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Abstract

We consider the general problem of finding the minimum weight b-matching on arbitrary graphs. We
prove that, whenever the linear programming (LP) relaxation of the problem has no fractional solutions,
then the belief propagation (BP) algorithm converges to the correct solution. We also show that when
the LP relaxation has fractional solution then BP algorithm can be used to solve the LP. These results
are notable in several regards: (1) It is one of a very small number of proofs showing correctness of BP
without any constraint on the graph structure. (2) Instead of showing that BP leads to a PTAS, we
give a finite bound for the number of iterations after which BP has converged to the exact solution. (3)
Variants of the proof work for both synchronous and asynchronous BP; to the best of our knowledge, it
is the first proof of convergence and correctness of an asynchronous BP algorithm for a combinatorial
optimization problem. (4) It works for both ordinary b-matchings and the more difficult case of perfect
b-matchings. (5) Together with the recent work of Sanghavi, Malioutov and Wilskly [41] they are the
first complete proofs showing that tightness of LP implies correctness of BP.

1 Introduction

Motivated by the cavity method in statistical physics, very fast distributed heuristic algorithms have recently
been developed for the solution of random constraint satisfaction problems [28], [12], [15], [1]. Similar
heuristic methods have been known for many years [20] in the context of coding theory. And a variety
of specific examples of such algorithms have been developed in artificial intelligence, signal processing,
and digital communications. Well-known examples include the Viterbi algorithm, the iterative decoding
algorithm in turbo codes and in low-density parity-check codes [38], Pearl’s belief propagation algorithm for
Bayesian networks [35], the Kalman filter, and certain fast Fourier transform (FFT) algorithms. Very recent
applications can also be found in systems biology [19], [22], [57], computer vision [44], and data clustering
[17].

In some cases, the algorithms generated by the cavity method are exactly of the form of a classic belief
propagation (max-product or min-sum) i.e., a message-passing algorithm for efficiently computing marginal
probabilities or finding the assignment with highest probability of a joint discrete probability distribution
defined on a graph. The belief propagation (BP) algorithm converges to a correct solution if the associ-
ated graph is a tree, and may be also a good heuristic for some graphs with cycles. In other cases, the
cavity method may lead to a more involved survey propagation (SP) algorithm [28], in which some form of
correlation among variables is controlled.

In this paper, we study the problem of finding the minimum weight b-matchings in arbitrary graphs via the
min-sum version of BP algorithm1.

Our Results. Let G = (V, E) be an undirected graph with edge weights wij for each edge {i, j} ∈ E
and node capacities bi for each node i ∈ V . The iterative message-passing algorithm based on synchronous

∗Microsoft Research; {mohsenb , borgs , jchayes}@microsoft.com
†Politecnico Di Torino; riccardo.zecchina@polito.it
1Throughout this paper, the term BP algorithm refers to min-sum version of the BP algorithm.
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BP for solving the weighted perfect b-matching problem (see our Section 2 for the precise definition) is the
following simple procedure: At each time, every vertex of the graph sends (real valued) messages to each of
its neighbors. The message transmitted at time t from i to j is wij minus the bth

i minimum of the messages
previously received by i at time t − 1 from all of its neighbors except j. At the end of each iteration, every
vertex i selects bi of its adjacent edges that correspond to the bi smallest received messages.

We will show the following result: For arbitrary graphs G, and all sets of weights {wij}, after O(n) iterations,
the set of selected edges converges to the correct solution, i.e., to the minimum weight perfect b-matching of
G, provided that the LP relaxation of the problem (see Section 2 for definitions) has no fractional solutions.
Additionally we introduce a new construction, a generalized computation tree, which allows us to analyze the
more complicated case of BP with an asynchronous updating scheme, and prove convergence and correctness
of it when each edge of the graph transmits at least θ(n) messages. To the best of our knowledge, this
technique is new and can be applied in the analysis of asynchronous BP in other problems as well. These
are extensions of the previous results of [5] and [24] which showed convergence and correctness of the above
algorithm for bipartite graphs.2 Moreover, our proof gives a better understanding of the often-noted but
poorly understood connection between BP and LP through graph covers. We also modify our BP algorithm
and its analysis to include the problem of finding the non-perfect weighted b-matchings. Recently and
independently from our work a similar result for the scenario of using synchronous BP for non-perfect 1-
matchings was shown by Sanghavi, Malioutov and Wilskey [41]. Finally we will show that when LP has a
solution that is partially fractional then a slightly modified BP converges to correct values for the integer
parts and oscillates for the fractional parts of the LP solution, hence solving the LP.

Related Works. The weighted b-matching problem is an important problem in combinatorial optimiza-
tion. It belongs to a family of integer linear programs which have been well-studied and can be solved in
strongly polynomial time [13], [14]. For extensive surveys see [23] and [36]. In physics, the study of the ran-
dom 1-matching problem goes back to the work of Mèzard and Parisi [27] who made a celebrated conjecture
for the expected optimum weight (π2/6) that was proven to be exact a decade later by Aldous [2].

BP algorithms have been the subject of extensive study in several communities. The general BP algorithm is
known to be correct on graphs with no cycles [35]. For graphs with a single cycle, convergence and correctness
of BP have also been rigorously analyzed [3], [52]. For arbitrary graphs, relatively little is known about the
correctness of BP, although some interesting progress has been made in [54], [49], [45], [58]. Performance of
the BP algorithm usually depends on the length of cycles in graphs; most analytical results require that the
graphs have no short cycles (i.e., that they are large-girth graphs) [38], [4], [21]. For the case of weighted
matchings and a few other problems, there were initially surprising results that BP works correctly on graphs
with many short cycles ([53], [39], [5], [29], [34]).

Recent works have also suggested a connection between the BP algorithm and linear programming (LP)
in particular problems. A relationship between iterative decoding of channel codes and LP decoding was
studied in [16], [47], [46]. In fact our proof is based on the notion of graph-cover that is used in [47] and
[46] as well. Other relationships were noted in the context of BP algorithms with convex free energies [51],
[50], [55], and in the case of BP algorithms for resource allocations [31]. For weighted 1-matchings, the
connection was studied [6] in the context of similarities between BP equations and the primal-dual auction
algorithm of Bertsekas [8]. And it was further clarified recently for non-perfect 1-matchings in [40] and [41]
where it was shown that BP does not converge to the correct solution if the LP relaxation has fractional
solutions. Another recent result studies this connection for the weighted independent set problem [42]. We
will compare our work with some of these results in the “Technical Contribution” section below.

Finally, we note that the BP equations for solving the weighted matching problem which we use in this paper
have been previously studied in [6], [24]. These equations are also very similar to equations for weighted
matching problems and traveling salesman problems given in [27], [48], [2], [21], and to equations for various
other problems given in [59], [37], [26].

2Both of these results were assuming that the minimum weight matching is unique. Note that if there is more than one
solution, then one can construct a fractional solution to the LP relaxation.
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Technical Contribution. The main contributions of our results and techniques can be summarized as
follows:

1. BP for the weighted matching was first used in [5] and its correctness and convergence was shown for
bipartite graphs with unique optimum solution. That proof relied heavily on the fact that the minimum
weight matching of a bipartite graph is locally optimal on any cycle since the cycles of a bipartite graph
have even length. The same technique was used in [24] to extend the result to b-matchings in bipartite
graphs. But this technique fails for graphs containing cycles with odd length. In order to bypass
this difficulty we use graph covers for connecting the bipartite graphs to general graphs and use proof
techniques introduced in [5], and [24]. In the preliminary version of this paper [7] we give a completely
different and independent proof using complementary slackness conditions of the LP relaxation and its
dual. This proof is included in the appendix of this paper.

2. Connection between LP and BP has been suggested and analyzed by various groups (as we discussed
above), but our result together with [41], to the best of our knowledge, are the first ones which show
both convergence and correctness of the BP algorithm when LP relaxation has no fractional solutions.
We also use the notion of graph-covers to solve the LP relaxation via BP. One related result, [42], studies
only properties of the BP fixed points and their relation to the LP, conditioned on the convergence of
the BP algorithm. Similarly in another recent work, [55], which generalizes methods of [50] and [51],
the connection of the BP algorithm and LP relaxation is studied in the converged case of the BP. The
authors also study interesting variations of the BP which have convex free energies.

