
The Two-Variable Guarded Fragment with Transitive RelationsH. Ganzinger, C. Meyer, and M. VeanesMax-Planck-Institut f�ur Informatik, D-66123 Saarbr�ucken, Germanyfhg,meyer,veanesg@mpi-sb.mpg.deAbstractWe consider the restriction of the guarded fragmentto the two-variable case where, in addition, binary re-lations may be speci�ed as transitive. We show that (i)this very restricted form of the guarded fragment with-out equality is undecidable and that (ii) when allowingnon-unary relations to occur only in guards, the logicbecomes decidable. The latter subclass of the guardedfragment is the one that occurs naturally when trans-lating multi-modal logics of the type K4, S4 or S5 into�rst-order logic. We also show that the loosely guardedfragment without equality and with a single transitiverelation is undecidable.1 IntroductionWe consider �rst-order logic without non-constantfunction symbols, but with equality and with relationsymbols of arbitrary arities. The class of all closedformulas containing at most two variables is calledthe two-variable fragment of �rst-order logic and is de-noted by FO2. The decidability of FO2 without equal-ity was �rst noted by Scott [1962] by a reduction toformulas with quanti�er pre�x 889�, a fragment thatwas proved decidable by G�odel [1932]. G�odel claimedwithout proof that this fragment remains decidablealso with equality, which was later refuted by Goldfarb[1984]. The decidability and �nite model property forthe full class FO2 was �rst established by Mortimer[1975]. From Mortimer's [1975] proof follows also that(the satis�ability problem for) FO2 is decidable innondeterministic doubly exponential time. This up-per bound was recently improved by Gr�adel, Kolaitis& Vardi [1997] to nondeterministic exponential time.The NEXPTIME-hardness of FO2 even without equal-ity follows from results by F�urer [1981].Why the two-variable fragment? Since (propo-sitional) modal logic can be embedded into FO2, thatwas already shown by Gabbay [1971], the decidabilityof FO2provides some understanding of the tractabil-ity of (propositional) modal logics. However, whileseveral extensions of modal logic, like computationaltree logic or CTL [Clarke & Emerson 1981], remain

decidable (for validity), corresponding extensions ofFO2 lead to undecidability. In particular, Vardi [1997]shows that CTL can be embedded into FO2 frag-ment of �xed-point logic. The validity problem ofthe latter was recently shown to be undecidable byGr�adel, Otto & Rosen [1998], whereas Fischer & Lad-ner [1979] have shown that the validity problem forCTL is EXPTIME-complete. Similarly, Immerman &Vardi [1997] show that, CTL can be viewed as a FO2fragment of �rst-order logic with a transitive closureoperator (when restricted to �nite structures), thatis again undecidable [Gr�adel et al. 1998]. The lat-ter result is also implied by Gr�adel & Otto's [1998]strong undecidability result of FO2 with several built-in equivalence relations. In contrast, Otto [1998] hasshown very recently that FO2 with a single built-inequivalence relation is still decidable.What is the guarded fragment? In order tocapture the nice properties of modal logics, Andr�eka,van Benthem & N�emeti [1996] introduced the guardedfragment or GF of �rst-order logic, where all quanti-�ers are appropriately relativized by atoms. This frag-ment was later generalized by van Benthem [1997] tothe loosely guarded fragment or LGF, where all quan-ti�ers are appropriately relativized by conjunctionsof atoms. These fragments are decidable and enjoyseveral useful syntactic and model theoretic proper-ties that do not, in general, hold for FO2[Andr�eka etal. 1996, Gr�adel 1998b]. In particular, Gr�adel [1998b]shows that both GF and LGF, unlike FO2, have acertain tree model property that generalizes the well-known tree model property for modal logics. MoreoverGF has, like FO2, the �nite model property. How-ever, the satis�ability problem for LGF restricted toa bounded number of variables or a bounded arity onrelation symbols is, unlike for FO2, in deterministicexponential time [Gr�adel 1998b].The role of the tree model property. Vardi[1997] argues convincingly that the tree model prop-erty is the main reason behind the decidability of var-ious extensions of modal logic, since it provides onewith a powerful tool to prove decidability via Rabin's



[1969] theorem. Unfortunately, the same is not truefor GF. As Gr�adel [1998b] demonstrates, already verymodest extensions of GF lead to undecidability: GFwith three variables and transitive relations, and GFwith three variables and counting quanti�ers, are bothundecidable extensions of GF. In the second case theresult is optimal with respect to the number of vari-ables, since FO2 with counting quanti�ers is decid-able [Gr�adel, Otto & Rosen 1997, Pacholski, Szwast& Tendera 1997].The two-variable guarded fragment. In thispaper we consider certain restrictions and variants ofthe fragment GF \ FO2 denoted as GF2(or GF2� ifequality is not permitted). When encoding the Kripkesemantics of propositional multi-modal logics one endsup in this subclass of the GF. For multi-modal log-ics with modalities of type K4, S4, and S5, GF2�with transitive relations appears as a natural choicefor a representation language. Multi-modal logics ofthe above types are used to formalize epistemic logics[Fagin, Halpern, Moses & Vardi 1995]. We show thatGF2� with transitive relations is undecidable. More-over, this is the case even when all non-unary rela-tions are transitive binary relations. Hence this classis too big to capture these multi-modal logics ade-quately. On the other hand, when encoding proposi-tional modal logics, the non-unary relations only ap-pear as guards, such guarded formulas are said to bemonadic.Our second result is that monadic GF2 with binaryrelations that are transitive, symmetric and/or reex-ive, is decidable. The latter result will be proved byan encoding of this class in SkS (similar to how thiscan be done for CTL) by which also the tree modelproperty is demonstrated. A potential interest of thedecidability result lies also in the context of knowl-edge representation, due to the relation to descriptionlogics [Gr�adel 1998a] and conceptual graphs [Baader,Molitor & Tobies 1998].The constructions in our undecidability proof werestrongly inuenced by Gr�adel's [1998b] techniques andmay be seen as generalizations of the them. Indepen-dently, similar ideas are used by Gr�adel & Otto [1998]to prove the undecidability of the whole class FO2 withequality and additional equivalence relations. In ourconstructions equality is omitted. The new insightis that it suÆces to use an equivalence relation in-stead. In the speci�c structures that we de�ne, thisequivalence will always become a partial congruence,although in general the substitutivity laws of a congru-ence cannot be expressed as a guarded formula. Withthis idea, also the corresponding proofs in [Gr�adel &

