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Abstract. We show that rigid reachability, the non-symmetric form of
rigid E-unification, is undecidable already in the case of a single con-
straint. From this we infer the undecidability of a new rather restricted
kind of second-order unification. We also show that certain decidable
subclasses of the problem which are P-complete in the equational case
become EXPTIME-complete when symmetry is absent. By applying
automata-theoretic methods, simultaneous monadic rigid reachability
with ground rules is shown to be in EXPTIME.

1 Introduction

Rigid reachability is the problem, given a rewrite system R and two terms s and
t, whether there exists a ground substitution σ such that sσ rewrites in some
number of steps via Rσ into tσ. The term “rigid” stems from the fact that for no
rule more than one instance can be used in the rewriting process. Simultaneous
rigid reachability is the problem in which a substitution is sought which simulta-
neously solves each member of a system of reachability constraints (Ri, si, ti). A
special case of [simultaneous] rigid reachability arises when the Ri are symmet-
ric, containing for each rule l → r also its converse r → l. The latter problem was
introduced in [14] as “simultaneous rigid E-unification”. (Symmetric systems R
arise, for instance, from orienting a given set of equations E in both directions.)
It has been shown in [8] that simultaneous rigid E-unification is undecidable,
whereas the non-simultaneous case with just one rigid equation to solve is NP-
complete [13]. The main result in this paper is that for non-symmetric rigid
reachability already the case of a single reachability constraint is undecidable,
even when the rule set is ground. From this we infer undecidability of a rather re-
stricted form of second-order unification for problems which contain just a single
second-order variable which, in addition, occurs at most twice in the unification
problem. The latter result contrasts a statement in [19] to the opposite.

The absence of symmetry makes the problem much more difficult. This phe-
nomenon is also observed in decidable cases which we investigate in the second
part of the paper. For instance we prove that a certain class of rigid problems
which is P-complete in the equational case becomes EXPTIME-complete when
symmetry is absent. Our results demonstrate a very thin borderline between the
decidable and the undecidable fragments of rigid reachability with respect to sev-
eral syntactical criteria. In particular, for ground R and variable-disjoint s and
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t, the problem is undecidable, whereas it becomes decidable when, in addition,
either s or t is linear.

In the Section 6 we will apply automata-theoretic methods to the monadic
case and establish an EXPTIME upper bound for monadic simultaneous rigid
reachability for ground rewrite systems. This generalizes the analogous result
of [17] for simultaneous rigid E-unification. Also, our proof is more direct and
provides a better upper bound, closer to the PSPACE lower bound given in [17].
A PSPACE upper bound for this problem has been proved more recently in a
joint work with Cortier [4].

2 Preliminaries

A signature Σ is a collection of function symbols with fixed arities ≥ 0 and,
unless otherwise stated, Σ is assumed to contain at least one constant, that
is, one function symbol with arity 0. The set of all constants in Σ is denoted
by Con(Σ). We use a, b, c, d, a1, . . . for constants and f, g, f1, . . . for function
symbols in general. A designated constant in Σ is denoted by cΣ .

A term language or simply language is a triple L = (ΣL,XL,FL) where (i)
ΣL is a signature, (ii) XL (x, y, x1, y1, . . .) is a collection of first-order variables,
and (iii) FL (F,G, F1, F

′, . . .) is a collection of symbols with fixed arities ≥ 1,
called second-order variables. The various sets of symbols are assumed to be
pairwise disjoint. Let L be a language. L is first-order, if FL is empty; L is
second-order, otherwise. L is monadic if all function symbols in ΣL have arity
≤ 1. The set of all terms in a language L, or L-terms, is denoted by TL. We
use s, t, l, r, s1, . . . for terms. We usually omit mentioning L when it is clear from
the context. The set of first-order variables of a term t is denoted by Var(t). A
ground term is one that contains no variables. The set of all ground terms in
a language L is denoted by TΣL

. A term is called shallow if all variables in it
occur at depth ≤ 1. The size ‖t‖ of a term t is defined recursively by: ‖t‖ = 1 if
t ∈ XL∪Con(ΣL) and ‖f(t1, . . . , tn)‖ = ‖t1‖+ . . .+‖tn‖+1 when f ∈ ΣL∪FL.

We assume that the reader is familiar with the basic concepts in term rewrit-
ing [9, 1]. We write u[s] when s occurs as a subterm of u. In that case u[t] denotes
the replacement of the indicated occurrence of s by t. An equation in L is an
unordered pair of L-terms, denoted by s ≈ t. A rule in L is an ordered pair of
L-terms, denoted by s → t. An equation or a rule is ground if the terms in it are
ground. A system is a finite set. Let R be a system of ground rules, and s and t
two ground terms. Then s rewrites in R to t, denoted by s−→

R
t, if t is obtained

from s by replacing an occurrence of a term l in s by a term r for some rule l → r
in R. The term s reduces in R to t, denoted by s−→∗

R
t, if either s = t or s rewrites

to a term that reduces to t. R is called symmetric if, with any rule l → r in R, R
also contains its converse r → l. Below we shall not distinguish between systems
of equations and symmetric systems of rewrite rules. The size of a system R is
the sum of the sizes of its components: ‖R‖ =

∑

l→r∈R(‖l‖+ ‖r‖).