3. The asynchronous BP, which includes the synchronous version as a special case, has been a more
popular version for practical purposes. But, due to its more complicated structure, it has not been the
subject of much rigorous study. To the best of our knowledge, our work is the first correctness and
convergence proof of asynchronous BP for a combinatorial optimization problem. Another advantage
of our proof is the construction of a new tool, the generalized computation tree, which can be used
for the analysis of the both convergence and correctness of asynchronous message-passing algorithms
including BP. Without the notion of a suitable computation tree the existing methods, free energy
analysis [58][49] or Lipschitz functions [21][4], do not give correctness and convergence at the same
time.

Organization of the Paper. The rest of the paper is organized as follows. In Section 2, we provide the
setup, define the weighted b-matching problem, and describe the LP relaxation. In Section 3, we describe our
algorithm for the minimum weighted perfect b-matching problem, and state our main result. The analysis of
our algorithm is given in Section 4. The extension of our algorithm and results to the non-perfect minimum
weighted b-matching problem are presented in Section 5. In Section 6, we state the asynchronous version of
the BP algorithm and present its analysis, and finally in Section 7 we show how BP can be used to solve
LP. The appendix is dedicated to the alternative proofs for the results of Sections 3-6 using dual variables
of the LP relaxation.

2 Definitions and Problem Statement

Consider an undirected simple graph G = (V, E), with vertices V = {1, . . . , n}, and edges E. Let each edge
{i, j} have weight wij ∈ R. Denote the set of neighbors of each vertex i in G by N(i). Let b = (b1, . . . , bn)
be a sequence of positive integers such that bi ≤ degG(i). A subgraph M of G is called a b-matching (perfect
b-matching) if the degree of each vertex i in M is at most bi (equal to bi). Denote the set of b-matchings
(perfect b-matchings) of G by MG(b) (PMG(b)), and assume that it is non-empty. Clearly PMG(b) ⊂ MG(b).

The weight of a (perfect or non-perfect) b-matching M , denoted by WM , is defined by WM =
∑

ij wij1{i,j}∈M .
In the next two sections, we will restrict ourselves to the case of perfect b-matchings. We will extend the
analysis to (possibly non-perfect) b-matchings in Section 5. The minimum weight perfect b-Matching (b-
MWPM), M∗, is defined by M∗ = argminM∈PMG(b) WM . The goal of this paper is to find M∗ via a
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min-sum belief propagation algorithm. Throughout the paper, we will assume that M∗ is unique. Let ǫ be
the difference between the weights of M∗ and the second minimum weight b-matching; i.e.

ǫ = min
M 6=M∗

(WM ) − WM∗ .

due to the uniqueness of the M∗, ǫ > 0. Also define w∗ to be w∗ = max{i,j}∈E(|wij |)

Linear Programming Relaxation. Assigning variables xij ∈ {0, 1} to the edges in E, we can express
the weighted perfect b-matching problem as the problem of finding a vector x ∈ {0, 1}|E| that minimizes the
total weight

∑

ij∈E xijwij , subject to the constraints
∑

j∈N(i) xij = bi for all i ∈ V . Relaxing the constraint
that xij is integer, this leads to the following linear program:

min
∑

{i,j}∈E xijwij

subject to
∑

j∈N(i) xij = bi ∀ i

0 ≤ xij ≤ 1 ∀ {i, j} ∈ E

(1)

We say the LP relaxation (1) has no fractional solution if, every optimal solution x of LP satisfies x ∈
{0, 1}|E|. Note that absence of fractional solutions implies uniqueness of integer solutions, since any convex
combination of two integer solutions is a solution to the LP as well. We want to show that the BP algorithm
for our problem converges to the correct solution, provided the LP relaxation (1) has no fractional solution.

3 Algorithm and Main Results

The following algorithm is a synchronous implementation of BP for finding the minimum weight perfect
b-matching (b-MWPM). The main intuition behind this algorithm (and, indeed, all BP algorithms) is that
each vertex of the graph assumes the graph has no cycles, and makes the best (greedy) decision based on
this assumption. This is shown in more detail in Section 4.1.

Before applying the BP algorithm, we remove all trivial vertices from the graph. A vertex i is called trivial if
degG(i) = bi. This is because all of the edges adjacent to i should be in every perfect b-matching. Therefore
the graph can be simplified by removal of all trivial vertices and their adjacent edges.

Algorithm Sync-BP.

(1) At times t = 0, 1, . . ., each vertex sends real-valued messages to each of its neighbors. The message of
i to j at time t is denoted by mi→j(t).

(2) Messages are initialized3 by mi→j(0) = wij for all {i, j} ∈ E.

(3) For t ≥ 1, messages in iteration t are obtained from messages in iteration t − 1 recursively as follows:

∀ {i, j} ∈ E : mi→j(t) = wij − bth
i -minℓ∈N(i)\{j}

[

mℓ→i(t − 1)

]

(2)

where kth-min[A] denotes the kth minimum4 of set A.

(4) The estimated b-MWPM at the end of iteration t is M(t) = ∪n
i=1Ei(t) where Ei(t) =

{

{i, j1}, . . . , {i, jbi
}
}

is such that N(i) = {j1, j2, . . . , jdegG(i)} and mj1→i(t) ≤ mj2→i(t) · · · ≤ mjdegG(i)→i(t). i.e., among all
i’s neighbors, choose edges to the bi neighbors that transfer the smallest incoming messages to i.

3We show in Section 4.4 that the messages can be initialized by any arbitrary values.
4Note that the bth

i -minℓ∈N(i)\{j} is well defined since we assumed that all trivial vertices are removed and thus there are at
least bi + 1 elements in the set N(i) for each i.
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(5) Repeat (3)-(4) until M(t) converges5.

In Corollary 1, we will show the main intuition behind the equation (2) and how it is derived. But we
note that one can also use the graphical model representations of [5], [24], [40] to obtain the standard BP
equations for this problem, which, after some algebraic calculations, yield the recursive equation (2).

The main result of the paper is rather surprising: it says that the above algorithm, which is designed for
graphs with no cycle (i.e., for trees), works correctly for a much larger family of graphs including those with
many short cycles.

Theorem 1 Assume that the LP relaxation (1) has no fractional solution. Then the algorithm Sync-BP
converges to M∗ after at most ⌈ 2nw∗

ǫ
⌉ iterations.

Note 1. We will show in Section 7 that if BP is used properly then it can solve all cases of the LP
relaxation 1.

If the LP relaxation (1) has a fractional solution whose cost is strictly less than WM∗ , then [40], [41] have
shown for the case of 1-matching that BP does not converge to M∗. It is straightforward to generalize this
to perfect b-matching as well. But for the case in which the LP relaxation has a fractional solution whose
cost is equal to WM∗ , BP fails in general. This is because the bth

i minimum in equation (2) is not unique,
and one needs an oracle to make the right decision. If such an oracle exists, then BP converges to M∗.

4 Analysis of the Synchronous BP

This section contains the analysis of the synchronous BP algorithm for perfect b-matchings. First, in Section
4.1 we show one derivation of the equations for Sync-BP and its representation in term of the so-called
computation tree. Next, in Section 4.2 we introduce the notion of graph-covers which connects the graph G
to a bipartite graph G̃ that has all the information for finding the minimum weight perfect b-matching in
the graph G. This connection is used in Section A.3 to prove that, when the LP relaxation has no fractional
solutions, then solutions on the computation tree are the same as the solutions on the original graph G.

4.1 Computation Tree and Derivation of Sync-BP

The main idea behind the algorithm Sync-BP is that it assumes the graph G has no cycle. In other words,
it finds the b-MWPM of a graph G′ that has the same local structure as G but no cycles. In this section we
rigorously define such graph G′ (computation tree) and show its connection with the Sync-BP algorithm.