Otto 1998] could be modi�ed to extend their resultsalso to FO2 without equality. (That presence or ab-sence of equality may make a di�erence for decidabil-ity is exempli�ed with the G�odel class, as mentionedbefore.)A remark about LGF. We also show that LGFwithout equality becomes undecidable as soon as a sin-gle relation is allowed to be transitive. The proof usesa reduction from the intersection emptiness problemfor context-free languages.2 Undecidability ResultsThe guarded fragment (GF) of �rst-order logic withequality (we use � to denote formal equality) and con-stants, but no function symbols of arity greater than0, is de�ned as the least set of formulas such that (i)> and ? are in GF; (ii) any atom is in GF; (iii) GFis closed under the boolean connectives; (iv) if A isan atom and � is in GF such that all free variables in� occur as arguments in A, and if �x is a list of vari-ables then 8�x(:A _ �) (equivalently, 8�x(A) �)) and9�x(A ^ �)) are in GF.1 The atoms A which relativizea quanti�ed formula are called guards. A formula inGF is called a guarded formula. GFn is the subset offormulas in GF which contain occurrences of at mostn distinct variables. For GF2 one may assume that ev-ery predicate symbol is either unary or binary. GF�is GF restricted to formulas without equality. We letTrans[R1; : : : ; Rn] stand for the condition that eachRi is a transitive binary relation. The formula in thefollowing example is a classical one used to demon-strate the existence of �rst-order formulas with onlyin�nite models. Here it shows that transitivity cannotbe expressed in GF and, therefore, has to be stip-ulated on the meta-level, because GF has the �nitemodel property.Example 1 Consider the formula ' in GF2� express-ing that a binary relation < is non-empty, serial, andirreexive: 9xy (x < y) ^ 8xy (x < y ) 9x (y <x)) ^ :9x (x < x). Clearly, ' ^ Trans[<] has onlyin�nite models. Se Figure 1.We prove that the satis�ability problem for GF2� +Trans[R1; : : : ; R5] is undecidable (Theorem 1). Morespeci�cally, it follows from the construction that allnon-unary relations can be transitive binary relations(Theorem 2). The problem with omitting equality isthat the laws of substitutivity for equality cannot gen-erally be speci�ed in the guarded fragment: formulas1Special cases of guarded quanti�cation occur when � = >or � = ?, respectively; such trivial bodies of quanti�cation areusually omitted.



31 2< 1 2 3 4 � � �<� ��A model of ' A model of ' ^Trans[<]Figure 1: Given ' as in Example 1. To the right, circlesare not possible because< is transitive and irreexive.such as 8x; y; z(x � y ) (R(x; z) ) R(y; z))) are notin GF.The main idea of the proof is as follows. We con-struct a formula GRID in the two-variable guarded frag-ment that describes a two-dimensional grid. (See Fig-ure 2.) We then reduce Minsky machines M (two-counter machines) to formulas 'M in the two-variableguarded fragment that describe \walking" in that grid.The conjunction of GRID, 'M , and transitivity of �vebinary relations is unsatis�able if and only if M halts.2.1 The GRID formulaWe construct a closed formula GRID in the guardedfragment with two variables, four transitive relationsW0;W1; B0; B1, a transitive relation � called simi-larity, four additional binary relations "0; "1; 0!; 1!,called arc relations, and some unary relations. Whenequality is in the language then it can be used insteadof the similarity symbol. We use in�x notation for thesimilarity symbol and the arc relation symbols.There is a unary predicate Node. In any structurein the language of GRID, we are only interested in theelements in Node, such elements are called nodes. Wewill use the following lemma, that follows by easy in-duction on guarded formulas.Lemma 1 Let ' be a closed guarded formula suchthat all elements that satisfy guards are nodes. Then,for all structures A, A satis�es ' if and only if therestriction of A to nodes satis�es '.In the end, we are only interested in models of GRID,and in GRID all formulas are guarded in such a waythat the elements that satisfy the guards must benodes. GRID is a conjunction of formulas (1{17).The set of nodes is non-empty, and � is reexiveand symmetric on nodes:9xNode(x) ^8x(Node(x)) x � x) ^ 8xy(x � y ) y � x) (1)Hence, � is, due to the transitivity, an equivalencerelation on nodes. Given an equivalence relation Eand an n-ary relation R on a set A, E is a congruence
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01Figure 2: The grid structure. Diagonal nodes have thesame color. In the horizontal direction the labels ofnodes alternate between 0 and 1. In the vertical di-rection the colors of nodes alternate between blackand white.relation for R on A, if R(b1; : : : ; bn) is true wheneverR(a1; : : : ; an) and E(ai; bi) hold for 1 � i � n. Wewill show that, similarity is a congruence relation onnodes. This will allow us to treat similarity as equalityand simplify any further proofs.The intended meaning of the following formulas isbest understood by examining Figure 2. When noconfusion can arise, we use the relaxed notation8(A1 _ � � � _ An ) ')for the logically equivalent (guarded) formula8(A1 ) ') ^ � � � ^ 8(An ) '):Bottom nodes have no vertical predecessors and allhorizontal successors of bottom nodes are also bottomnodes, similarly for left nodes, for i = 0; 1:8x(Bottom(x)) (:9y(y "0 x) ^ :9y(y "1 x)))^ 8xy(x i! y ) (Bottom(x)) Bottom(y)))^ 8x(Left(x)) (:9y(y 0! x) ^ :9y(y 1! x)))^ 8xy(x "i y ) (Left(x)) Left(y))) (2)All nodes are divided into black and white nodes with