Rigid Reachability. Let L be a first-order language. A reachability constraint, or
simply a constraint in L is a triple (R, s, t) where R is a set of rules in L, and s and



t are terms in L. We refer to R, s and t as the rule set, the source term and the
target term, respectively, of the constraint. A substitution θ in L solves (R, s, t)
(in L) if θ is grounding for R, s and t, and sθ−−→∗

Rθ
tθ. The problem of solving

constraints (in L) is called rigid reachability (for L). A system of constraints is
solvable if there exists a substitution that solves all constraints in that system.
Simultaneous rigid reachability or SRR is the problem of solving systems of
constraints. Monadic (simultaneous) rigid reachability is (simultaneous) rigid
reachability for monadic languages.

Rigid E-unification is rigid reachability for constraints (E, s, t) with sets of
equations E. Simultaneous Rigid E-unification or SREU is defined accordingly.

Finite Tree Automata. Finite bottom-up tree automata, or simply, tree au-
tomata, from here on, are a generalization of classical automata [10, 22]. Using
a rewrite rule based definition [3, 5], a tree automaton (or TA) A is a quadruple
(QA, ΣA, RA, FA), where (i) QA is a finite set of constants called states, (ii) ΣA

is a signature that is disjoint from QA, (iii) RA is a system of rules of the form
f(q1, . . . , qn) → q, where f ∈ ΣA has arity n ≥ 0 and q, q1, . . . , qn ∈ QA, and
(iv) FA ⊆ QA is the set of final states. The size of a TA A is ‖A‖ = |QA|+‖RA‖.

We denote by T (A, q) the set {t ∈ TΣA

∣
∣ t−−→∗

RA
q} of ground terms accepted by

A in state q. The set of terms recognized by the TA A is the set
⋃

q∈FA
T (A, q).

A set of terms is called recognizable or regular if it is recognized by some TA.

Word automata. In monadic signatures, every function symbol has an arity
at most 1, thus terms are words. For monadic signatures, we thus use the
traditional, equivalent concepts of alphabets, words, finite automata, and reg-
ular expressions. A word with a variable a1 . . . anx corresponds to the term
a1(a2(. . . an(x))) ∈ TΣ . The substitution of x by a term u is the same as the
concatenation of the respective words. A finite (word) automaton A is a tuple
(QA, ΣA, RA, qi

A, FA) where the components QA, ΣA, RA, FA have the same
form and meaning as the corresponding components of a tree automaton over a
monadic signature, and where, additionally, qi

A is the initial state. A transition
a(q) → q′ of RA (a ∈ ΣA, q, q′ ∈ QA) is denoted q−→a q′.

Second-Order Unification. Second-order unification is unification for second-
order terms. For representing unifiers, we need expressions representing func-
tions which, when applied, produce instances of a term in the given language L.
Following Goldfarb [15] and Farmer [11], we, therefore, introduce the concept of
an expansion L∗ of L. Let {zi}i≥1 be an infinite collection of new symbols not
in L. The language L∗ differs from L by having {zi}i≥1 as additional first-order
variables, called bound variables. The rank of a term t in L∗, is either 0 if t
contains no bound variables (i.e., t ∈ TL), or the largest n such that zn occurs
in t. Given terms t and t1, t2, . . . , tn in L∗, we write t[t1, t2, . . . , tn] for the term
that results from t by simultaneously replacing zi in t by ti for 1 ≤ i ≤ n. An
L∗-term is called closed if it contains no variables other than bound variables.
Note that closed L∗-terms of rank 0 are ground L-terms.



A substitution in L is a function θ with finite domain dom(θ) ⊆ XL ∪ FL

that maps first-order variables to L-terms, and n-ary second-order variables to
L∗-terms of rank ≤ n. The result of applying a substitution θ to an L-term s,
denoted by sθ, is defined by induction on s:

1. If s = x and x ∈ dom(θ) then sθ = θ(x).
2. If s = x and x /∈ dom(θ) then sθ = x.
3. If s = F (t1, . . . , tn) and F ∈ dom(θ) then sθ = θ(F )[t1θ, . . . , tnθ].
4. If s = F (t1, . . . , tn) and F /∈ dom(θ) then sθ = F (t1θ, . . . , tnθ).
5. If s = f(t1, . . . , tn) then sθ = f(t1θ, . . . , tnθ).

We also write Fθ for θ(F ), where F is a second-order variable. A substitution is
called closed, if its range is a set of closed terms. Given a term t, a substitution
θ is said to be grounding for t if tθ is ground, similarly for other L-expressions.
Given a sequence t = t1, . . . , tn of terms, we write tθ for t1θ, . . . , tnθ.

Let E be a system of equations in L. A unifier of E is a substitution θ
(in L) such that sθ = tθ for all equations s ≈ t in E. E is unifiable if there
exists a unifier of E. Note that if E is unifiable then it has a closed unifier that
is grounding for E, since TΣL

is nonempty. The unification problem for L is
the problem of deciding whether a given equation system in L is unifiable. In
general, the second-order unification problem or SOU is the unification problem
for arbitrary second-order languages. Monadic SOU is SOU for monadic second-
order languages. By SOU with one second-order variable we mean the unification
problem for second-order languages L such that |FL| = 1.

Following common practice, by an exponential function we mean an integer
function of the form f(n) = 2P (n) where P is a polynomial. The complexity class
EXPTIME is defined accordingly.

3 Rigid Reachability is Undecidable

We prove that rigid reachability is undecidable. The undecidability holds already
for constraints with some fixed ground rule set which is, moreover, terminating.
Our main tool in proving the undecidability result is the following statement.