Computation Tree. For any i ∈ V , let T t
i be the t-level computation tree corresponding to i, defined as

follows: T t
i is a weighted tree of height t + 1, rooted at i. All tree-nodes have labels from the set {1, . . . , n}

according to the following recursive rules:

(a) The root has label i.

(b) The set of labels of the degG(i) children of the root is equal to N(i).

(c) If s is a non-leaf node whose parent has label r, then the set of labels of its children is N(s)\{r}.

Note 2. T t
i is often called the unwrapped tree at node i. The computation tree is constructed by replicating

the local connectivity of the original graph. The messages received by node i in the belief propagation
algorithm after t iterations in graph G are equivalent to those that would have been received by the root i in

5 The subgraph M(t) is not necessarily a perfect b-matching of G but we will show that after O(n) iterations it will be the
minimum weight perfect b-matching.
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Figure 1: Part (a) shows a graph G where dashed and gray edges represent a 1-matching. Part (b) shows
the computation tree T 2

3 corresponding to G where the set of dashed and gray edges form a 1-TMWPM.

the computation tree, if the messages were passed up along the tree from the leaves to the root. Computation
trees have been used in most of the previous analyses of BP algorithms; see e.g. [20, 5, 52, 54, 53, 18].

A subtree M of edges in the computation tree T t
i is called a perfect tree-b-matching if for each non-leaf

vertex with label i we have degM(i) = bi. Now denote the minimum weight perfect tree-b-matching (b-
TMWPM) of the computation tree T t

i by N ∗(T t
i ). We will show that Sync-BP can be seen as a dynamic

programming procedure that finds the minimum weight perfect tree-b-matching over the computation tree.
Figure 1 shows a graph G and one of its corresponding computation tree.

Sync-BP Equations. Consider the computation tree T t
i . Let us assume that degG(i) = k, and that

i1, . . . , ik are neighbors of i in G which are children of the root i as well. Let us denote the subtree of T t
i

that consists of the root edge (i, ij) and all descendants of ij by T t
ij→i. Given this, we define the following

weights and weight differences:

W+
ij→i(t) = Weight of b-TMWPM in T t

ij→i that contains the root edge (i, ij).

W−
ij→i(t) = Weight of b-TMWPM in T t

ij→i that does not contain the root edge (i, ij).

nij→i(t) = W+
ij→i(t) − W−

ij→i(t).

Clearly, for any edge {i, j} of graph G the real number nj→i(t) is well-defined; the next lemma shows its
relation with the messages passed in Sync-BP.

Lemma 1 For all 1 ≤ i, j ≤ n such that {i, j} is an edge of G and all t = 0, 1, . . ., the following is true:
nj→i(t) = mj→i(t).

Proof We proceed by induction on t. For t = 0 by definition the computation tree T 0
i has height 1.

Therefore each branch T 0
ij→i consists of a single root edge (i, ij). Thus W+

ij→i(0) = wiij
and W−

ij→i(0) = 0

which gives: nij→i(0) = wiij
, and by definition this is equal to mij→i(0). Now for the general case consider

the computation tree T t
i and fix a branch T t

ij→i. Denote the children of ij in this branch by j1, . . . , jℓ with

ℓ = degG(ij)− 1 (by rule (c) from the construction of the computation tree described above). For simplicity
of notation let a = bij

. Without loss of generality assume that the children j1, . . . , jℓ are ordered so that

W+
j1→ij

(t − 1) ≤ W+
j2→ij

(t − 1) ≤ · · · ≤ W+
jℓ→ij

(t − 1).

Now it is not hard to see that

W+
ij→i(t) = wiij

+
a−1
∑

r=1

W+
jr→ij

(t − 1) +
ℓ
∑

r=a

W−
jr→ij

(t − 1)

W−
ij→i(t) =

a
∑

r=1

W+
jr→ij

(t − 1) +
ℓ
∑

r=a+1

W−
jr→ij

(t − 1),
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so that

nij→i(t) = W+
ij→i(t) − W−

ij→i(t)

= wiij
+ W−

ja→ij
(t − 1) − W−

ja+1→ij
(t − 1)

= wiij
− nja→ij

(t − 1)

= wiij
− ath-minr∈N(ij)\{i}

(

njr→ij
(t − 1)

)

.

Therefore we have shown that variables nj→i(t) satisfy the same recursive relation as variables mj→i(t),
equation (2), and satisfy the same initial conditions. Thus they are equal.

It follows immediately from the above lemma that the set of edges Ei(t) which is selected in iteration t of
the algorithm Sync-BP consists of exactly the same edges which are adjacent to root i in M∗(T t

i ). This is
formalized in the following corollary.

Corollary 1 The algorithm Sync-BP solves the b-TMWPM problem on the computation tree. In particular,
for each vertex i of G, the set of Ei(t) which was chosen at the end of iteration t by Sync-BP is exactly the
set of bi edges which are attached to the root in b-TMWPM of T t

i .

Corollary 1 characterizes the estimated b-MWPM, M(t), and will be used in the proof of the main result
in Subsection 4.3. In the next subsection we present a very useful connection between graph G and its
double-cover graph that is crucial for the proofs of Subsection 4.3.

4.2 Graph Covers

For a simple graph G = (V, E), define the double-cover of G as a bipartite graph G̃ = (V1 ∪ V2, E(G̃)) where
V1, V2 are exact copies of V (i.e. v ∈ V if and only if v1 ∈ V1, v2 ∈ V2) and each edge of G has exactly
two copies in G̃ (i.e. {u, v} ∈ E if and only if {u1, v2} ∈ E(G̃), {u2, v1} ∈ E(G̃)). For each vertex (edge)
of G there are exactly two vertices (edges) in G̃.. Note that G and G̃ have the same local structure that
is for any vertex v in G the vertices v1, v2 in G̃ have the same neighborhood as v. For weighted graphs we
assign the weight wij of the edge {i, j} to both edges {i1, j2}, {i2, j1} of G̃. Figure 2 shows a graph G and

its double-cover G̃. We can now write an analogues LP relaxation to (1) for G̃.

min
∑

{i,j}∈E (xi1j2 + xi2j1)wij

subject to
∑

j2∈N(i1) xi1j2 =
∑

j1∈N(i2)
xi2j1 = bi ∀ i

0 ≤ xirjs
≤ 1 ∀ {ir, js} ∈ E(G̃)

(3)

Now we investigate the relationship between the LP relaxations given in (1) and (3). The following lemma
characterizes this relationship.

Lemma 2 Let x∗ = (x∗
ij) and x̃∗ = (x∗

irjs
) be the optimum solutions for the LP relaxations (1) and (3)

respectively.

(a)
∑

{i,j}∈E

(

x∗
i1j2

+ x∗
i2j1

)

wij = 2
∑

{i,j}∈E x∗
ijwij .

(b) If the optimum x∗ of LP (1) is integer and is unique then the optimum x̃∗ of LP (3) is also integer and
is unique. Moreover for all {i, j} ∈ E the following holds x∗

i1j2
= x∗

i2j1
= x∗

ij . We call such optimum
of LP (3), a symmetric integer solution.

(c) If the optimum x∗ of LP (1) is integer and is fractional then there exists an optimum x̃∗ of LP (3)
which is integer and satisfies the following constraint. For all {i, j} ∈ E, either x∗

i1j2
= x∗

i2j1
= x∗

ij

holds or x∗
i1j2

= 1 − x∗
i2j1

, x∗
ij = .5 hold. We call such optimum of LP (3), a non-symmetric integer

solution.
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Figure 2: A graph G with four vertices and its double-cover G̃ on the right.

Proof Starting from an optimum x∗ for the LP (1), it is easy to see that f(x∗) = (yirjs
) where yi1j2 =

yj1i2 = x∗
ij is a feasible solution for the LP (3) and hence one side of the equality in (a) is proven as follows:

∑

{i,j}∈E

(

x∗
i1j2

+ x∗
i2j1

)

wij ≤
∑

{i,j}∈E

(yi1j2 + yi2j1)wij = 2
∑

{i,j}∈E

x∗
ijwij .

