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This paper presents a new, unified technique to perform general edge-
sensitive editing operations on n-dimensional images and videos efficiently.

The first contribution of the paper is the introduction of a generalized
geodesic distance transform (GGDT), based on soft masks. This provides a
unified framework to address several, edge-aware editing operations. Di-
verse tasks such as de-noising and non-photorealistic rendering, are all
dealt with fundamentally the same, fast algorithm. Second,a new, geodesic,
symmetric filter (GSF) is presented which imposes contrast-sensitive spa-
tial smoothness into segmentation and segmentation-basedediting tasks
(cutout, object highlighting, colorization, panorama stitching). The effect
of the filter is controlled by two intuitive, geometric parameters. In contrast
to existing techniques, the GSF filter is applied to real-valued pixel likeli-
hoods (soft masks), thanks to GGDTs and it can be used for bothinteractive
and automatic editing. Complex object topologies are dealtwith effortlessly.
Finally, the parallelism of GGDTs enables us to exploit modern multi-core
CPU architectures as well as powerful new GPUs, thus providing great flex-
ibility of implementation and deployment. Our technique operates on both
images and videos, and generalizes naturally to n-dimensional data.

The proposed algorithm is validated via quantitative and qualitative com-
parisons with existing, state of the art approaches. Numerous results on a
variety of image and video editing tasks further demonstrate the effective-
ness of our method.

Categories and Subject Descriptors: I.4.6 [Segmentation]: Image process-
ing and computer vision; I.4.4 [Restoration]: Image processing and com-
puter vision; I.3.3 [Picture/Image Generation]: Image processing and
computer vision

General Terms: Image and video, segmentation, non-photorealistic render-
ing, restoration

Additional Key Words and Phrases: Geodesic distance, geodestic segmen-
tation, tooning, denoising
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1. INTRODUCTION AND LITERATURE SURVEY

Recent years have seen an explosion of research in Computational
Photography, with many exciting new techniques been invented to
aid users accomplish difficult image and video editing taskseffec-
tively. Much attention has been focused on: segmentation [Boykov
and Jolly 2001; Bai and Sapiro 2007; Grady and Sinop 2008; Li
et al. 2004; Rother et al. 2004; Sinop and Grady 2007; Wang et al.
2005], bilateral filtering [Chen et al. 2007; Tomasi and Manduchi
1998; Weiss 2006] and anisotropic diffusion [Perona and Malik
1990], non-photorealistic rendering [Bousseau et al. 2007; Wang
et al. 2004; Winnemoller et al. 2006], colorization [Yatzivand
Sapiro 2006; Levin et al. 2004; Luan et al. 2007], image stitch-
ing [Brown et al. 2005; Agarwala et al. 2004] and tone map-
ping [Lischinski et al. 2006]. Despite the many, different algo-
rithms, all those tasks are related to one another by the common
goal of obtaining spatially-smooth, edge-sensitive outputs (e.g., a
de-noised image, a segmentation map, a flattened texture, a smooth
stitching map etc. See fig. 1). Building upon such realization, this
paper proposes a new algorithm to addressall those applications in
aunifiedmanner. The advantage of such unified approach is that the
core processing engine needs be written and optimized only once,
while maintaining a wide spectrum of applications.

Edge-sensitive and spatially smooth image editing can be
achieved by modeling images as Markov Random Fields [Szeliski
et al. 2007]. However, solving an MRF involves time-consuming
energy minimization algorithms such as graph-cut [Kolmogorov
and Zabih 2004] or belief propagation [Felzenszwalb and Hutten-
locher 2004] in case of discrete labels, large sparse linearsystem
solvers in case of continously valued MRFs,e.g. [Grady 2006;
Szeliski 2006]. Today’s image editing applications are required to
run efficiently on image sizes up to 20 Mpixels, and unfortunately
none of the existing algorithms scale well to such resolutions.1 In
order to address the efficiency problem researchers have resorted to
approximate multi-resolution algorithms, with unavoidable loss of
accuracy [Lombaert et al. 2005; Kopf et al. 2007; Liu et al. 2009].
When processing video frames, additional efficiency may be gained
via dynamic MRFs [Juan and Boykov 2006; Kohli and Torr 2007].