Lemma 1 ([16]). One can effectively construct two tree automata Amv =
(Qmv, Σmv, Rmv, {qmv}), Aid = (Qid, Σid, Rid, {qid}), and two canonical systems
of ground rules Π1,Π2 ⊆ TΣmv × TΣid

, where the only common symbol in Amv

and Aid is a binary function symbol �,1 such that, it is undecidable whether,
given tid ∈ TΣid

, there exists s ∈ T (Amv) and t ∈ T (Aid) such that s−−→∗
Π1

t and
tid � s−−→∗

Π2
t.

The main idea behind the proof of Lemma 1 is illustrated in Figure 1. In the
rest of this section, we consider fixed Amv, Aid, Π1 and Π2 given by Lemma 1.

Undecidability of simultaneous rigid E-unification follows from this lemma
by viewing the rules Rmv and Rid of the automata Amv and Aid, respectively, as

1 We write � (“dot”) as an infix operator.
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Figure 1: Shifted pairing.
The terms recognized by Amv, ((v1, v

+
1 ), (v2, v

+
2 ), . . . , (vn, v+

n )), represent a se-
quence of moves of a given Turing machine, where v+

i
is the successor of vi according

to the transition function of the TM.
Each term t recognized by Aid represents a sequence of IDs of the TM
(w1, w2, . . . , wn).
The two rewrite systems Π1 and Π2 are such that s reduces in Π1 to t if and only if
vi = wi for 1 ≤ i ≤ k = n, and tid � s reduces in Π2 to t if and only if tid represents
w1, v+

i
= wi+1 for 1 ≤ i < n, and wn is the final ID of the TM. It follows that such

s and t exist if and only if the TM accepts the input string represented by tid.

well as the rewrite systems Π1 and Π2, as sets of equations, and by formulating
the reachability constraints between s and t as a system of rigid equations. It is
not possible, though, to achieve the same effect by a single rigid E-unification
constraint for a combined system of equations. The interference between the
component systems cannot be controlled due to the symmetry of equality. This
is different for reachability where rewrite rules are only applied from left to
right. In fact, our main idea in the undecidability proof is to combine the four
rewrite systems Rmv, Rid, Π1, and Π2 into a single system and achieve mutual
non-overlapping of rewrite rules by renaming the constants in the respective
signatures.

3.1 Renaming of Constants

For any integer m and a signature Σ we write Σ(m) for the constant-disjoint
copy of Σ where each constant c has been replaced with a new constant c(m),
we say that c(m) has label m. Note that non-constant symbols are not renamed.
For a ground term t and a set of ground rules R over Σ, we define t(m) and R(m)

over Σ(m) accordingly.
Given a signature Σ and two different integers m and n, we write Σ(m,n) for

the following set of rules that simply replaces each label m with label n:

Σ(m,n) = { c(m) → c(n) | c ∈ Con(Σ) }.

We write Π(m,n), where Π is either Π1 or Π2, for the following set of rules:

Π(m,n) = { l(m) → r(n) | l → r ∈ Π }.

Lemma 2. Let m, n, k and l be distinct integers. The statements (i) and (ii)
are equivalent for all all s ∈ TΣmv and tid, t ∈ TΣid

.

(i) s−−→∗
Π1

t and tid � s−−→∗
Π2

t.



(ii) s(m)−−−−−→∗

Π1
(m,n) t(n) and t

(l)
id � s(k)−−−−→∗

Π2
(k,l) t(l).

Proof. The left-hand sides of the rules in Π1 and Π2 are terms in TΣmv and the
right-hand sides of the rules in Π1 and Π2 are terms in TΣid

. But Σmv and Σid

are constant-disjoint. �

3.2 The Main Construction

Let Ru be the following system of ground rules:

Ru = R(0)
mv ∪ R(2)

mv ∪ Σmv
(0,1) ∪ Σmv

(2,1) ∪ R
(4)
id ∪ R

(6)
id ∪ Σid

(4,3) ∪ Σid
(6,3) ∪

Σid
(4,5) ∪ Π1

(0,5) ∪ Σid
(6,7) ∪ Π2

(2,7)

Note that constants with odd labels occur only in the right-hand sides of rules
and can, once introduced, subsequently not be removed by Ru. Let fu be a new
function symbol with arity 12. We consider the following constraint:

(

Ru, fu( x0, x2, x0, x2, y4, y6, y4, y6, y4, x0, y6, t
(7)
id � x2 ),

fu( q
(0)
mv, q

(2)
mv, x1, x1, q

(4)
id , q

(6)
id , y3, y3, y5, y5, y7, y7 )

)

(1)

Our goal is to show that solvability of (1), for a given tid ∈ Σid, is equivalent to
the existence of s and t satisfying the condition in Lemma 1. Note that, for all
ground terms ti and si, for 1 ≤ i ≤ 12,

fu(t1, . . . , t12)−−→
∗

Ru
fu(s1, . . . , s12) ⇔ ti−−→∗Ru

si (for 1 ≤ i ≤ 12).

As a first step, we prove a lemma that allows us to separate the different sub-
systems of Ru that are relevant for the reductions between the corresponding
arguments of fu in the source term and the target term of (1).

Lemma 3. For every substitution θ, θ solves the constraint (1) if and only if θ
solves the system (2)–(5) of constraints.