On the other hand starting from an optimum x̃∗ of the LP (3) one can define a feasible solution for the LP
(1) by g(x̃∗) = (zij) where zij = (x∗

i1j2
+ x∗

i2j1
)/2. Now the other side of the equality in part (a) is proven

by the following:
∑

{i,j}∈E

(

x∗
i1j2

+ x∗
i2j1

)

wij = 2
∑

{i,j}∈E

zijwij ≥ 2
∑

{i,j}∈E

x∗
ijwij .

As a corollary of this discussion one can see that the mappings f, g provide a correspondence (not necessarily
one to one) between the optimums of LPs (1) and (3).

Now to prove (b), if the optimum x∗ of the LP (1) is integer then by the above discussion f(x∗) is an integer
optimum of the LP (3). And since by assumption, x∗ is the unique optimum of (1) then g(f(x∗)) which is
an optimum of (1), is equal to x∗. This proves (b).

For (c) we use the well-known fact that vertices of the b-matching polytope on bipartite graphs are all integer
solutions [43]. So There exist an optimum x̃∗ for (3) which is integer. Since the optimum of (1) is unique
therefore it has to be equal to g(x̃∗). Thus x∗ = g(x̃∗). But x̃∗ being integer means that for all {i, j} ∈ E
we either have x∗

i1j2
= x∗

i2j1
= x∗

ij or x∗
i1j2

= 1 − x∗
i2j1

, x∗
ij = .5 which proves (c).

Note that the above analysis reproves a well-known fact about coordinates of the vertices of the polytope
for LP (1). It shows that those coordinates are from the set {0, .5, 1}.

Next we will show that the algorithm Sync-BP for graphs G and G̃ is the same. In particular both graphs G
and G̃ have similar local structure and therefore they have similar computation trees. The only difference is
that the vertices with a fixed label i in the computation tree of G now have labels i1 or i2 in the computation
tree of G̃ depending on the parity of their distance from the root. More specifically the following lemma is
straightforward.

Lemma 3 There exists an isomorphism φ : T t
i → T t

i1
between the computation trees of graphs G and G̃

that preserves the roots and for any vertex v with label j in T t
i , the label of φ(j) is j1 (or j2) if v has even

(or odd) distance from the root of T t
i . Similar isomorphism exists between T t

i and T t
i2

.

Therefore the minimum weight perfect tree-b-matchings for T t
i , T t

i1
, and T t

i2
choose the same edges at the

roots. This shows the following corollary.

Corollary 2 The output of the algorithm Sync-BP for a vertex i of graph G is the same as the output of
the algorithm Sync-BP, started with the same initial conditions, for vertices i1 and i2 of the double-cover G̃.

The notion of graph-covers and its relation with LP and BP has been studied before in the context of coding
theory [47], [46] and similar notions in the combinatorial optimization context exist in [43].
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4.3 Proof of Theorem 1

We will prove Theorem 1, namely that if the LP relaxation (1) has no fractional solution and hence M∗ is
unique, then Sync-BP converges to the correct b-MWPM. We will do this by using Corollary 2 to reduce
the problem to bipartite graphs and then use Lemma 2 and results of [5] and [24] to prove correctness of the
BP. Alternatively, we provide a different proof of Theorem 1 which is also independent from the previous
results [5] and [24] in the appendix. This second proof was also presented in the preliminary version of this
paper [7].

Let us summarize results of [5] and [24] by the following theorem:

Theorem 2 For any weighted bipartite graph with unique minimum weight b-matching (and gap ǫ), the
algorithm Sync-BP, converges to the correct solution within ⌈ 2nw∗

ǫ
⌉.

Note that ǫ, w∗ for bipartite graphs are defined the same way as in Section 3 for general graphs. Now we
are ready to prove Theorem 1.

First note that since LP (1) has no fractional solution then by Lemma 2(a) the LP (3) has unique integer
solution which is also symmetric. And therefore proofs given in [5] and [24] show correctness of Sync-BP in
the double-cover G̃ after ⌈ 2nw∗

ǫ
⌉ iterations. Now using Corollary 2, we obtain correctness of Sync-BP for the

original graph G after ⌈ 2nw∗

ǫ
⌉ iterations.

4.4 Independence from Initial Conditions.

We would like to point out that changing the initial condition for the messages in step (2) of Sync-BP
to any arbitrary values does not change the convergence and correctness of algorithm Sync-BP. The only
effect of initial condition is on the number of iterations needed for convergence. Theorem 1 remains true
by re-defining w∗ according to: w∗ = max{i,j}∈E |wij | + max{i,j}∈E |mi→j(0)|. This follows because, by
changing the initial condition, the algorithm Sync-BP runs over a slightly modified computation tree. The
new computation tree is almost the same computation tree as T t

i , except that the leaf edges of the tree have
arbitrary weights and not wij ’s from G. As it appears in proof of Lemma 3 in [5], the only place where the
weight of leaf edges appears is the inequality (16) of that paper, which will be satisfied by new definition of
w∗ (similarly in proof of Lemma 1.3 of [24]).

5 Extension to Possibly Non-Perfect b-Matchings

In this section we show that the algorithm and the results of the previous sections can be easily generalized
to the case of b-matchings (subgraphs H of G such that degree of each vertex i in H is at most bi). Let
U(H) ⊂ V be the set of unsaturated vertices of G (vertices i ∈ V such that degH(i) < bi). Similar to Section
2, the minimum weight b-Matching (b-MWM), H∗, is the b-Matching such that

H∗ = argmaxH∈MG(b) WH .

Note that H∗ does not include any edge with positive weight because removing such edges from H∗ reduces
its weight while keeping it a b-matching. Therefore in this section we assume that for all {i, j} ∈ E : wij ≤ 0.
The LP relaxation is slightly different from before:

min
∑

{i,j}∈E xijwij

subject to
∑

j∈N(i) xij ≤ bi ∀ i

0 ≤ xij ≤ 1 ∀ {i, j} ∈ E

(4)
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Similar to Section 2 we define ǫ′ > 0 to be the difference between WH∗ and weight of the second best
b-matching.

Now we can present the modified algorithm Sync-BP for finding b-MWM in G:

Algorithm Sync-BP(2).

(1) At times t = 0, 1, . . ., each vertex sends real-valued messages to each of its neighbors. The message of
i to j at time t is denoted by mi→j(t).

(2) Messages are initialized by mi→j(0) = wij for all {i, j} ∈ E.

(3) For t ≥ 1, messages in iteration t are obtained from messages in iteration t − 1 recursively as follows:

∀ {i, j} ∈ E : mi→j(t) = wij − min

(

0, bth
i -minℓ∈N(i)\{j}

[

mℓ→i(t − 1)

])

(5)

where kth-min(A) denotes the kth minimum6 of set A.

(4) The estimated b-MWM at the end of iteration t is H(t) = ∪n
i=1Fi(t) where Fi(t) =

{

{i, j1}, . . . , {i, jci
}
}

is such that mjℓ→i(t) < 0 for all 1 ≤ ℓ ≤ ci, i.e., choose edges that transfer negative messages to i.

(5) Repeat (3)-(4) until H(t) converges.

The results for b-matchings generalize as follows:

Theorem 3 Assume that the LP relaxation (10) has no fractional solution. Then the algorithm Sync-BP(2)
converges to H∗ after at most ⌈ 4nw∗

ǫ′
⌉ iterations.

The proof of Theorem 3 is similar to the one of Section 4 with the following modifications:

1. The computation tree T t
i and b-TMWM are defined as before, while Lemma 1 is slightly modified. A

careful analysis of W+ and W− for the tree-b-matchings yields equations (5) for finding b-TMWM in
the computation tree. This is how the new equations are obtained.

2. The LP (3) that is defined on the double-cover G̃ should be modified to address possibly non-perfect
b-matching. Then Lemmas 2-4 and Corollary 2 hold for the modified LP.