labels 0 and 1, and the following properties hold:8x(Node(x), (White(x) _ Black(x))) ^8x(White(x), (White0(x) _ White1(x))) ^8x(Black(x), (Black0(x) _ Black1(x))) ^8x(White0(x)) (:White1(x) ^ :Black(x))) ^8x(White1(x)) (:White0(x) ^ :Black(x))) ^8x(Black0(x)) (:Black1(x) ^ :White(x))) ^8x(Black1(x)) (:Black0(x) ^ :White(x))) ^9x(Origo(x)) ^8x(Origo(x)) (Left(x) ^ Bottom(x))) ^8x(Bottom(x)) (Left(x) ) Origo(x))) ^8x(Origo(x)) White0(x))
(3)

The colors and labels of nodes alternate between whiteand black, and 0 and 1 in both horizontal and verticaldirections as follows. For l 2 f0; 1g, let �l = 0 if l = 1and let �l = 1 if l = 0:8xy(x l! y ) ((Whitel(x) ^ Black�l(y)) _(Blackl(x) ^ White�l(y)))) (4)8xy(x "l y ) ((Whitel(x) ^ Blackl(y)) _(Black�l(x) ^ White�l(y)))) (5)Similar nodes have the same color and label:8xy(x � y ) ((Black0(x) ^ Black0(y)) _(Black1(x) ^ Black1(y)) _(White0(x) ^ White0(y)) _(White1(x) ^ White1(y)))) (6)The labeling and the coloring is such that every nodewith a certain label and color has the following arcsconnected to it:8x(White0(x) ) (9y(x 0! y) ^ 9y(x "0 y) ^(Bottom(x) _ 9y(y "1 x)) ^(Left(x) _ 9y(y 1! x))) (7)8x(White1(x)) (9y(x 1! y) ^ 9y(x "1 y) ^9y(y "0 x) ^ 9y(y 0! x))) (8)8x(Black0(x)) (9y(x 0! y) ^ 9y(x "1 y) ^9y(y "0 x) ^(Left(x) _ 9y(y 1! x)))) (9)8x(Black1(x)) (9y(x 1! y) ^ 9y(x "0 y) ^(Bottom(x) _ 9y(y "1 x)) ^9y(y 0! x))) (10)

B0 : 0 10 1 W1 : 1 01 0
W0 : 0 10 1 B1 : 1 01 0Figure 3: The relations W0, W1 B0, and B1.Note that all nodes with label l have an outgoing hor-izontal l-arc. We say that the arc relations induce adiagonal if, whenever a ! b " c and a " d ! c0 thenc � c0, where ! is either 0! or 1! and " is either "0or "1.We say that an arc relation R is functional in botharguments up to similarity if the following conditionshold for all nodes a, a0, b, and b0:� if a � a0, R(a; b), and R(a0; b0) then b � b0, and� if b � b0, R(a; b), and R(a0; b0) then a � a0.For each of the four transitive relationsW0;W1; B0; B1 we have the following formulas,the purpose of which is to ensure that: similarity is acongruence for the arc relations on nodes (Lemma 2);the arc relations are functional up to similarity inboth arguments (Lemma 3); the arc relations inducea diagonal (Lemma 4). For l = 0; 1:8xy(Wl(x; y)( (x � y _ x l! y _ y l! x _x "l y _ y "l x)) (11)8xy(Wl(x; y)) (x � y _ x l! y _ y l! x _x "l y _ y "l x _(White0(x) ^ White1(y)) _(White1(x) ^ White0(y)) _(Black0(x) ^ Black1(y)) _(Black1(x) ^ Black0(y)))) (12)Intuitively, Wl is an equivalence relation between allnodes that are connected in a rectangle where all arcshave label l. The lower left corner of such a rectangleis always a white node with label l. (See Figure 3.)The formulas for B0 and B1 have a similar struc-ture. For l = 0; 1, let �l = 0 if l = 1 and let �l = 1 if