( R
(0)
mv, x0, q

(0)
mv )

( R
(2)
mv, x2, q

(2)
mv )

( Σmv
(0,1), x0, x1 )

( Σmv
(2,1), x2, x1 )







(2)

( R
(4)
id , y4, q

(4)
id )

( R
(6)
id , y6, q

(6)
id )

( Σid
(4,3), y4, y3 )

( Σid
(6,3), y6, y3 )







(3)

( Σid
(4,5), y4, y5 )

( Π1
(0,5), x0, y5 )

}

(4)

( Σid
(6,7), y6, y7 )

( Π2
(2,7), t

(7)
id �x2, y7 )

}

(5)



Proof. The direction ‘⇐’ is immediate, since if θ solves a constraint (R, s, t) then
obviously it solves any constraint (R′, s, t) where R ⊆ R′.
The direction ‘⇒’ can be proved by case analysis, many cases being symmetrical.
For instance, we show that if θ solves (1), then θ solves the two first constraints
of (2), namely xiθ−−−→

∗

R(i)
mv

q(i)
mv for i = 0, 2. We give the proof for i = 0, which, by

symmetry, also proves the case i = 2. We know that x0θ−−→∗Ru
q
(0)
mv. We prove by

induction on the length of reductions that, for all t, if t−−→∗
Ru

q
(0)
mv then t−−−→∗

R(0)
mv

q(0)
mv.

The base case (reduction is empty) holds trivially. If the reduction is nonempty,
then we have for some l → r ∈ Ru, and by using the induction hypothesis, that

t−−→
l→r

s−−−→∗
R(0)

mv
q
(0)
mv. Therefore all constants in r have label 0, since r is a subterm

of s and s ∈ T
Σ

(0)
mv∪Q

(0)
mv

. Hence l → r ∈ R
(0)
mv, and consequently t−−−→∗

R(0)
mv

q(0)
mv. �

The following lemma relates the solvability of (1) to Lemma 1.

Lemma 4. For tid ∈ TΣid
, the constraint (1) is solvable if and only if there

exists s ∈ T (Amv) and t ∈ T (Aid) such that s−−→∗
Π1

t and tid � s−−→∗
Π2

t.

Proof. (⇐) Assuming that given s and t exist, define xiθ = s(i) for i ∈ {0, 1, 2}
and yiθ = t(i) for i ∈ {3, 4, 5, 6, 7}. It follows easily from Lemma 2 and Lemma 3
that θ solves (1).

(⇒) Assume that θ solves (1). By Lemma 3, θ solves (2)–(5). First we observe
the following facts.
(i) From θ solving (2), it follows that there exists s ∈ T (Amv) such that x0θ = s(0)

and x2θ = s(2).
(ii) From θ solving (3), it follows that there exists t ∈ T (Aid) such that y4θ = t(4)

and y6θ = t(6).
From θ solving (4) and by using (ii), it follows that y5θ = t(5). Now, due to the
second component of (4) and by using (i), we get that: s(0)−−−−→∗

Π1
(0,5) t(5).

From θ solving (5) and by using (ii), it follows that y7θ = t(7). Now, due to

the second component of (5) and by using (i), we get that: t
(7)
id � s(2)−−−−→∗

Π2
(2,7) t(7).

Finally, use Lemma 2. �

We conclude with the following result.

Theorem 1. Rigid reachability is undecidable. Specifically, it is undecidable al-
ready under the following restrictions:

– the rule set is some fixed ground terminating rewrite system;
– there are at most eight variables;
– each variable occurs at most three times;
– the source term and the target term do not share variables.

Proof. The undecidability follows from Lemma 1 and Lemma 4. The system Ru

is easily seen to be terminating, by simply examining the subsystems. The other
restrictions follow immediately as properties of (1). �

We have not attempted to minimize the number of variables in (1). Observe also
that all but one of the occurrences of variables are shallow (the target term is
shallow).



4 A New Undecidability Result for SOU

We prove that SOU is undecidable already when unification problems contain
just a single second-order variable which, in addition, occurs twice. This result
contrasts a claim to the opposite in [19]. Let Σu be the signature consisting of
the symbols in Ru and the symbol fu. Let Ru = { li → ri | 1 ≤ i ≤ m }. Let lu

denote the sequence l1, l2, . . . , lm and ru the sequence r1, r2, . . . , rm. Let Lu be
the following language:

Lu = (Σu, {x0, x1, x2, y3, y4, y5, y6, y7})

Let Fu be a new second-order variable with arity m + 1. Let cons be a new
binary function symbol and nil a new constant. The language L1 is defined as
the following expansion of Lu:

L1 = (Σu ∪ {cons,nil},XLu , {Fu}).

We can show that, given tid ∈ TΣid
, the following second-order equation in L1 is

solvable if and only if the constraint (1) is solvable:

Fu(lu, cons(fu(q(0)
mv, q

(2)
mv, x1, x1, q

(4)
id , q

(6)
id , y3, y3, y5, y5, y7, y7),nil)) ≈

cons(fu(x0, x2, x0, x2, y4, y6, y4, y6, y4, x0, y6, t
(7)
id � x2), Fu(ru,nil)) (6)

Lemma 5. Given tid ∈ TΣid
, (1) is solvable if and only if (6) is solvable.

Proof. The direction ‘⇒’ follows from [23, Lemma 2] and the observation that if
θ solves (1) then xθ ∈ TΣu for all x ∈ XLu . In particular, it is not possible that
cons or nil appear in the terms that are substituted for XLu .