3. The proof of Lemmas 2, 3 in [5] and Lemma 1.3 should be slightly modified. In particular, the
alternating path that is constructed in those papers can be different: One can show that if the b-
TMWM N ∗(T t

i ) and the tree-b-matching H∗ choose different sets of edges at the root i, then an
alternating path can be constructed in T t

i (as in [5], [24]) which includes the root i. But endpoints of
this alternating path are either leaves of T t

i or vertices inside T t
i which have labels from U(H∗) (are

un-saturated in G by H∗). In the case in which there is at least one leaf as an endpoint, the same
argument as in [5], [24] can be used since length of the path grows with the depth of computation tree.
But in the case in which both endpoints are non-leaf vertices of the computation tree one can show by
switching the edges on the path, a better b-TMWM can be achieved. In particular using the proof of
Lemma 3 in [5] we can partition the path to many simple alternating cycles and an alternating simple
path. For the cycles, as in [5], switching the edges improves the weight by at least ǫ′. For the simple
path, situation is better here compared to [5]. We can show switching yields a gain of at least ǫ′. This
is because both endpoints of the path belong to U(H∗) which means switching the edges of the path
(in graph G) yields a valid b-matching which should have larger weight than WH∗ by at least ǫ′.

6Here bth
i -minℓ∈N(i)\{j} is defined to be 0 if degG(i) = bi.
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6 Analysis of the Asynchronous BP

In this section we study the asynchronous version of the BP algorithm. The update equations are exactly
analogous to the synchronous version, but at each time only a subset of the edges are updated in an arbitrary
order. Consider the set ~E of all directed edges in the G; i.e., ~E = {(i → j) s.t. i 6= j ∈ V }. Let A be

a sequence ~E(1), ~E(2), . . . of subsets of the set ~E. Then the asynchronous BP algorithm corresponding to
the sequence A can be obtained by modifying only the step (3) of the algorithm Sync-BP for the perfect
b-matchings:

(3) For t ≥ 1, messages in iteration t are obtained from messages in iteration t − 1 recursively as follows:

mi→j(t) =







wij − bth
i -minℓ∈N(i)\{j}

[

mℓ→i(t − 1)

]

if (i → j) ∈ ~E(t)

mi→j(t − 1) otherwise

Note 3. This is the most general form of the asynchronous BP and it includes the synchronous version
( ~E(t) = ~E for all t = 1, 2, . . .) as a special case. In many applications, a special case of the asynchronous BP

is used for which each set ~E(t) consists of a single element.

We assume that the sequence A of the updates does not have redundancies. That is, no edge direction
(i → j) ∈ ~E is re-updated before at least one of its incoming edge directions ((ℓ → i) for ℓ ∈ N(i)\{j}) is

updated. More formally, if (i → j) ∈ ~E(t) ∩ ~E(t + s) and (i → j) /∈ ∪s−1
r=1

~E(t + r), then at least for one

ℓ ∈ N(i)\{j}, we should have (ℓ → i) ∈ ∪s−1
r=1

~E(t + r).

Let us denote the above algorithm by Async-BP. We claim that, if each edge direction (i → j) ∈ ~E is updated
θ(n) times, then the same result as Theorem 1 can be proved here. That is, let u(t) be the minimum number

of times that an edge direction of the graph G appears in the sequence ~E(1), . . . , ~E(t); i.e.,

u(t) = min
(i→j)∈ ~E

(

∣

∣

∣

∣

{

ℓ : s.t. 1 ≤ ℓ ≤ t and (i → j) ∈ ~E(ℓ)
}

∣

∣

∣

∣

)

.

From the definition, u(t) is a non-decreasing function of t. We claim that the following result holds:

Theorem 4 Assume that the LP relaxation (1) has no fractional solution. Then the algorithm Async-BP
converges to M∗ after at most t iterations, provided u(t) > 2nw∗

ǫ
.

Before proving the above theorem let us define the notion of generalized computation tree for the asyn-
chronous version of the BP algorithm.

6.1 Generalized Computation Tree for the Asynchronous BP

In order to define the generalized computation tree (GCT) for the asynchronous BP, we will begin with some

definitions. For any (i → j) ∈ ~E(t), define Rt
i→j to be the computation branch of i to j at time t which

is a weighted rooted tree (not necessarily a balanced rooted tree) and recursively defined according to the
following rules:

(a) The root has label j.

(b) The root has only one child which has label i.

(c) If t = 0, then the child i has no child (R0
i→j is just a single edge {i, j}).

(d) For t > 0, if (i → j) /∈ ~E(t) then Rt
i→j = Rt−1

i→j . Otherwise the child i has degG(i) − 1 children which
have all of labels in the set N(i)\{j} and for any child r of i the subtree that consists of all descendants of
r and the edge {r, i} to i is Rt−1

r→i.
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The edge between nodes labeled i, j in the tree is assigned weight wij for 1 ≤ i < j ≤ n. Now for any vertex
i ∈ V and any t, the GCT Rt

i is a weighted rooted tree with root i such that all its branches starting from
the root are the computation branches Rt

r→i for all r ∈ N(i). Since the GCT Rt
i is not necessarily balanced,

we will define its depth to be the length of the shortest path from the root i to a leaf and denote it by d(Rt
i).

Similarly to the Section 4.1, we can define the minimum weight perfect tree-b-matching (b-TMWPM) for
GCT Rt

i and denote it by M∗(Rt
i). Moreover, arguments similar to the ones in the Section 4.1 show that the

algorithm Async-BP is solving the b-TMWPM for GCTs Rt
i. In other words, the following corollary holds:

Corollary 3 The algorithm Async-BP solves the b-TMWPM problem on the GCT. In particular, for each
vertex i of the G, the set Ei(t) that was chosen at the end of iteration t by Async-BP is exactly the set of bi

edges that are attached to the root in b-TMWPM of Rt
i.

6.2 Technical Analysis of the Asynchronous BP

Now we can use the same analysis as in Section A.3 to show that if the depth of the generalized computation
tree (GCT) is large enough, then for any vertex i, its neighbors in M∗ (b-MWPM of G) are exactly those
children that are selected in N ∗(Rt

i) (b-TMWPM of Rt
i). We will show this by relating the function u(t) to

the depth of the GCT Here is the main lemma which summarizes the above claim:

Lemma 4 If the LP relaxation (1) has no fractional solution, then for any vertex i of G and for any t such
that u(t) > 2nw∗

ǫ
, the set of edges that are adjacent to root i in N ∗(Rt

i) are exactly those edges that are
connected to i in M∗.

The proof of Lemma 4 is similar to the proof of Lemma 3 from [5] or Lemma 1.3 from [24], with the following
slight modifications:

(i) One can construct alternating paths Pℓ in the same way as before for 1 ≤ ℓ ≤ d(Rt
i).

(ii) The depth of the GCT Rt
i is related to u(t) according to the following lemma:

Lemma 5 For any vertex i ∈ V and any t, the depth of any computation branch at time t is at least u(t);
i.e., d(Rt

i→j) ≥ u(t).

This tells us d(Rt
i) ≥ u(t) > 2nw∗

ǫ
. Applying this to the path Pd(Rt

i
), analogously to the use of Lemma 3 in

[5], gives us the proof of Lemma 4. Therefore all that is needed is a proof of Lemma 5.

Proof of Lemma 5 The proof follows easily by looking at the construction of the computation branch.
Each computation branch Rt

i→j grows at time t if (i → j) ∈ ~E(t). And if this is the case, the depth increases
by at least one due to the “no redundancy condition” on the updating sequence. So if each edge is updated
at least u(t) times then the depth of its computation branch grows by at least u(t).

Finally we note that the same algorithm as Async-BP and the same result as Theorem 4 can be stated and
proved for the (possibly non-perfect) b-matchings as well.

7 Solving LP with BP

So far we have been proving correctness of the BP algorithm provided that the LP relaxation has no fractional
solution. In this section we show that with a slight perturbation of the weights, one can solve the LP
relaxation with BP. We will do this for all possibilities for the LP solutions (i.e. when LP has fractional
solutions or when the integer optimum is non-unique). Note that we can first assume that the LP relaxation
has a unique optimum which is a corner of its polytope. If that is not the case then we can add a small and
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random perturbation to the weights which breaks the ties and forces the uniqueness of LP optimum with
high probability. If we solve this new LP with BP then we have found an optimum of the original LP.

