where N is the number of rules and W is the maximal width W of the Datalog
relations D,. The number N = O(n?). There are only linear number of rules
related to conjunction and implication but the number of unification rules may
be quadratic. (We made an attempt to decrease the number of unification rules;
that explains “the maximal number of the occurrences of variables” attribute in
Definition) W may be linear, so the output size is O(n?) in the worst case.

At the end we want to solve a given instance of the PIV entailment problem.
So we are really interested in the reduction time plus the time to solve the output
instance of the Datalog entailment problem. The latter much depends, in general,
on the width of the Datalog relations. In our admittedly limited experience, the
width of Datalog relations D,, has been < 6, and there were few unification rules.

Following [I], we could eliminate unification rules altogether, with a side ef-
fect of increasing W. To explain the elimination idea, recall the preamble to
the introduction of unification rules in §4.3] There we mentioned an example
where PIV formulas P(a,y, 21), P(z,b, z2) gave rise to binary Datalog relations
Du(y,z1) and D, (x, z2). Instead, we could view formulas P(a,y, z1), P(z,b, 22)
as substitution instances of one formula P(z,y,z) which would lead us to one
ternary Datalog relation. Is the elimination idea good? That depends on your
applications. If you are interested in scenarios where the input instances of the
PIV entailment problem have few occurrences of constants, the price for the elim-
ination of unification rules may be worth paying. In our applications, typically
there are many occurrences of constants and few variables, so that unification
rules are beneficial.

Finally let us notice that the second of rules is not safe. Recall, however,
that we restrict attention to native substitutions. Only the constants in the
original instance of the PIV entailment problem can appear in the head R~y of
the rule.

References

1. Blass, A., Gurevich, Y.: Hilbertian deductive systems, infon logic, and Datalog. Bull.
of Euro. Assoc. for Theor. Computer Sci. 102, 122-150 (2010), a later version at
http://research.microsoft.com/en-us/um/people/gurevich/Opera/204.pdf

2. Blass, A., Gurevich, Y., Moskal, M., Neeman, I.: Evidential authorization. In: Nanz,

S. (ed.) The Future of Software Engineering. pp. 73-99. Springer (2011)

DKAL at CodePlex: http://dkal.codeplex.com/

4. Gurevich, Y., Neeman, I.: DKAL 2: A simplified and improved authorization lan-
guage. Tech. rep., MSR-TR-2009-11, Microsoft Research (2009)

5. Gurevich, Y., Neeman, I.: The infon logic. ACM Trans. on Computational Logic
12:2, article 9 (2009), a later version at http://research.microsoft.com/en-us/
um/people/gurevich/Opera/198.pdf

w

http://research.microsoft.com/en-us/um/people/gurevich/Opera/204.pdf
http://dkal.codeplex.com/
http://research.microsoft.com/en-us/um/people/gurevich/Opera/198.pdf
http://research.microsoft.com/en-us/um/people/gurevich/Opera/198.pdf

	From Primal Infon Logic with Individual Variables to Datalog