We prove the other direction. Assume that θ solves (6). We show that θ
solves (1). A straightforward inductive argument shows that Fuθ is an L∗

1-term
of rank m + 1 of the following form: (recall that zi is the i’th bound variable)

Fuθ = cons(s1, cons(s2, . . . , cons(sk, zm+1) · · ·)),

for some k ≥ 1, by using that Ru is ground and that cons /∈ Σu (see [23,
Lemma 1]). Hence, since θ solves (6), it follows that

cons(s1[lu, t′], . . . cons(si+1[lu, t′], . . . cons(tθ, nil) · · ·) · · ·) =
cons(sθ, . . . cons(si[ru,nil], . . . cons(sk[ru,nil], nil) · · ·) · · ·),

(7)

where s is the source term of (1), t is the target term of (1), and t′ = cons(tθ, nil).
So there exists a reduction in Ru ∪ {t′ → nil} of the following form:

s1[lu, t′] s2[lu, t′] sk[lu, t
′] tθ

q ↘∗
q · · · q ↘∗

q

sθ s1[ru,nil] sk−1[ru,nil] sk[ru,nil]



This means that sθ−−−−−−−−→∗

Ru∪{t′→nil}
tθ, i.e.,

fu

(
x0, x2, x0, x2, y4, y6, y4, y6, y4, x0, y6, t

(7)
id � x2

)
θ

−−−−−−−−→∗

Ru∪{t′→nil}

fu

(
q
(0)
mv, q

(2)
mv, x1, x1, q

(4)
id , q

(6)
id , y3, y3, y5, y5, y7, y7

)
θ

It is sufficient to show that x0θ, x2θ, y4θ, y6θ ∈ TΣu . Because then sθ ∈ TΣu and
the rule t′ → nil can not be used in the reduction of sθ to tθ, since nil does not
occur in Σu. To begin with, we observe that

xiθ−−−−−−−−→
∗

Ru∪{t′→nil}
q(i)
mv (i = 0, 2) and that yiθ−−−−−−−−→

∗

Ru∪{t′→nil}
q
(i)
id (i = 4, 6).

It follows by easy induction on the length of reductions that t′ → nil can
not be used in these reductions, since nil does not not occur in Ru. Hence,
x0θ, x2θ, y4θ, y6θ ∈ TΣu , as needed. �

We conclude with the following result, that follows from Lemma 1, Lemma 4,
and Lemma 5.

Theorem 2. Second-order unification is undecidable with one second-order va-
riable that occurs at most twice.

The role of first-order variables in the above undecidability result is important.
Without first-order variables, and if there is only one second-order variable that
occurs at most twice, second-order unification reduces to ground reachability,
[20], and is thus decidable.

5 Decidable Cases

We show that rigid reachability and simultaneous rigid reachability is decid-
able when the rules are all ground, either the source s or the target t of any
constraint is linear, and the source s and the target t are variable-disjoint,
that is, Var(s) ∩ Var(t) = ∅. The non-simultaneous case then turns out to be
EXPTIME-complete. EXPTIME-hardness holds already with just a single vari-
able. This contrasts with the fact that rigid E-unification with one variable is
P-complete [7]. When additionally both the source and target terms are linear,
then rigid reachability and simultaneous rigid reachability are both P-complete.

Note that the only difference between the conditions for undecidability of
rigid reachability in Theorem 1 and the condition for decidability in Theorems 4,
5, and 6 is the linearity of source and (or) target terms. In the rest of the section,
we assume fixed a signature Σ.

5.1 Decidable Cases of Rigid Reachability

We begin with defining a reduction from rigid reachability to the emptiness
problem of the intersection of n regular languages recognized by tree automata



A1,. . . ,An. This intersection emptiness problem is known to be EXPTIME-
complete, see [12], [21] and [24]. We may assume the states sets of the A1,. . . ,An

to be disjoint and that each of these tree automata has only one final state. We
call these final states, respectively, qf

A1
,. . . , qf

An
. For stating the following lemma,

we extend the signature Σ by a new symbol f of arity n, and assume that n > 1.

Lemma 6. T (A1) ∩ . . . ∩ T (An) 6= ∅ iff the following constraint has a solution:

(
RA1 ∪ . . . ∪ RAn

, f(x, . . . , x), f(qf
A1

, . . . , qf
An

)
)

Proof. (⇒) is obvious. For (⇐) we use the fact that the new symbol does not
occur in any transition rule of the A1, . . . , An. Therefore, and since the state sets
are disjoint, any reduction in f(x, . . . , x)θ−−−−−−−−−→∗

RA1∪...∪RAn
f(qf

A1
, . . . , qf

An
) (where θ

is a solution) takes place in one of the arguments of f(x, . . . , x)θ. Moreover, if
the reduction is in the i-th subterm, it corresponds to the application of a rule in
RAi

. (It is possible, though, to apply a start rule in RAj
within the i-th subterm,

with i 6= j.) But any reduction of this form blocks in that the final state qf
Ai

can not be reached from the reduct.) The fact than n > 1 prohibits states of the
automata to appear in xθ. �

Theorem 3. Rigid reachability is EXPTIME-hard even when the rules and the
target are ground and the source contains only a single variable.

For obtaining also an EXPTIME upper bound for a somewhat less restrictive
case of rigid reachability we will apply tree automata techniques. In particu-
lar, we will exploit the following fact of preservation of recognizability under
rewriting, which is a direct consequence of results in [6].