Now we will focus on the double cover G̃ of graph G. We saw in Section 4 that if LP on G has no fractional
solution then LP on G̃ has a unique symmetric integer solution which can be found with BP. But if the
LP on G has fractional solution then LP on G̃ has many optimums including two non-symmetric integer
solutions. We would like to perturb the weights, in order to break the tie and force the LP of G̃ to have
a unique non-symmetric integer solution with high probability. This can be done by adding a small and
random perturbation to the edges of G̃ (the edges {i1, j2} and {i2, j1} will be perturbed differently). Now
that LP on G̃ has unique integer solution we can find it with BP and then we can construct an LP optimum
for G by assigning to xij values 0, .5, or 1 depending on wether none, one, or both of the edges {i1, j2} and

{i2, j1} in G̃ are part of the non-symmetric optimum found by BP.

The above discussion describes a often observed behavior of the BP algorithm in practice: BP converges
to the correct values for the integer parts and oscillates for the fractional parts of the LP solution. This
statement is correct if the above analysis was true for the original weights in the graph G without any
perturbation. However one can construct counterexamples in which BP gives ambiguous answers when there
is no perturbation. Although these special cases have very low probability of occurrence in practice.
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Appendix

A Alternative analysis of the algorithms in Sections 3-6

For the proofs of this section first we define the dual of LP relaxation (1).

min
∑

{i,j}∈E xijwij | max
∑n

i=1 biyi −
∑

{i,j}∈E λij

subject to | subject to
∑

j∈N(i) xij = bi ∀ i | wij + λij ≥ yi + yj ∀ {i, j} ∈ E

0 ≤ xij ≤ 1 ∀ {i, j} ∈ E | λij ≥ 0 ∀ {i, j} ∈ E
|
|

Primal LP | Dual LP
(6)

Next, we need to define the complementary slackness conditions.

A.1 Complementary Slackness Conditions.

Complementary slackness conditions for the LP and its dual state that the variables x∗ = (x∗
ij) and y∗ =

(y∗
i ), λ∗ = (λ∗

ij) are optimum solutions to the LP relaxation and its dual (6), respectively, if and only if for
all edges {i, j} of G both x∗

ij(wij + λ∗
ij − y∗

i − y∗
j ) = 0. and (x∗

ij − 1)λ∗
ij = 0 hold. See [10], [43] for more

information about LP, dual LP and complementary slackness conditions.

Using the fact that the LP has no fractional solution, one can deduce the following modified complementary
slackness conditions: For all {i, j} ∈ M∗; wij + λ∗

ij = y∗
i + y∗

j and for all {i, j} /∈ M∗; λ∗
ij = 0.

16



By these conditions and the fact that λ∗
ij ≥ 0, we have that wij ≤ y∗

i +y∗
j for all {i, j} ∈ M∗, and wij ≥ y∗

i +y∗
j

for all {i, j} /∈ M∗. However, it is in general not true that these inequalities are strict even when the LP has
no fractional solution. Let S be the set of those edges in G for which |wij − y∗

i − y∗
j | > 0. We will assume

the minimum gap is ǫ′′. i.e. ǫ′′ = min{i,j}∈S |wij − y∗
i − y∗

j | > 0. Throughout this paper we assume that
there exist an edge in G for which the strict inequality |wij − y∗

i − y∗
j | > 0 holds and therefore ǫ′′ > 0 is well

defined. The other cases, where for each {i, j} ∈ E the equality wij = y∗
i + y∗

j holds, happen only for special
cases and are discussed in Section A.4. Let also L = max1≤i≤n |y∗

i | .

Now we are ready to state the analogous version of Theorem 1 and its proof.

Theorem 5 Assume that the LP relaxation (1) has no fractional solution. Then the algorithm Sync-BP
converges to M∗ after at most ⌈ 2nL

ǫ′′
⌉ iterations.

A crucial part of all the proofs in the appendix is the following lemma.

A.2 Main Technical Lemma

In this section we state our main technical lemma which connects the complementary slackness conditions
from Section A.1 to paths on the graph G and on the computation tree. This lemma is a key step in our
proof. Its proof is quite delicate, and provides the connection between the absence of fractional solutions
and the correctness of BP.

Definition A path P = (i1, i2, . . . , ik) in G is called alternating path if:

(a) There exist a partition of edges of P into two sets A, B such that either (A ⊂ M∗ , B ∩ M∗ = ∅) or
(A∩M∗ = ∅ , B ⊂ M∗). Moreover A (B) consists of all odd (even) edges; i.e. A = {(i1, i2), (i3, i4), . . .}
(B = {(i2, i3), (i4, i5), . . .}).

(b) The path P might intersect itself or even repeat its own edges but no edge is repeated immediately.
That is, for any 1 ≤ r ≤ k − 2 : ir 6= ir+1 and ir 6= ir+2.

P is called an alternating cycle if i1 = ik.

Lemma 6 Assume that the LP relaxation (1) has no fractional solution. Then for any alternating path P
of length at least 2n, there exists an edge {i, j} ∈ P such that the inequality |wij − y∗

i − y∗
j | > 0 holds. That

is, P ∩ S 6= ∅.

Proof We will consider two cases:

Case I) Existence of an even simple cycle in P .
Consider the subgraph of G that is generated by edges and vertices of P . If this subgraph contains an
alternating cycle C that does not intersect itself (simple cycle) and has even length, then we will show that
C ∩ S 6= ∅. Let C = (j1, . . . , j2ℓ, j1). Without loss of generality assume that odd edges belong to M∗ and
even edges do not. That is, for all 1 ≤ r ≤ ℓ :

{i2r−1, i2r} ∈ M∗ , {i2r, i2r+1} /∈ M∗

where j2ℓ+1 = j1. To prove C ∩ S 6= ∅, assume the contrary; that is, assume for all edges {i, j} of C : wij =
y∗

i + y∗
j . The weight of M∗-edges of C is equal to weight of their complement in C, due to the fact that

ℓ
∑

r=1

wj2rj2r+1 =
2ℓ
∑

s=1

y∗
r =

ℓ
∑

r=1

wj2r−1j2r
.
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Now one can obtain a perfect b-matching M ′ in G which is different from M∗ and has the same weight as
M∗. This can be done by defining M ′ = M∗ outside cycle C, and M ′ = C\M∗ on cycle C. However, this
contradicts the uniqueness assumption for b-MWPM in G which holds due to the fact that the LP relaxation
has no fractional solution. Hence we are done.

Case II) There is no even simple cycle in P .
Let P = {i1, i2, . . . , ik}. Since P has length at least 2n, it must repeat a vertex. We also add a natural
direction to each edge {ij , ij+1} that is from ij to ij+1. Consider the first vertex that is revisited by starting
from i1 and walking along P . That is, consider the smallest numbers r, s such that 1 ≤ r < s ≤ n + 1 and
ir = is. Now we break P into three connected pieces as follows:

(i) Simple path P0 = (i1, i2, . . . , ir) (this part will be ignored).

(ii) Simple cycle C1 = (ir, ir+1, . . . , is).

(iii) Path P1 = (is+1, is+1, . . . , ik).

From now on we are going to assume that path P0 does not even exist. Basically we will show that there is
one edge from S which is in C1 ∪ P1. Since we assumed that P has no even simple cycle, it follows that C1

has odd length (s− r is odd). Since the length of P is at least 2n, it follows that P has to intersect itself at
least twice and there must be another vertex that is revisited after ir. Consider the smallest numbers r′, s′

such that r ≤ r′ < s′ ≤ k and ir′ = is′ . Denote this new simple cycle by C2; i.e., C2 = (ir′ , ir′+1, . . . , is′).
Again since C2 is an alternating path, it has to have odd length (s′ − r′ is odd).

Now we claim that s ≤ r′. Again assume the contrary, that r < r′ < s. We obtain a contradiction
by finding an even simple cycle in P . Break path C1 in two simple paths Q1 = (ir, ir+1, . . . , ir′) and
Q2 = (ir′ , ir′+1, . . . , is), and define the simple path Q3 = (is, is+1, . . . , is′). Now consider the simple cycle
C3 = Q1 ∪ Q3. The length of C3 is equal to r′ − r + s′ − s, which has the same parity as s − r + s′ − r′,
which is even. Therefore C3 is an even cycle. Moreover, the fact that the parities of r′ and s′ are different
guarantees the alternation of adjacent edges {ir′−1, ir′} and {is′−1, is′} in cycle C3. Similarly the difference
in parity between r and s implies alternation of adjacent edges {ir, ir+1} and {is, is+1} in cycle C3. Thus
C3 is an even length alternating simple cycle, which is a contradiction. So the claim s ≤ r′ is proved.