Inspired by the work in [Bai and Sapiro 2007] we impose edge-
sensitive smoothness by means of geodesic distance transform
(GDT), thus avoiding energy minimization altogether. In contrast to
e.g., graph-cut our algorithm’s memory and runtime requirements
are both linear in the number of pixels. This allows us to workdi-
rectly with the full image resolution and avoid loss of detail. The al-
gorithm proposed here differs from that in [Bai and Sapiro 2007] in
five important ways: i) It imposes spatial smoothness via geodesic
filtering, ii) It is not limited to interactive segmentationand can
be applied to automatic segmentation tasks. iii) It overcomes Bai’s

1Graph-cut hasO(N2) memory requirement and a worst case runtime of
O(N3), whereN is the number of pixels.
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Fig. 1. Examples of geodesic image editing. (Top row)original images. (lady’s original photo courtesy of D. Weiss). (Bottom row) processed images.
Segmentation, filtering and non photo-realistic effects can all be achieved very efficiently with the single framework proposed in this paper. The algorithm’s
efficiency enables processing high-resolution, n-dimensional images at interactive rates.

topology restrictions (details later). iv) It handles editing tasks other
than segmentation. Finally, v) our algorithm exploits modern par-
allel computer architectures to achieve greater efficiency.

When possible, a common technique to increase an algorithm’s
execution speed is to implement it on the GPU. For example a fast
GPU-based bilateral filtering is described in [Chen et al. 2007], and
GPU-driven abstraction in [Winnemoller et al. 2006]. However, the
choice whether to use the CPU or the GPU is driven not only by
efficiency issues but also by portability ones. In fact, CPUsare still
far more prevalent than GPUs (e.g., mobile devices and many lap-
tops have CPUs but no GPUs). Also, the large diversity between
GPUs makes it difficult to robustly deploy GPU-based software
to a wide audience. On the other hand, modern GPUs are quickly
moving towards becoming generic computing devices. The parallel
algorithm proposed here is based on geodesic distance transforms
which can be computed efficiently on the GPU [Weber et al. 2008].
As described later our algorithm is also extremely efficientwhen
implemented on modern multi-core CPUs. This provides greatflex-
ibility of implementation and deployment.

This paper builds upon the segmentation algorithm in [Crimin-
isi et al. 2008] and extends it in the following ways: i) it imposes
spatial smoothness while avoiding expensive energy minimization;
ii) it provides a single framework to address many differentediting
tasks; iii) it provides quantitative comparisons with competing state
of the art algorithms.

The remainder of the paper is organized as follows. Section 2
provides background on distance transforms in digital images, be-
fore introducing their generalization to soft masks. The efficient
implementations of such transforms is also discussed. Section 3
describes the geodesic symmetric filter (GSF) that exploitsGGDTs
for image segmentation. Please note that both the GGDT and the
GSF operator were already presented in [Criminisi et al. 2008] but
in the context of energy minimization for segmentation. Here we
repeat the mathematical definitions for clarity and furtherelaborate
on the link between GGDT and classic GDT. Furthermore, we ex-
plore the use of these recently introduced tools in the context of im-
age editing while negating the need for complex energy minimiza-

tion. Implementations of various image and video editing opera-
tions using these two tools are described in Section 4. Quantitative
validation and comparative experiments are presented in Section 5
for applications based on GSF and in Section 6 for applications
based on GGDT alone.

2. GEODESIC DISTANCE TRANSFORMS AND
THEIR GENERALIZATION

This section first describes background on geodesic distance trans-
forms and their implementation. It then introduces their generaliza-
tion using soft masks. Efficient implementation of GGDTs is then
briefly discussed.

2.1 Geodesic distance and its computation

2.1.1 Geodesic distance from a binary region on an image.Let
I(x) : Ψ → R

d be an image (d = 3 for a color image), whose
supportΨ ⊂ R

2 is assumed to be continuous for the time being.
Given a binary maskM (withM(x) ∈ {0, 1}, ∀x ∈ Ψ) associated
to a “seed” region (or “object” region)Ω = {x ∈ Ψ : M(x) = 0},
the unsigned geodesic distance transformD0(.;M,∇I) assigns to
each pixelx its geodesic distance fromΩ defined as:

D0(x;M,∇I) = min
{x′ |M(x′)=0}

d(x,x′), with (1)

d(a,b) = inf
Γ∈Pa,b

∫ `(Γ)

0

√

1 + γ2 (∇I(s) · Γ′(s))
2
ds, (2)

wherePa,b is the set of all possible differentiable paths inΨ be-
tween the pointsa and b and Γ(s) : R → R