Proposition 1 ([2]). Let R be a ground rewrite system and t a linear term.
The set {u ∈ TΣ

∣
∣ u−→∗

R
tσ, tσ ground} is recognizable by a tree automaton A the

size of which is in O(‖t‖ ∗ ‖R‖2).

Proposition 2. The subset of TΣ of ground instances of a given linear term s
is recognizable by a tree automaton As the size of which is linear in the size of s.

Theorem 4. Rigid reachability, when rules are ground, the target is linear and
the source and the target are variable-disjoint, can be decided in times O(n3k+4),
where n is the size of the constraint, and k is the total number of occurrences of
non-linear variables in the source term.

Observe that the time upper bound becomes O(n4) when s is linear, since k = 0
in this case.

Proof. Assume to be given a reachability constraint (R, s, t) of the required form.
We first construct a tree automaton A from t and R with the properties as
provided by Proposition 1, that is, recognizing the predecessors with respect to
R of the ground instances of t. The size ‖A‖ of A is in O(n3).

If the source s is linear, then there is a solution for (R, s, t) iff T (A)∩T (As) 6=
∅, where As is the tree automaton of Proposition 2. Since the intersection of



recognizable languages is recognizable by a tree automaton the size of which is
the product of the original tree automata, the solvability of the given constraint
can be decided in time O(‖s‖ ∗ n3) ⊆ O(n4).

If the source s is not linear, we reduce our rigid reachability problem to |QA|k

problems of the above type. We assume wlog that A has only one final state qf .
Let (si) be the finite sequence of terms which can be obtained from the source
s by the following replacements: for every variable x which occurs j ≥ 2 times
in s, we choose a tuple (q1, . . . , qj) of states of A such that2 ∩i≤jT (A, qi) 6= ∅,
and we replace the ith occurrence of x with qi for i ≤ j in s.

Then the two following statements are equivalent:

(i) the constraint (R, s, t) has a solution.
(ii) one of the constraints (RA, si, q

f) has a solution.

(i) ⇒ (ii): Assume that σ is a solution of the constraint (R, s, t). This means
in particular that sσ ∈ T (A) i.e. sσ−→∗

A
qf . Let τ be the restriction of σ to the set

of linear variables of s and θ be its restriction to the set of non-linear variables
of s. We have sθ−−→∗

RA
si by construction and τ is a solution of the constraint

(RA, si, q
f).

(ii) ⇒ (i): Assume siτ −−→∗RA
qf for some i and some grounding substitution

τ . To each non-linear variable x of s, we associate a term sx ∈ ∩i≤jT (A, qi) (it
exists by construction) where q1,. . . ,qj are the states occurring in si at positions
corresponding to x in s. This defines a substitution θ on the non-linear variables
of s (by xθ = sx) such that sτθ ∈ T (A). Hence sτθ−→∗

R
tσ for some grounding

substitution σ which is only defined on the variables of t. Since Var(s)∩Var(t) =
∅, the domains of θ, τ and σ are pairwise disjoint and τ∪θ∪σ is indeed a solution
to the constraint (R, s, t).

Complexity: The number of possible si is smaller than |QA|k i.e. it is in
O(n3k). Rigid reachability for one constraint (A, si, q

f) can be decided in time
O(n4), according to the first part of this proof. Altogether, this gives a decision
time in O(n3k+4). �

By symmetry, rigid reachability is also decidable when rules are ground, the
source is linear and the source and the target are variable-disjoint, with the same
complexities as in Theorem 4 according to the (non)-linearity of the target.

As a consequence we obtain these two theorems:

Theorem 5. Rigid reachability is EXPTIME-complete when rules are ground,
the source and the target are variable-disjoint, and either the source or the target
is linear.

Theorem 6. Rigid reachability is P-complete when the rules are ground, the
source and the target are variable-disjoint, one of the source or the target is
linear, and the number of occurrences of non-linear variables in the other is
bounded by some fixed constant k independent from the problem.

2 One can decide this property in time ‖A‖k ∈ O(n3k).



Note that the linear case corresponds to k = 0.

Proof. For obtaining the lower bound, one may reduce the P-complete uniform
ground word problem (see [18]) to rigid reachability where rules, source and
target are ground. The upper bound has been proved in Theorem 4. �

5.2 Decidable Cases of Simultaneous Rigid Reachability

We now generalize Theorem 6 to the simultaneous case of rigid reachability.

Theorem 7. Simultaneous rigid reachability is P-complete for systems of pair-
wise variable-disjoint constraints with ground rules, and sources and targets that
are variable-disjoint and linear.

Proof. Apply Theorem 6 separately to each constraint of the system. �

Similarly, we can prove:

Theorem 8. Simultaneous rigid reachability is EXPTIME-complete for systems
of pairwise variable-disjoint constraints with ground rules, and sources and tar-
gets that are variable-disjoint and such that at least one of them is linear for
each constraint.

The problem remains in P (see Theorem 6) if there is a constant k independent
from the problem and for each si (resp. ti) which is non-linear, the total number
of occurrences of non-linear variable in si (resp. ti) is smaller than k.

We can relax the conditions in the above Theorem 8 by allowing some com-
mon variables between the si.

Theorem 9. Simultaneous rigid reachability is in EXPTIME when all the rules
of a system of constraints

(
(R1, s1, t1),. . . , (Rm, sm, tm)

)
are ground, either ev-

ery ti is linear or every si is linear, and for all i, j ≤ n, the terms si and tj and
respectively the terms ti and tj (when i 6= j) are variable-disjoint.