Now we are left with a final possibility which uses the integrality of the LP optimum solution. Consider the
following three pieces of path P :

(i) Simple odd cycle C1.

(ii) Simple path P2 = (is+1, is+1, . . . , ir′) (could be only a point).

(iii) Simple odd cycle C2.

If (C1 ∪P2∪C2)∩S = ∅, this means that for all edges {i, j} ∈ C1∪P2∪C2, the equality wij = y∗
i +y∗

j holds.
We will reach a contradiction by showing the existence of an optimum fractional solution for LP relaxation
(1). This is done by defining x′ as follows:

∀ {i, j} ∈ E : x′
ij =







x∗
ij if {i, j} /∈ C1 ∪ P2 ∪ C2

1 − x∗
ij if {i, j} ∈ P2

0.5 if {i, j} ∈ C1 ∩ C2.

First we need to show that x′ is a feasible solutions for the LP. For this, all we need to show is that x′

satisfies the same local constraints as x∗ on vertices of C1 ∪ P2 ∪ C2. Since all C1 ∪ P2 ∪ C2 is a connected
alternating path, then for all vertices iℓ ∈ C1 ∪ P2 ∪ C2 (ℓ /∈ {r, s, r′, s′}) it is clear that x′

(ℓ−1)ℓ + x′
ℓ(ℓ+1) =

x∗
(ℓ−1)ℓ + x∗

ℓ(ℓ+1) = 1. For ℓ = r, using the fact that length of C1 is odd and path C1 ∪ P2 is an alternating
sub-path of P , either x∗

r(r+1) = x∗
(s−1)s = 1, x∗

s(s+1) = 0 or x∗
r(r+1) = x∗

(s−1)s = 0, x∗
s(s+1) = 1, which leads

to x′
r(r+1) = x′

(s−1)s = 0.5, x′
s(s+1) = 1 or x′

r(r+1) = x′
(s−1)s = 0.5, x′

s(s+1) = 0, respectively. In both cases,

x′ satisfies same local constraint as x∗ at ir. A similar argument holds at ir′ .
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Next we show that x′ has the same cost as x∗. This is done by applying the equality wij = y∗
i + y∗

j to all
edges of C1 ∪ P2 ∪ C2 as follows:

∑

{i,j}∈C1∪P2∪C2

wijx
∗
ij =

∑

i∈C1∪P2∪C2

y∗
i + x∗

irir+1
y∗

ir
+ x∗

ir′ ir′+1
y∗

ir′

=
∑

i∈C1∪C2

y∗
i +

∑

{i,j}∈P2

wijx
′
ij

=
∑

{i,j}∈C1∪C2∪P2

wijx
′
ij .

This completes the proof of Lemma 6.

A.3 Proof of Theorem 5

We will prove Theorem 5, using a similar argument to the proof in Section 4.3. In other words we show that
if the LP relaxation (1) has no fractional solution and hence M∗ is unique, then Sync-BP converges to the
correct b-MWPM. We will do this by showing that if the depth of computation tree is large enough, then
for any vertex i, its neighbors in M∗ (b-MWPM of G) are exactly those children that are selected in N ∗(T t

i )
(b-TMWPM of T t

i ). Here is the main lemma that summarizes the above claim:

Lemma 7 If the LP relaxation (1) has no fractional solution, then for any vertex i of G and for any t > 2nL
ǫ′′

,
the set of edges that are adjacent to root i in N ∗(T t

i ) are exactly those edges that are connected to i in M∗.

Before entering into the details of the proof here is a high level overview of the underlying argument. Consider
the computation tree (T t

i ) rooted at vertex i and look at N ∗(T t
i ). We will assume that the claim of the lemma

does not hold. That is, we assume that at the root, N ∗(T t
i ) does not choose the same edges as M∗-edges

adjacent to i. Then we use the property of perfect tree-b-matchings, namely that each non-leaf vertex j is
connected to exactly bj of its neighbors, to construct a new perfect tree-b-matching on the computation tree.
This new perfect tree-b-matching is going to have less total weight if the depth of the computation tree is
large enough. This last step uses an alternating path argument which is a highly non-trivial generalization
of the technique of [5] for the case of perfect 1-matching in bipartite graphs. For this part we will use the
solutions to the dual LP (6).

Proof of Lemma 7 Let us denote the lifting of a perfect b-matching M∗ to a perfect tree-b-matching on
T t

i by M∗. That is, M∗ consists of all edge of the computation tree with endpoint labels i, j such that
{i, j} ∈ M∗ as an edge in G. The goal is to show that N ∗(T t

i ) and M∗ have the same set of edges at the
root of the computation tree. To lighten the notation, we denote the b-TMWPM of T t

i by N ∗.

Assume the contrary, that there exist children i−1, i1 of root i such that {i, i1} ∈ M∗\N ∗ and {i, i−1} ∈
N ∗\M∗. Since both M∗, N ∗ are perfect tree-b-matchings, they have bi1 edges connected to i1. Therefore
there exist a child i2 of i1 such that {i1, i2} ∈ N ∗\M∗. Similarly there is a child i−2 of i−1 such that
{i−1, i−2} ∈ M∗\N ∗. Therefore we can construct a set of alternating paths Pℓ, ℓ ≥ 0, in the computation
tree, that contain edges from M∗ and N ∗ alternatively defined as follows. Let i0 = root i and P0 = (i0) be
a single vertex path. Let P1 = (i−1, i0, i1), P2 = (i−2, i−1, i0, i1, i2) and similarly for r ≥ 1, define P2r+1 and
P2r+2 recursively as follows:

P2r+1 = (i−(2r+1), P2r, i2r+1) , P2r+2 = (i−(2r+2), P2r+1, i2r+2)

where i−(2r+1), i2r+1 are nodes at level 2r + 1 such that {i2r, i2r+1} ∈ M∗\N ∗ and {i−2r, i−(2r+1)} ∈
N ∗\M∗. Similarly i−(2r+2), i2r+2 are nodes at level 2r + 2 such that {i2r+1, i2r+2} ∈ N ∗\M∗ and
{i−(2r+1), i−(2r+2)} ∈ M∗\N ∗. Note that, by definition, such paths Pℓ for 0 ≤ ℓ ≤ t exist since the
tree T t

i has t+1 levels and can support a path of length at most 2t as defined above. Now consider the path
Pt of length 2t. It is an alternating path on the computation tree with edges from M∗ and N ∗. Let us refer
to the edges of M∗ (N ∗) as the M∗-edges (N ∗-edges) of Pt.
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We will now modify the perfect tree-b-matching N ∗ by replacing all N ∗-edges of Pt with their complement
in Pt (M∗-edges of Pt). It is straightforward that this process produces a new perfect tree-b-matching N ′

in T t
i .

Let us assume, for the moment, the following lemma:

Lemma 8 The weight of the perfect tree-b-matching N ′ is strictly less than that of N ∗ on T t
i .

This completes the proof of Lemma 7 since Lemma 8 shows that N ∗ is not the minimum weight perfect
tree-b-matching on T t

i , leading to a contradiction.

Now, we provide the proof of Lemma 8.