2 indicates one
such path, parametrized by its arclengths ∈ [0, `(Γ)]. The spa-
tial derivativeΓ′(s) = ∂Γ(s)/∂s is the unit vector tangent to the
direction of the path. The dot-product in (2) ensures maximum in-
fluence for the gradient∇I when it is parallel to the direction of the
pathΓ. Thegeodesic factorγ weighs the contribution of the image
gradient versus the spatial distances. Figure 2 shows an illustration
of GDT to a binary mask in a given image.
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Fig. 2. Geodesic distances. (a) Original image,I; (b) Input maskM with “object” regionΩ. (c) Euclidean distance fromΩ (D0(x;M,∇I) with γ = 0
in (2)); (d) Geodesicdistance fromΩ (D0(x;M,∇I) with γ > 0). Note the large jump in the distance in correspondence withstrong image edges.

In case of scalar images, the integral in (2) is the Euclidean
length of the 3D path̃Γ thatΓ defines on the(x, y, γI) surface:
Γ̃(s) = [Γ(s);γI(Γ(s))]. Hence,d(a,b) is the length of the short-
est path betweena andb on this surface. Also, forγ = 0, Eq. 2
reduces to the Euclidean length of pathΓ.

It is worth noting that the term “geodesic distance” is often
used more generally to indicate any weighted distance. In [Bai
and Sapiro 2007] for instance, gradients of likelihoods areused as
geodesic weights.

2.1.2 Algorithms to compute GDTs.Excellent surveys of tech-
niques for computing (non-geodesic) DTs may be found in [Fabbri
et al. 2008; Jones et al. 2006]. There, two main kinds of algorithms
are described:raster-scanandwave-front propagation. Raster-scan
algorithms are based on kernel operations applied sequentially over
the image in multiple passes [Borgefors 1986]. Instead, wave-front
algorithms such as Fast Marching Methods (FMM) [Sethian 1999]
are based on the iterative propagation of a front with an appropriate
velocity field.

Geodesic versions of both kinds of algorithms may be found
in [Toivanen 1996] and [Yatziv et al. 2006], respectively. Both the
Toivanen and Yatziv algorithms produce approximations to the ac-
tual distance and both have optimal complexityO(N) (with N
the number of pixels). However, this does not mean that they are
equally fast in practice. In FMM front pixels are expanded accord-
ing to a priority function. This requires accessing image locations
far from each other in memory. The limited memory access band-
width of modern computers limits the speed of execution of such
algorithms much more than their modest computational burden.
In contrast, Toivanen’s technique (employed here) reads the im-
age memory incontiguousblocks, thus minimizing delays due to
memory access. As demonstrated later this yields greater execu-
tion speed. Multiple-pass raster-scan algorithms can alsodeal with
the difficult spiral-like patterns as shown in fig. 2d. We shall also
see that the Toivanen algorithm is trivially extended to thegeneral-
ized geodesic transform presented next, as opposed to fast march-
ing methods.

2.2 Generalized geodesic distance transform
(GGDT)

This section presents thegeneralizedGDT introduced in [Criminisi
et al. 2008] and discusses its relationship to GDT. Its applications
will be discussed in Section 3.

2.2.1 GDT generalized to a soft mask on an image.The key
difference between the GDT and its generalized variant is the fact

that in the latter the input seed mapM is more generally asoft, real-
valued function. Given a mapM(x) ∈ [0, 1] on the image domain
Ψ, the GGDT is defined as follows:

D(x;M,∇I) = min
x′∈Ψ

(d(x,x′) + νM(x′)) , (3)

with d(.) as in (2). Mathematically, this is a small change as com-
pared to (1). However, the fact that (3) uses the softbelief of a
pixel belonging to the object or region of interest means that the
latter can be defined probabilistically. The advantage is that in sev-
eral automatic or semi-automatic applications, extraction of such
a probabilistic mask is achieved more economically than having
to compute a binary segmentation, while conveying more informa-
tion.