l = 0:8xy(Bl(x; y)( (x � y _ x l! y _ y l! x _x "�l y _ y "�l x)) (13)8xy(Bl(x; y)) (x � y _ x l! y _ y l! x _x "�l y _ y "�l x _(White0(x) ^ White1(y)) _(White1(x) ^ White0(y)) _(Black0(x) ^ Black1(y)) _(Black1(x) ^ Black0(y)))) (14)
Intuitively, the nodes that are equivalent in Bl corre-spond to corners of rectangles with lower left cornerbeing a black node with label l. Finally, for each unarypredicate P and binary predicateR above, we have thefollowing formulas:8x(P (x)) Node(x)) (15)8xy(R(x; y)) (Node(x) ^ Node(y))) (16)Thus all elements that satisfy any guard are nodes. Inaddition, we add the following formula for all unarypredicates P , to enforce that � is a congruence for Pon nodes. 8xy(x � y ) (P (x) ) P (y))) (17)We now prove the following lemmas corresponding tothe three properties mentioned above.Lemma 2 � is a congruence relation on nodes in allmodels of Trans[W0;W1; B0; B1;�] ^ GRID.Proof. Consider a model of GRID (in the language ofGRID). We must prove that � is a congruence on nodesfor all relations in that model. This is trivially so forall unary relations by (17). For each binary relationR we must prove:For all nodes a; a0; b; b0, if R(a0; b0), a � a0and b � b0 then R(a; b).For the binary relationsW0, W1, B0 and B1 this holdsby transitivity of these relations and the fact that theyinclude similarity by (11) and (13). We prove thestatement for 0! only. The proofs for the relations1!, "0 and "1 are symmetrical.Assume a � a0 0! b0 � b. We prove that a 0!b. From (11) follows that W0(a; a0), W0(a0; b0), andW0(b0; b), and thus W0(a; b) by transitivity. From (6)follows that the colors and labels of a and a0 coincide,and the same holds for b and b0. From (4) follows then

that, either (i) a is white and 0 and b is black and 1,or (ii) a is black and 0 and b is white and 1.In either case a 6� b by the disjointness of white andblack nodes and (6). From (12) follows that either:a 0! b, b 0! a, a "0 b, or b "0 a. From (4) follows thatif b 0! a then b has label 0. From (5) follows that ifeither a "0 b or b "0 a then a and b have the samelabel. But these cases would contradict both (i) and(ii). Hence, a 0! b. �Lemma 3 The arc relations are functional in botharguments up to similarity, in all models of GRID ^Trans[W0;W1; B0; B1;�].Proof. Consider a model of GRID. By Lemma 1 wemay assume that all elements are nodes. Then, byLemma 2, we may assume that all similar elementsare identical. Consider the arc relation 0! again. Theproof for the other arc relations is symmetrical. Firstwe prove that for all nodes a, b and c:If a 0! b and a 0! c then b = c.Assume that a 0! b and a 0! c. By (4), b and c havethe same color and label. By (11) and transitivity ofW0, W0(b; c). Hence, by (12) b = c. Note that none ofthe other cases are possible because b and c have thesame color and the same label. Functionality in theother direction is proved analogously. �Lemma 4 The arc relations induce a diagonal in allmodels of GRID ^ Trans[W0;W1; B0; B1;�].Proof. Consider a model of GRID. Assume, by usingLemma 1 and 2, that all elements are nodes and sim-ilarity is identity. Let a be a white node with label0. Then we have, by (7{10) and Lemma 3, uniquenodes b; b0; c; c0 such that a "0 b 0! c and a 0! b0 "0 c0.By (4) and (5) c and c0 are white nodes with label 1.By (11) and transitivity ofW0,W0(c; c0) holds. Hence,by (12), c = c0. The proofs of the other three casesare analogous. �2.2 Reduction from Minsky MachinesGiven a Minsky (two-counter) machine M with anempty input string, we construct a formula 'M inthe guarded fragment with two variables, using thearc predicates and some unary predicates, such thatGRID^'M is unsatis�able if and only ifM halts. Theexecution of a Minsky machine can be viewed as walk-ing in the grid. The starting point is the origo, andfor example, incrementing the �rst counter by onemeans taking a step to the right, and decrementing



the second counter by one means taking a step down-wards. Checking whether one of the counters is 0 ornot amounts to checking whether or not the currentposition is on one of the borders.For each state q of M we have a new unary pred-icate Pq. The formula 'M is a conjunction of formu-las (18{21) (and some additional ones for symmetricalcases) and formula (17) for all Pq (to ensure that sim-ilarity is a congruence for all Pq).The initial state ofM is q0 and the �nal state ofMis qf . Initially, the position of M is origo:8x(Origo(x)) Pq0 (x)) (18)For each transition Æ(q;m; n) = (p;m+1; n) ofM , i.e.,in state q, M increments the �rst counter and entersstate p, there is a formula for l 2 f0; 1g:8xy(y l! x) (Pq(y)) Pp(x))) (19)For each transition Æ(q; 0; n) = (p; 0; n), i.e., in state qM checks whether the �rst counter is zero and entersstate p if so, there is a formula:8x(Pq(x) ) (Left(x)) Pp(x))) (20)For checking non-zero, Left(x) in (20) is simply re-placed by :Left(x). The corresponding formulas withrespect to the second counter use Bottom and "l. Fi-nally, we add the formula that the �nal state is notreachable. :9x(Pqf (x)) (21)We can now prove the following lemma.Lemma 5 M does not halt if and only if GRID^'M ^Trans[W0;W1; B0; B1;�] is satis�able.Proof. Assume M does not halt. Consider a struc-ture with universe !�!, where (0; 0) is the origo, hori-zontal arcs connect (m;n) with (m+1; n), and verticalarcs connect (m;n) with (m;n + 1) for all m;n 2 !,and similarity is equality. Obviously, such a structurecan be expanded to a model of GRID. Expand it furtherto a structure A, by letting the Pq 's be the minimalsubsets of !�! that satisfy the formulas (18{20). NowPqf is empty, because M does not halt. Hence, A is amodel of GRID ^ 'M .Conversely, assume that GRID^'M has a model A.By Lemma 1 and Lemma 2 we may assume that allelements are nodes and that similarity is equality. ByLemma 3 and Lemma 4, we may assume that !�! isa subset of the universe of A, where (0; 0) is an origoand where a 0! b or a 1! b if and only if a = (m;n)