Proof of Lemma 8 It suffices to show that the total weight of the N ∗-edges of Pt is more than the total
weight of M∗-edges of Pt. For each vertex ir ∈ Pt consider the value y∗

ir
from the optimum solution to the

dual LP (6). Using the inequality wij ≤ y∗
i + y∗

j for edges of M∗, we obtain:

∑

{i,j}∈Pt∩M∗

wij ≤

(

t
∑

r=−t

y∗
ir

)

− y∗
i(−1)tt

− k1ǫ
′′ (7)

where k1 is the number of M∗-edges of Pt that belong to S, i.e., the number of M∗-edges of Pt endowed
with the strict inequality wij ≤ y∗

i + y∗
j , with a gap of at least ǫ′′. On the other hand, using the inequality

wij ≥ y∗
i + y∗

j for edges of N ∗ we have:

∑

{i,j}∈Pt∩N∗

wij ≥

(

t
∑

r=−t

y∗
ir

)

− y∗
i(−1)t+1t

+ k2ǫ
′′ (8)

where now k2 is number of N ∗-edges of Pt that belong to S, or equivalently the number of times the inequality
wij ≥ y∗

i + y∗
j is strict with a gap of at least ǫ′′. One finds

∑

{i,j}∈Pt∩N∗

wij −
∑

{i,j}∈Pt∩M∗

wij = y∗
i(−1)tt

− y∗
i(−1)t+1t

+ (k1 + k2)ǫ
′′

(a)

≥ (k1 + k2)ǫ
′′ − 2L

(b)

≥ (k1 + k2)ǫ
′′ − 2L

(c)
> 0 (9)

where (a) uses definition of L from Section A.1 and (b) uses the fact that for all i, j : λ∗
ij ≥ 0. The main step

is (c), which uses Lemma 6 as follows. Path Pt has length 2t, and each continuous piece of it with length
2n has a projection to the graph G which satisfies the conditions of Lemma 6. This means the path has at
least one edge from the set S. Thus (k1 + k2) ≥

2t
2n

> 2L
ǫ′′

. This completes the proof of Lemma 8.

Note 4. The proof of Section 4.4 on the independence of Sync-BP’s convergence and correctness from the
initial conditions carries over here as well. This is done by re-defining L according to: L = max1≤i≤n |y∗

i |+
max{i,j}∈E |mi→j(0)| and noting that, in the proof of Lemma 7, the only place where the weight of leaf
edges appears is the inequality (a) in equation (9), which will be satisfied by new definition of L.

A.4 Sync-BP is Correct When ǫ
′′ is Not Well-Defined

Recall from the discussion given above about the complementary slackness conditions that, if for all edges
{i, j} ∈ E the equality wij = y∗

i + y∗
j holds, then ǫ′′ is not well defined. In this section we show that these

rare cases do not cause any trouble. We will show that the condition t > 2nL
ǫ′′

in the main theorem can be
replaced by t > n. This is shown by proving the following lemma instead of Lemma 7.

20



Lemma 9 If the LP relaxation (1) has no fractional solution, then, for any vertex i of G and for any t > n,
the set of edges that are adjacent to root i in N ∗(T t

i ) are exactly those edges that are connected to i in M∗.

Proof The proof is similar to the proof of Lemma 7. If after iteration t, the claim of the Lemma 9 does
not hold, then the alternating path Pt can be constructed as before. Now since the length of Pt is greater
than 2n, one can use the technical Lemma 6 for the projection of the path Pt onto G to show that the strict
inequality |wij − y∗

i − y∗
j | > 0 happens for at least one edge. This contradicts the above assumption at the

beginning of the Section. Therefore Lemma 9 is true.

A.5 Modifications for the possibly non-perfect matchings

Similar to the perfect matching case the LP relaxation and its dual are:

min
∑

{i,j}∈E xijwij | max
∑n

i=1 −biyi −
∑

{i,j}∈E λij

subject to | subject to
∑

j∈N(i) xij ≤ bi ∀ i | wij + λij ≥ −yi − yj ∀ {i, j} ∈ E

0 ≤ xij ≤ 1 ∀ {i, j} ∈ E | λij ≥ 0 ∀ {i, j} ∈ E
|
|

Primal LP | Dual LP.
(10)

Complementary slackness now reads, for all {i, j} ∈ E: x∗
ij(wij + λ∗

ij + y∗
i + y∗

j ) = 0, (x∗
ij − 1)λ∗

ij = 0 and

for all i ∈ V : (
∑

j∈N(i) xij − bi)y
∗
i = 0.

Similarly to the perfect matching case, we can write the following modified complementary slackness condition
using the fact that the LP relaxation has no fractional solution:

(CS’-i) For all {i, j} ∈ H∗; wij + λ∗
ij + y∗

i + y∗
j = 0.

(CS’-ii) For all {i, j} /∈ H∗; λ∗
ij = 0.

(CS’-iii) For all i ∈ U(H∗); y∗
i = 0.

Let S′ be set of those edges in G for which |wij + y∗
i + y∗

j | > 0. We will assume the minimum gap is ǫ′′′.
That is

0 < ǫ′′′ = min
{i,j}∈S

|wij + y∗
i + y∗

j |.

The quantity L′ is defined similarly to L by L′ = max1≤i≤n |y∗
i |.

The algorithm Sync-BP(2) will remain unchanged and the modified theorem for its convergence and correct-
ness is:

Theorem 6 Assume that the LP relaxation (10) has no fractional solution. Then the algorithm Sync-BP(2)

converges to H∗ after at most ⌈ 4nL′

ǫ′′′
⌉ iterations.

The proof of Theorem 6 is similar to the one of Section A.3, with the following modifications:

1. The computation tree T t
i and b-TMWM are defined as before, while Lemma 1 is slightly modified. A

careful analysis of W+ and W− for the tree-b-matchings yields equations (5) for finding b-TMWM in
the computation tree. This is how the new equations are obtained.

2. The technical lemma from Section A.2 is still true and its proof does not change because the definition
of alternating paths is preserved and because all cycles involved in the proof turn out to be adjacent
to exactly one edge of H∗.
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3. The proof of Lemmas 7 and 8 should be slightly modified. In particular, the alternating path Pt can
be different: One can show that if the b-TMWM N ∗(T t

i ) and the tree-b-matching H∗ choose different
sets of edges at the root i, then an alternating path can be constructed as before in T t

i which includes
the root i. But endpoints of this alternating path Pt are either leaves of T t

i or vertices inside T t
i which

have labels from U(H∗) (are un-saturated in G by H∗). In the case in which there is at least one leaf
as an endpoint of Pt, the same argument as equation (9) in Section A.3 can be used since length of

Pt is at least t. This shows (k1 + k2) ≥ t
2n

> 2L′

ǫ′′′
. But in the case in which both endpoints of Pt

are non-leaf vertices of the computation tree, then using condition (CS’-iii), the analogous version of
equation (9) is as follows:

∑

{i,j}∈Pt∩N∗

wij −
∑

{i,j}∈Pt∩H∗

wij = (k1 + k2)ǫ
′′′. (11)

Now all that is needed is to show k1 +k2 > 0. We will show this by the following extension of technical
Lemma 6.

Lemma 10 Assume that the LP relaxation (10) has no fractional solution. Then for any alternating
path P with endpoints from the set U(H∗), there exists an edge {i, j} ∈ P such that the inequality
|wij + y∗

i + y∗
j | > 0 holds. That is, P ∩ S′ 6= ∅.

Proof For paths P with length at least 2n, we can use Lemma 6, so there is nothing to do. If a
subgraph generated by P includes at least two cycles, then the same argument as in the proof of
Lemma 6 can be used. Therefore we can assume P intersects itself at most once. So P can be written
as a union C∪P1 where C is an odd simple alternating cycle and P1 is a simple alternating path (either
C or P1 can be empty, but not at the same time). Next, one can define a different solution x′ to the
LP (10) which has the same cost as x∗ by defining x′ = 1 − x∗ on path P1 and setting x′ equal to 0.5
on C. x′ will still be a feasible solution since the endpoints of P1 are elements of U(H∗) and the edge
adjacent to them in path P1 is not in H∗. This contradicts the no fractional solution assumption on
the LP.

A.6 Modifications for the Asynchronous BP

The algorithm Async-BP and its analysis will be exactly similar to Section 6 except that the main theorem
is slightly modified to:

Theorem 7 Assume that the LP relaxation (1) has no fractional solution. Then the algorithm Async-BP
converges to M∗ after at most t iterations, provided u(t) > 2nL

ǫ′′
.

And all the references to Lemma 3 of [24] should be replaced to Lemma 7 of this paper.
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