Proof. We prove for the case where every ti is linear, the other case follows by
symmetry. We reduce this problem to an exponential number of problems of the
type of Theorem 8.

We associate a TA Ai to each pair (ti, Ri) which recognizes the language
{u ∈ TΣ

∣
∣ u−−→∗

Ri
tiσ, tiσ ground} (see Proposition 1). The size of each Ai is

in O(‖ti‖ ∗ ‖Ri‖2). We assume wlog that the states sets of the Ai are pairwise
disjoint and that the final states sets of the Ai are singletons, namely FAi

= {qf
i}.

We construct for each i ≤ m a sequence of terms (si,j) obtained by replacement
of variables occurrences in si (regardless of linearity) by states of Ai. To each
m-tuple (s1,j1 , . . . , sm,jm

), we associate a system which contains the constraints:

1. (RA1 , s1,j1 , q
f
1), . . . , (RAm

, s1,jm
, qf

m)
2. for every variable x which occurs k times in {s1, . . . , sn}, with k ≥ 2,
(
RA1 ] . . . ] RAm

, fk
u (x, . . . , x), fk

u (q1, . . . , qk)
)
, where fk

u is a new function
symbol of arity k and q1,. . . ,qk are the states occurring in s1,j1 ,. . . ,s1,jm

at
the positions corresponding to x in s1,. . . ,sm.



Then the system
(
(R1, s1, t1),. . . , (Rn, sn, tn)

)
has a solution iff one of the above

systems has a solution. Each of these systems has a size which is polynomial
in the size of the original system and moreover, each fulfills the hypothesis of
Theorem 8 and can thus be decided in EXPTIME. Since the number of the above
systems is exponential (in the size of the initial problem), we have an EXPTIME
upper bound for the decision problem. �

6 Monadic Simultaneous Rigid Reachability

Our second main decidability result generalizes the decidability proof of Monadic
SREU for ground rules [17]. Moreover, our proof gives an EXPTIME upper
bound to monadic SREU for ground rules. Although, the lower bound is known
to be PSPACE [17], no interesting upper bound has been known before for this
problem. We shall use basic automata theory for obtaining our result. More
recently, and using different techniques, monadic rigid reachability with ground
rules was found to be decidable also in PSPACE [4]. The presentation in this
section will be in terms of words rather than monadic terms.

Recognizing Substitution Instances. We will first show that n-tuples of substi-
tution instances of monadic terms are recognizable. For this purpose we let
automata compute on ((Σ ∪ {⊥})n)∗, where ⊥ is a new symbol. The represen-
tation of a pair of words of Σ∗ as a word ((Σ ∪ {⊥})2)∗ is given by the product
⊗ defined as follows:

a1 . . . an ⊗ b1 . . . bm = 〈a1, b1〉, . . . , 〈an, bn〉, 〈⊥, bn+1〉, . . . , 〈⊥, bm〉 if n < m
a1 . . . an ⊗ b1 . . . bm = 〈a1, b1〉, . . . , 〈am, bm〉, 〈am+1,⊥〉, . . . , 〈an,⊥〉 if n ≥ m

We extend this definition of ⊗ associatively to tuples of arbitrary length in the
obvious way.

Lemma 7. Let L1, . . . , Ln be recognizable subsets of Σ∗. Then L1 ⊗ . . . ⊗ Ln

is recognizable (in ((Σ ∪ {⊥})n)∗). The size of the product automaton can be
bounded by the product of the sizes of its factor automata.

When constructing an automaton for Σ∗ ⊗ L from an automaton A for L, the
size of the product automaton can be bounded by c ∗ ‖A‖, for some (small)
constant c if the alphabet Σ is assumed to be fixed.

Theorem 10. Given p monadic Σ-terms si, the set of tuples of their ground
instances {s1θ⊗ . . .⊗ spθ | θ ground } is recognizable by an automaton with size
exponential in

∑p

j=1 |sj |.

The proof of Theorem 10 will be based on three technical lemmas.

Lemma 8. Let L be a language of tuples of the form a1 ⊗ . . . ⊗ an that is
recognized by A. Then, for any permutation π, the language

Lπ = {aπ1 ⊗ . . . ⊗ aπn | a1 ⊗ . . . ⊗ an ∈ L}

can be recognized by an automaton of the same size as A.
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Figure 2: An example illustrating the proof of Lemma 9.

Proof. We apply the permutation π to the tuples of symbols appearing in the
rules of RA. �

Lemma 9. Given s, t ∈ Σ∗, the set {su ⊗ tu
∣
∣ u ∈ Σ∗} is recognizable by an

automaton with size exponential in |s| + |t|.

Proof. The automaton reads words s′u ⊗ t′v, checking that s′ = s and t′ = t
and that u = v. For the latter test, the automaton has to memorize (in states)
the last

∣
∣|t| − |s|

∣
∣ symbols of Σ read in s′u. This is the reason of the exponential

number of states. An example of the construction for Σ = {0, 1}, s = 0 and
t = 101, is given in figure 2. �

The construction underlying the proof of Lemma 9 cannot be generalized to the
case of non-monadic signatures. However, one can generalize it (in the monadic
case) to the product of an arbitrary number p of words.

Lemma 10. Given p ≥ 1, the set {s1u ⊗ . . . ⊗ spu
∣
∣ u ∈ Σ∗} is recognizable by

an automaton with size exponential in
∑p

j=1 |sj |.