and b = (m + 1; n), and a "0 b or a "1 b if and only ifa = (m;n) and b = (m;n+1). So, the restriction of Ato !�! is a substructure of A that satis�es GRID andis thus also a model of 'M (because 'M is equivalentto a universal sentence). Hence, M does not halt. �As a consequence, we obtain the following result,improving the undecidability result by Gr�adel [1998b],of GF3+Trans[R1; R2], with respect to the number ofvariables and by omitting equality.Theorem 1 The satis�ability problem for GF2� +Trans[R1; : : : ; R5] is undecidable.All the arc relations are trivially transitive, considerfor example 0!: there are no nodes a, b, and c, suchthat a 0! b 0! c. We therefore get the following result.We write Trans[all ] to denote the statement that allnon-unary relations are transitive binary relations.Theorem 2 The satis�ability problem for GF2� +Trans[all ] is undecidable.The undecidability results for the above classes offormulas may be improved to strong undecidability re-sults, by encoding certain domino problems (insteadof Minsky machines) as in [Gr�adel 1998b], implyingthat even the �nite satis�ability problem for these for-mula classes is undecidable. The main reason why wehave chosen to use Minsky machines, although at theprice of not obtaining this stronger result, is the moreelementary nature, and the conceptual simplicity ofMinsky machines.2.3 The Loosely Guarded Fragment withOne Transitive RelationIn the loosely guarded fragment or LGF, the con-cept of a guard for relativizing quanti�cation is relaxedto a conjunction of atoms which contains all the freevariables �x of the body of the quanti�cation such thateach pair of variables in �x occurs together among thearguments of one of the atoms in the guard.2 That is,a formula such as 8xyz (A(x; y) ^ B(y; z) ^ S(x; z))C(x; z)) is loosely guarded while the transitivity clause8xyz (A(x; y)^A(y; z)) A(x; z)) is not|the pair x; zdoes not occur together in one of the negative literals.The loosely guarded fragment with equality is decid-able, even by syntactic methods based on superposi-tion [Ganzinger & De Nivelle 1999].For the LGF the presence of just a single transi-tive relation causes undecidability. We show this by2This de�nition of LGF admits less formulas but is essen-tially the same as the the de�nition in [van Benthem 1997].



reduction from the intersection emptiness problem forcontext-free languages [Hopcroft & Ullman 1979].Consider two context-free grammars in Chomskynormal form, with disjoint sets of nonterminals, startsymbols S1 and S2, respectively, and common terminalsymbols a and b. The rules of the grammars are of oneof the three forms A::=BC, A::=a or A::=b, respec-tively, with nonterminals A, B, and C. We constructthe following formula in LGF where the indices of theconjunctions range over all rules of the two grammarsand Suffix is intended to be a transitive relation de-noting the suÆx property between strings:8xy(Suffix(x; y)) (String(x) ^ String(y)))^ 8x(String(x)) ( Suffix(x; x) ^9xa( Suffix(x; xa) ^Â::=aA(xa; x)) ^9xb( Suffix(x; xb) ^Â::=bA(xb; x))))^A::=BC 8xyz ((B(x; y) ^ C(y; z)^ Suffix(z; x))) A(x; z))^ 9x� (String(x�) ^ :9y(S1(y; x�) ^ S2(y; x�)))Clauses 8x; y; z(B(x; y) ^ C(y; z) ^ Suffix(z; x))A(x; z)) represent the rule A::=BC in an encodingwith di�erence lists: the string x n z is derivable fromC, if there is a string y such that x n y is derivablefrom A and y n z is derivable from B. To make theseclauses loosely guarded, the additional (logically re-dundant) guard Suffix(z; x) is added, requiring thatz be a suÆx of x. After Skolemization, the formula hasa Herbrand model (over a constant � and two unaryfunctions a and b for x�, xa, and xb, respectively) ifand only if the intersection of the languages generatedby the two grammars is empty.Theorem 3 The LGF without equality is undecidableif one binary relation is transitive.3 Decidability ResultsRecall that a guarded formula is called monadic,when every occurrence of every non-unary atom init is a guard. When encoding the Kripke semanticsof multi-modal propositional logics with modalities ofthe type K4 in �rst-order logic, one ends up in monadicGF2� with transitive relations. The formula in Exam-ple 1 is in monadic GF2�, which shows that monadic