The parameterν in (3) establishes the mapping between the be-
liefs M and the spatial distances. Figure 3 further clarifies these
points with an explanatory 2D example. In this example, a soft
mask of the object of interest is obtained based on user-entered
foreground and background brush strokes (as detailed in Section
4.1). This soft mask is shown in fig. 3b and the corresponding
GGDT in fig. 3c. Notice the abrupt distance changes corresponding
to the contour of the object of interest (the flower in this case). If the
soft mask includes pixels with no uncertainty (whereM(x) = 0),
it is clear from its definition that the GGDT is equal to zero at
these locations and only them (the minimum in (3) is achievedfor
x
′ = x). This is similar to the classic geodesic distance, which

vanishes only within the object associated to the binary mask. Any
processing based on a decreasing function of the GGDT of soft
maskM will have maximal effect at these locations.

Another formal connection between GDT and GGDT can be
worked out as follows. In case of binary masks, the expression of
the GGDT in (3) for pixels outside the object of interest (M(x) =
1) boils down to

min{ min
x
′ s.t.

M(x′) = 0

d(x,x′), min
x
′ s.t.

M(x′) = 1

d(x,x′)+ν} = min{D0(x;M,∇I), ν}.

(4)

Hence, in this particular case, the GGDT is simply the thresholded
GDT to binary mask defined byM , with thresholdν, the two dis-
tances coinciding if the threshold is large enough.

A similar breaking down of the minimization (3) into separate
minimizations over sets of constant mask values can be conducted
in the general case. Let us denoteΛ ⊂ [0, 1] the discrete set of
values actually taken by the functionM on the discrete image grid
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Fig. 3. Generalized geodesic distances. (a)An input image.(b) A probabilistic (soft) seed maskM (darker for foreground); Intermediate grey values
indicate uncertain pixels.(c) The estimated Generalized Geodesic Distance (darker for smaller distance values). This is shown here only to provide anidea of
what a generalized geodesic distance looks like.

Ψ. Then the GGDT can be rewritten as:

D(x;M,∇I) = min
λ∈Λ

min
x
′ s.t.

M(x′) = λ

[d(x,x′)+νλ] = min
λ∈Λ

[D0(x;Mλ,∇I)+νλ],

(5)

where the functionMλ is defined asMλ(x
′) = 0 if M(x′) = λ

and 1 otherwise. Hence the GGDT can be deduced from the|Λ|
GDTs associated to the level sets ofM , which is an alternative
way to think about it.

So far we have described the mathematical model of the GGDT.
Next we describe the algorithm for computing it.

2.2.2 Efficient computation of GGDTs.Computation of GDTs
and GGDTs requires the discretization of the image domain and of
the geodesic distanced in (2). Considering an eight-neighborhood
structure on the pixel grid, paths betweena andb are chains of
neighboring pixels(x0 = a,x1, · · · ,xn−1,xn = b). Along such
a chain the integral in (2) can be approximated with the following
sum:

n
∑

k=1

[

|xk − xk−1|
2 + γ2|I(xk)− I(xk−1)|

2
]
1
2 . (6)

Based on this discrete definition of the geodesic distance between
two neighboring pixels, the GDT for a given binary mask can be
computed by wave-front algorithms that propagate a front starting
at the boundary of the mask. Such methods can be exact, relying
on the minimum cost path Dijkstra’s algorithm [Dijkstra 1959], or
approximate for lighter computation [Yatziv et al. 2006]. However,
computation of GGDT defined in (3) requires, for each pixelx, a
minimization with respect to any possible destinationx

′. Raster-
scan methods extends naturally to this case, as follows. After ini-
tializing the distance map with scaled seed mask (D = νM ), a
first scan is executed from top-left to bottom-right, updating the
distance map at the current pixelx according to

D(x) = min

{

D(x+ ak) +
[

|ak|
2 + γ2|I(x)− I(x+ ak)|

2
]
1
2 , k = 0 · · ·4

}

,

(7)

with a0 = (0, 0), a1 = (−1,−1), a2 = (−1, 0), a3 = (−1,+1)
anda4 = (0,−1). In the second scan the algorithm proceeds from
the bottom-right to the top-left corners using the same udpate rule
with opposite displacement vectorsai’s, to obtain the final map.2

2Larger kernels (e.g., 5×5 ) produce better approximations to the exact dis-
tance, but with a significant reduction in speed. In our applications multiple

This algorithm can be implemented efficiently on multi-core
CPU using assembly and SIMD instructions for optimal perfor-
mance. Note that four of the five elements in the requiredmin com-
putation (see eqn. 7), are independent. Therefore we compute these
using data-level parallelism (SSE3 instruction set).