Proof. By induction on p. The base case p = 1 is trivial, and the case p = 2
is proved in Lemma 9. Assume that p ≥ 2 and that we have an automaton A
with T (A) = {s1u⊗ . . .⊗ spu

∣
∣ u ∈ Σ∗} and one more word sp+1. Let A′′ be an



automaton such that T (A′′) = {spu ⊗ sp+1u
∣
∣ u ∈ Σ∗}. A′′ may be obtained by

applying Lemma 9 again. Clearly,
(
T (A) ⊗ Σ∗

)
∩
(

Σ∗ ⊗ . . . ⊗ Σ∗

︸ ︷︷ ︸

p−1

⊗T (A′′)
)

= {s1u ⊗ . . . ⊗ sp+1u | u ∈ Σ∗}.

According to Lemma 7, this language is recognizable by an automaton A′, and,
by Lemmas 7 and 9, ‖A′‖ is of the order 2

Pp
j=1 |sj | ∗ 2|sp|+|sp+1|. �

Now we are ready to prove Theorem 10.

Proof. The terms si are either ground or have the form si(xi) with one occur-
rence of a variable xi “at the end”. Let, for any variable x occurring in any of
the terms, si1 , . . . , sin

be those terms among the si which contain x. According
to Lemma 10, the language

Lx
1 = {si1θ ⊗ . . . ⊗ sin

θ | θ ground }

is recognizable by an automaton of size exponential in
∑

j |sij
|. From the Lem

-ma 7 we infer that Lx
2 = Lx

1 ⊗ Σ∗ ⊗ . . . ⊗ Σ∗, with p − n factors of Σ∗, is
recognizable by an automaton with size exponential in

∑

j |sij
|. Finally, Lx =

(Lx
2)π, with π a permutation which maps the first n indices j to ij , that is, puts

the sij
into their right place in the sequence 1 . . . p, is also recognizable by an

automaton of the same size, see Lemma 8. Moreover, it is not difficult to see
that

Lg = {t1 ⊗ . . . ⊗ tp | ti = si if si ground, and ti ∈ Σ∗, otherwise}

is recognizable by an automaton with size polynomial in max |si|. The desired
language arises as the intersection of the languages Lx and Lg so that recogniz-
ability with the stated complexity bound follows. �

For solving reachability constraints, we also need to recognize rewriting re-
lations.

Theorem 11 ([6]). Given a ground rewrite system R on Σ∗, the set {u ⊗ v
∣
∣

u−→∗
R

v} is recognizable by an automaton the size of which is polynomial in the
size of R.

Theorem 12. Rigid reachability in monadic signatures is in EXPTIME when
the rules are ground.

Proof. Let (R, s, t) be a constraint over the monadic signature Σ. We show that
the set of “solutions” S = {sθ ⊗ tθ

∣
∣ sθ−→∗

R
tθ} is recognizable. s and t may

contain at most one variable which we denote by x and y, respectively. These
two variables may or may not be identical. Applying Theorem 10, we may infer
that {sθ⊗ tθ | xθ and yθ ground } is recognizable by an automaton A with size
exponential in |s| + |t|. By Theorem 11, the set {u ⊗ v

∣
∣ u, v ∈ Σ∗, u−→∗

R
v} is

recognizable by an automaton A′ with size polynomial in the size of R. Clearly
S = T (A) ∩ T (A′), and emptiness is decidable in time linear in the size of
the corresponding intersection automaton (which is exponential in |s| + |t| and
polynomial in the size of R). �



The extension to the simultaneous case of Theorem 12 generalizes and improves
a result of [17].

Theorem 13. Simultaneous rigid reachability in monadic signatures is decid-
able in EXPTIME when the rules are ground.

Proof. The construction is a generalization of the one for Theorem 12. Suppose
we are given the system of constraints (Ri, si, ti), 1 ≤ i ≤ n. We first construct
an automaton Ai for each i ≤ n such that T (Ai) = {u ⊗ v

∣
∣ u, v ∈ Σ∗, u−−→∗

Ri
v}.

Then A =
⊗n

i=1 Ai (see Lemma 7) recognizes the language:

T (A) = {u1 ⊗ v1 ⊗ u2 ⊗ . . . ⊗ un ⊗ vn

∣
∣ for all i ≤ n, ui, vi ∈ Σ∗, ui−−→

∗

Ri

vi}.

The size of A is the product of the sizes of the Ai, hence of order Mn where M
is the maximum of the sizes of the Ai. In Theorem 10 we have shown that the
language

LG = {s1θ ⊗ t1θ ⊗ . . . ⊗ snθ ⊗ tnθ | θ ground}

is recognizable by an automaton AG of size exponential in
∑

i |si| + |ti|. The
simultaneous reachability constraint is solvable if and only the intersection LG∩
T (A) is non-empty. According to the respective sizes of the automata in the
above intersection, this gives an EXPTIME upper-bound for deciding simulta-
neous rigid reachability. �

7 Conclusion

We have shown that absence of symmetry makes the solving of rigid reachabil-
ity constraints in general much harder. In the non-simultaneous case one jumps
from decidability to undecidability. In the case of ground rewrite rules, source
terms with just a single variable, and ground target terms, the complexity in-
creases from P-completeness to EXPTIME-completeness. The undecidability of
rigid reachability implies a new undecidability result for second-order unification
problems with just a single second-order variable that occurs twice. We have also
seen that automata-theoretic methods provide us with rather simple proofs of
upper bounds in the monadic case.
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