GF2� is a nontrivial extension of the modal fragment3,because the modal fragment retains the �nite modelproperty under extensions like transitivity. This raisesthe question as to whether monadic GF2 with transi-tive relations is decidable. This question is answeredpositively in this section, by proving a more generalresult (Theorem 4).For the decidability proof of monadic GF2 withtransitive relations R1; : : : ; Rn, we consider satis�a-bility of closed formulas of the form 'GF ^'CC where'GF is in monadic GF2 and 'CC is a universal for-mula consisting of the congruence axioms for � andthe transitivity axioms for R1; : : : ; Rn. We use thefact that 'GF^'CC is satis�able in FOL with equalityif and only if 'GF ^ 'CC is satis�able in FOL with-out equality which in turn is the case if and only if itsSkolemized form N ^'CC has a Herbrand model. Theclausal normal form N of 'GF can be constructed insuch a way that the clauses in N are monadic: thearity of all function symbols as well as the number ofdistinct variables in any positive literal is � 1. FromExample 1 we obtainf0 < 1; :(x < y) _ y < f(y); :x < xg; (22)where 0 and 1 are new constants, and f is a new unaryfunction symbol, as a clausal normal form.In our proof we will replace satis�ability of N^'CCby satis�ability of N in Herbrand interpretations withcertain closure constraints that are derived from 'CC.A closure operator for n-ary relations over a domainA is a function C on the power set of An, such that,for all R;R0 � An,1. R � C(R) (C is increasing),2. if R � R0 then C(R) � C(R0) (C is monotone),3. C(R) = C(C(R)) (C is idempotent).Let E be an equivalence relation on A and ler R be arelation on A. The E-closure of R, denoted by E(R),is the least R0 that includes R such that E is a con-gruence relation for R0 (on A). Clearly, the E-closureoperator (also denoted by E) is indeed a closure op-erator. We are particularly interested in closure op-erators C, such that for all equivalence relations E,the composition E ÆC ÆE, denoted by C(E), is also aclosure operator, hence in particular idempotent. Clo-sure operators C which enjoy this property are said tobe compatible with equivalences.3The image of multi-modal propositional formulas ' underthe translation 'x: for a propositional constant P , Px is P (x),('^ )x is 'x^ x (similarly for other connectives), and (2i')xis 8y(Ri(x; y)) 'y).



From now on we assume that every relation symbolR (other than �) is associated with a closure oper-ator CR that is compatible with equivalences. Morespeci�cally, given N ^ 'CC, if R is one of the tran-sitive Ri's then CR is the transitive closure operator,otherwise CR is the trivial closure operator ID whichis the identity on every relation. These closure oper-ators are, in fact, compatible with equivalences. Wesay that a Herbrand structure A satis�es the closureconstraints derived from the CR, if �A is an equiva-lence relation and C(�A)R (RA) = RA for every otherrelation symbol R. Clearly for N ^ 'CC, the closureconstraints are satis�ed in A if and only if 'CC is truein A.Our main technical result is that the satis�abilityproblem of monadic clauses in Herbrand structureswith closure constraints is decidable for certain typesof closure constraints. The decidability proof is by re-duction to SkS and, intuitively, the admissible closureconstraints are those that can be expressed throughmonadic second-order formulas in SkS including tran-sitivity and Euclideanness4. In the following let � bea �xed �nite signature with function symbols of arityat most 1.3.1 The theory SkSThe tree here is de�ned as the term algebra of �with empty basis, i.e., whose universe is the set of allground �-terms with each function symbol having theHerbrand interpretation. We write T or T� both forthe tree and its universe. The elements of the tree arecalled nodes.The formal equality symbol in SkS will be denotedby :=. The set of monadic second-order or mso formu-las of � includes all atomic formulas s := t and X(s),where s and t are terms and X is a unary set variable.The set of mso formulas is closed under the logicalconnectives, the �rst-order quanti�ers over individualvariables (9x and 8x), and the second-order quanti-�ers over the set variables (9X and 8X). An atoms := t is true in the tree if and only if s and t denotethe same node, i.e., s and t are identical terms. Thetruth value of an arbitrary formula with parameters isde�ned as usual, e.g., 8X' is true in the tree if andonly if ' is true in the tree for all sets X of nodes. Let(zi)i�1 be a �xed enumerable sequence of �rst-ordervariables. Given an mso formula '(z1; : : : ; zn), we let[['(z1; : : : ; zn)]] denote the set of all tuples of nodes4A binary relation R is Euclidean if 8xyz(R(x; y)^R(x; z))R(y; z)). In epistemic logics, Euclideanness of the accessibilityrelation corresponds to negative introspection that is usuallystated as the modal axiom :2�) 2:2� (if you don't know �then you know that you don't know �). See [Fagin et al. 1995].