The same algorithm, up to slight modifications, can also be im-
plemented on the graphics processor. It amounts to extending to
soft masks the recent work in [Weber et al. 2008] for approximate
computation of GDTs on the GPU (by exploiting NVidia’s CUDA
new architecture).

3. GSF: GEODESIC SYMMETRIC FILTERING OF
IMAGES

The GGDT introduced above can be used as such for a number
of edge-sensitive image editing and processing tasks, as weshall
demonstrate in Sections 4.2 and 6. It can also serve as the basis of
new morphological operators. In this section we introduce the GSF
operator as an efficient tool for computing hard and soft bi-layer
segmentations.

As discussed in [Fabbri et al. 2008; Jones et al. 2006] DT algo-
rithms are useful for the efficient implementation of morphologi-
cal operators [Heijmans 1995]. Here we employ geodesic distance
transforms to implement efficientgeodesic morphology[Soille
1999] (see fig. 4), the basis of the GSF filter.

3.1 Geodesic morphology

The definition of the distanceD in (3) leads to the followingsigned
generalized geodesic distance:

Ds(x;M,∇I) = D(x;M,∇I)−D(x; 1−M,∇I). (8)

In the case of a binary maskDs is the signed distance from the
objectboundary(cf. fig. 5).

ThresholdingDs at different heights achieves basic morpho-
logical operations. For instance, geodesic dilation is obtained as
Md(x) = [Ds(x;M,∇I) > θd]; with θd > 0 indicating the di-
ameter of a disk-shaped structuring element. The indicatorfunc-
tion [.] returns1 if the argument is true and0 otherwise. Similarly,
geodesic erosion is obtained asMe(x) = [Ds(x;M,∇I) > −θe]

distance transforms are mixed together in various ways. This mitigates the
effects of inaccuracies in distance computation and lets usget away with
smaller kernels. Also, note that3×3 kernels are used effectively in the vast
MRF literature.
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Fig. 4. Geodesic closing. (a) Original image.(b) Image gradient. Notice the weak edge on the cheek.(c) Original with initial mask superimposed (dark).
(d) After conventionalclosing. (e) After geodesic dilation. Notice the leakage effect typical of geodesic transforms in the presence of weak edges.(f) After
geodesic closing. Now the leakage is removed and the mask is aligned with the person’s silhouette, more accurately than in (d).

(with θe > 0). Finally, geodesic closing and opening are achieved
as:

Mc(x) = [D(x;Md,∇I) < θe], (9)

Mo(x) = [D(x;Me,∇I) > θd], (10)

respectively; withMd = 1−Md.
Figure 4 shows an example where an initial binary mask is fil-

tered both by conventional closing (fig. 4d) and then by geodesic
closing (fig. 4f). Geodesic filtering encourages the contourof the
final mask to follow the object boundary. Notice how possibleleak-
ages which may arise from dilation (erosion) in correspondence to
weak edges are removed when the opposite erosion (dilation)oper-
ation is performed.

Redefining known morphological filters in terms of operations
on real-valued distances allows us to: i) implement those opera-
tors very efficiently, ii) introduce contrast sensitivity effortlessly,
by means of geodesic processing and iii) handle soft masks inthe
same framework. Next a further modification to conventionalmor-
phology is introduced, adding symmetry.

3.2 The GSF operator

Closing and opening are asymmetrical operations in the sense that
the final result depends on the order in which the two component
operations are applied to the input mask (see also fig. 5d). However,
when filtering a signal one would just wish to define the extentof
the regions to be removed (e.g., noise speckles) and apply the filter
without worrying about the sequentiality of operations within the
filter itself.3

This problem is solved by GSF filtering. The key idea can be
summarized as follows: i) Given the noisy “signal”M , binary or
not, we run geodesic dilation and erosion in two parallel tracks;
ii) The results are then mixed (by mixing real-valued distances) to
produce a distance function which, iii) when thresholded provides
the final, spatially smooth segmentation.

The GSF filter is defined mathematically as follows:

MGSF (x;M,∇I) = [Ds
s(x;M,∇I) > 0] (11)

where the symmetric, signed distanceDs
s is defined as:

Ds
s(x;M,∇I) = D(x;Me,∇I)−D(x;Md,∇I)+θd−θe, (12)

3Closing-opening filters such as the one used in [Bousseau et al. 2007] may
be interpreted as approximations to our symmetrical filter.

with Me andMd defined earlier. The additional termθd − θe en-
forces the usefulidempotenceproperty4, i.e., it keeps unaltered the
remaining signal structure.