(a1; : : : ; an) such that '(a1; : : : ; an) holds in the tree.Hence, every mso formula '(z1; : : : ; zn) de�nes an n-ary relation [[']] over the nodes. The formula ' mayinclude parameters that are free set variables (but,without loss of generality, no free individual variablesbesides the zi's), so that the interpretation of the pa-rameters and, hence, the relation [[']], is dependent onthe context. A relation that can be de�ned by an msoformula is said to be mso. Given an mso formula  that de�nes an equivalence relation, it is easy to seethat the following mso formula de�nes the [[ ]]-closureof [[']]:9x1 � � �xn(( n̂i=1 (xi; zi)) ^ '(x1; : : : ; xn))Note that this holds uniformly (for all interpretationsof the parameters).The theory SkS is the monadic second-order theoryof the tree, i.e., the set of all mso sentences that aretrue in the tree. The decidability of SkS is known asRabin's Tree Theorem [Rabin 1969].3.2 Reduction to SkSWe are interested in closure properties that can beexpressed as mso formulas. We write '[�1; � � � ; �k] todenote a formula context (i.e., a formula where somesubformulas are missing and occur as placeholders �ifor some i) and '['1; � � � ; 'k] denotes the formula thatis obtained by simultaneously replacing all occurrencesof �i in '[�1; � � � ; �k] by 'i.Given a closure operator C over n-ary relations,we say that C is mso if there exists an mso for-mula context C[�] such that, for all mso formulas ',[[C[']]] = C([[']]) holds uniformly. The formula con-text C[�] is said to de�ne C. For example, the trivialclosure operator ID is de�ned by the empty contextID [�] = �. Note that if a closure operator CR is mso,so is C(E)R , for any mso equivalence E. The follow-ing lemma shows the well-known facts how to de�neclosure operators for the usual closure properties.Lemma 6 The following closure properties are mso:transitivity, reexivity + transitivity, reexivity +symmetry + transitivity, and EuclideannessProof. Let '(z1; z2) be an mso formula that de�nes abinary relation. Consider the mso formula '�(z1; z2):8X(X(z1) ^ 8xy(X(x) ^ '(x; y)) X(y))) X(z2))It is easy to see that '� de�nes the transitive andreexive closure of [[']]. A formula '+ that de�nes justthe transitive closure of [[']] is obtained easily by using



' and '�. The Euclidean closure of [[']] is de�ned bythe formula:'(z1; z2) _(9z'(z; z1) ^8X(X(z1) ^ \X is e-closed") X(z2)));where \X is e-closed" says that two nodes are in Xwhenever they can be reached from a common nodevia one or more [[']]-steps:8xy(X(x) ^ 9z('+(z; x) ^ '+(z; y))) X(y)):A formula that de�nes the reexive + symmetric +transitive closure of [[']] is a simple modi�cation ofthe formula '�. �We will write RST for the reexive, symmetric, andtransitive closure operator and RST [�] for a de�ningmso formula context. The main result of this sectionis the following theorem.Theorem 4 The satis�ability problem for �nite setsof monadic clauses over Herbrand structures with clo-sure constraints where the closure operators are msode�nable is decidable.Proof. Let N be a �nite set of monadic clauses andconsider the class of Herbrand structures for the lan-guage of N . We will e�ectively construct a closed msoformula MSO [N ] that is true in the tree if and onlyif N has a Herbrand model that satis�es the closureconstraints.For each predicate P in N (including �), say ofarity n, we �rst collect all the positive occurrences ofP into a formula 'P as follows. Let P (~t1); : : : ; P (~tm)(where ~ti = ti1; : : : ; tin) be a sequence of all the pos-itive P -literals in N . We may assume that m � 1.We write ~ti[s] to denote the result of replacing thevariable (if any) in ~ti by the term (or node) s. Foreach atom � above, let X� be a new set variable. Let'P (z1; : : : ; zn) stand for the mso formulam_i=1 9z(XP (~ti)(z) ^ z1 := ti1[z] ^ � � � ^ zn := tin[z])where z is a new �rst-order variable.Let  � be RST ['�], hence, [[ �]] is the equivalenceclosure of [['�]] for any interpretation of the set vari-ables. (Note that if [['�]] is empty, e.g., when there areno positive occurrences of � in N , then, by reexivity,[[ �]] is simply the identity relation.)For every other predicate symbol P , by exploitingthe mso de�nability of CP , and hence of C(E)P , we

�rst construct an mso formula context C�;P [�1; �2] suchthat, for any interpretation of the free set variables in �, C�;P [ �; �2] de�nes the closure operator C([[ �]])P .Let  P denote the mso formula C�;P [ �; 'P ]. Hence,[[C�;P [ �; 'P ]]] = C([[ �]])P ([['P ]]):For each clause � = Wi2I �i in N , letMSO [�] =_i2IMSO [�i];whereMSO [�] = 8>><>>: X�(x); if � is a non-groundatom containing x;9zX�(z); if � is a ground atom;: P (~t); if � is a literal :P (~t).Finally, letMSO [N ] = 9 ~X8~x �̂2NMSO [�];where ~X contains all the free set variables in the con-junction and ~x contains all the free individual vari-ables in the conjunction. In the following we provethat MSO [N ] is true in the tree if and only if N hasa Herbrand model satisfying the closure constraints.(() Assume that N has a Herbrand model A sat-isfying the closure constraints. First, we de�ne wit-nesses for the set variables in ~X. For each groundpositive literal � in N , let X� be non-empty if andonly if � holds in A. For each non-ground positiveliteral � = P (~t) in N , letX� = fa 2 T : P (~t[a]) is true in Ag:From this de�nition and the de�nition of 'P it followsimmediately that [['P ]] � PA:Secondly, consider a clause �(~x) inN and a sequence ~aof nodes. We know that �(~a) holds inA. So, one literal�(~a) of �(~a) is true in A. We prove that MSO [�](~a)is true in T by showing that MSO [�](~a) is true. Thereare three cases: If � is a non-ground atom P (~t), then �includes a variable xi and MSO [�] = X�(xi). Hence,X�(ai) is true in T by the de�nition of X�.If � is a ground atom P (~t), then X� is non-empty,and so MSO [�] is true in T by de�nition of X�.Finally, if � is a negative literal :P (~t), thenMSO [�] = : P (~t). In order to show that MSO [�](~a)is true in the tree, it is enough to show that [[ P ]] �PA. There are two subcases.



(i) Assume that P = �. So [[ �]] = [[RST ['�]]] =RST ([['�]]). It follows from [['�]] � �A and themonotonicity of RST that [[ �]] � RST (�A). ButRST (�A) = �A.(ii) Assume that P 6= � and let E = [[ �]]. Hence,[[ P ]] = [[C�;P [ �; 'P ]]] = C(E)P ([['P ]]). From the pre-vious case we know that E � �A, and thus, for allrelations R, E(R) � �A(R). So, by [['P ]] � PA andmonotonicity of the closure operators,C(E)P ([['P ]]) = E(CP (E([['P ]]))) ��A(CP (�A(PA))) = C(�A)P (PA) = PA:()) Assume thatMSO [N ] is true in the tree. Con-sider �xed witnesses for the set variables. We con-struct a Herbrand model A that satis�es N and theclosure constraints. For every relation symbol P in N ,let PA = [[ P ]]. Let also E = [[ �]].To begin with, we show that the closure constraintsare satis�ed. First, consider �:�A= [[ �]] = [[RST ['�]]] = RST ([['�]]) =RST (RST ([['�]])) = RST (�A):Second, consider any P other than �:PA = [[ P ]] = [[C�;P [ �; 'P ]]] = C(E)P ([['P ]]) =C(�A)P ([['P ]]) = C(�A)P (C(�A)P ([['P ]])) = C(�A)P (PA);where we used the idempotency of C(�A)P . It re-mains to show that A satis�es all clauses in N . Let�(x1; : : : ; xn) be a clause in N and let ~a = a1; : : : ; anbe a sequence of nodes. We must show that �(~a) holdsin A. We know that MSO [�](~a), and thus a disjunctMSO [�](~a) of MSO [�](~a), is true in the tree. Thereare three cases:Let ~x = x1; : : : ; xn and suppose that �(~x) is a non-ground atom P (~t[xi]) with the variable xi, i.e., �(~a) =P (~t[ai]) andMSO [�](~a) = X�(ai). SinceX�(ai) holdsin T, it follows from the de�nition of 'P that 'P (~t[ai])is true in T. But [['P ]] � C([['P ]]) (where C = RST , ifP is �; C = C(E)P , otherwise), and C([['P ]]) = [[ P ]] =PA. Hence P (~t[ai]) holds in A.Suppose that � is a ground atom. This case is sim-ilar to the previous one.Finally, if �(~a) is a negative literal :P (~t), thenMSO [�](~a) = : P (~t). Since [[ P ]] = PA, �(~a) holdsin A.Hence, �(~a) is true in A, as was to be shown. �The following example illustrates the constructions inthe proof of Theorem 4.

Example 2 Consider the clause set (22). Then'<(z1; z2) = 9z(Xy<s(y)(z) ^ z1 := z ^ z2 := s(z)) _9z(X0<1(z) ^ z1 := 0 ^ z2 := 1):Let TC be the transitive closure operator. In this case[[ �]] is the identity relation and TC = TC ([[ �]]). ByTheorem 4, the clause set (22) + Trans[<] is satis�ableif and only if the following formula is true in the tree:9X0<1 9Xy<s(y) (9z(X0<1(z)) ^8xy(:TC ['<](x; y) _Xy<s(y)(y)) ^8x(:TC ['<](x; x))):Theorem 5 Satis�ability of monadic GF2 with bi-nary relations that are, possibly, transitive, reexive+ transitive, reexive + symmetric + transitive, orEuclidean, is decidable.Proof. By using the fact that the corresponding clo-sure constraints can be speci�ed by a universal �rst-order formula, satis�ability of formulas in the givenclass reduces e�ectively to satis�ability of monadicclauses without equality in Herbrand structures withappropriate closure constraints, that are, by Lemma 6,mso de�nable. Hence, the claim follows from Theo-rem 4. �Note that, also many non-monadic guarded andeven non-guarded formulas translate into monadicclauses via standard Skolemization, e.g., all guardedformulas in GF2 where all positive occurrences ofatoms that are not guards have at most one distinctvariable, and all universal, purely negative disjunc-tions, such as 8xyz((R(x; y) ^ R(y; z))) :x � z).4 ConclusionsIn this paper we studied the guarded fragment re-stricted to two variables, GF2. We showed that al-ready GF2� is undecidable when extended with tran-sitive relations, improving a recent result of Gr�adel[1998b]. We also identi�ed a so-called monadic sub-fragment of GF2 (where all non-guard atoms areunary), that retains the robustness of modal logicsunder various extensions (such as transitivity), whilebeing a nontrivial extension of the modal fragment.An open question at this time is the decidability ofthe whole GF with transitive relations where transi-tive relations are only admitted in guards, but wherenon-transitive relations and equality are allowed to oc-cur everywhere. There are very few known decidableextensions of GF, one exception is the recent decid-ability result of the extension of GF with least andgreatest �xed-points by Gr�adel & Walukiewicz [1999].
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