Figure 5 illustrates the effect of our GSF filter both on binary
masks in 1D and 2D. Notice how isolated peaks and valleys are
removed from the original signal while maintaining unaltered the
remaining signal structure. The geometric parametersθ = (θd, θe)
establish the maximum size of noise regions to be removed. The ef-
fect of varyingθ may be observed also in the 2D example. Alterna-
tive, sequential filters such as “erode-dilate-erode” or “open-close”
produce less good and (in general) different results from their sym-
metrical counterparts.

3.3 Parallelism of GSF

The most expensive operation in the GSF filter in (11) is by farthe
geodesic distance transform. However, note that the four distance
transforms necessary to computeMGSF naturally form two pairs
of transforms. In each pair the operations are independent of each
other. Thus, the transforms in each pair may be computed in parallel
on a dual-core processor, as in our implementation. Ift is the unit
time required for each unsigned GGDT, then the total timeT taken
to run a GSF filtering operation isT = 2t.

Furthermore, as mentionned in Section 2.2.2, each GGDT can be
computed approximately but efficiently on the GPU [Weber et al.
2008] (on the latest NVidia devices). The rest of the GSF operations
(distance mixing and thresholding) may also be computed easily on
modern graphics processors.

To summarize, the GSF operator: i) Generalizes existing mor-
phological operations by adding symmetry and contrast-sensitivity
ii) It can be applied to soft masks; ii) It is efficient due to its con-
tiguous memory access and parallelism; iii) It can be implemented
on the GPU; iv) Its controlling parameters are geometrically intu-
itive and easy to set.

Next, we show how to perform many common image and video
editing tasks using either GSF operations or using just the general-
ized GDTs.

4. EFFICIENT EDGE-AWARE EDITING

Most image and video editing operations share the goal of pro-
ducing a spatially smooth, contrast-sensitive output. Forexam-
ple, image de-noising algorithms tend to smooth out an image

4An operatorf is idempotent ifff(f(x)) = f(x).
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Fig. 5. Explaining the GSF filter. (Left panel) An illustrative example in 1D with binary mask.(a) Input binary signal.(b) The signed distanceDs. (c) The
two further unsigned distances in (12), for selected valuesof θ = (θd, θe). (d) The final signed distanceDs

s . (e)The output, filtered maskMGSF (x;M). The
narrower peaks and valleys ofM(x) have been removed while maintaining the integrity of the remaining signal.(Right panel) A 2D example.(a) The original
noisy binary image.(b) Our filtering results for large enough values of the parameters θd, θe. (c) The effect of varyingθd. For fixedθe, more foreground noise
is removed asθd increases; and vice-versa.(d) Existing filters such as “erode→dilate→erode”, or “open→close” tend to produce worse results while being
affected by the asymmetry problem (see text). For clarity ofexplanation, no image gradient was used here.

while preserving strong edges. Similarly, image segmentation tech-
niques produce piece-wise flat label maps, with edge-aligned tran-
sitions. All these tasks can be efficiently accomplished by using our
GGDTs or our GSF operator.

4.1 Image segmentation via Geodesic Symmetric
Filtering

Given an imageI we wish to select the foreground region (Fg) and
separate it from the background (Bg) as quickly and accurately as
possible. The input data is represented as an array of image pixelsz,
indexed by the pixel positionx asz(x). The corresponding binary,
per-pixel segmentation labeling is denotedα.

In segmentation algorithms the usual starting point is to
define the pixel-wise foreground and background likelihoods
p(z(x)|α(x) = Bg) andp(z(x)|α(x) = Fg). These likelihoods
may be obtained interactively or automatically from a variety of
sources,e.g., from user strokes [Bai and Sapiro 2007; Boykov and
Jolly 2001; Rother et al. 2004; Li et al. 2004]5, from stereo cor-
respondence [Kolmogorov et al. 2005], from comparison witha
background model [Criminisi et al. 2006], from object classifica-
tion [Shotton et al. 2007], etc.

Inferring the segmentation then proceeds by finding the solution
α which: i) “obeys” the likelihood, ii) is spatially smooth, and iii)
is aligned with strong edges. A popular way to achieve this consists
in defining and minimizing a global energy function over the binary
label field [Boykov and Jolly 2001]. This function is composed of
pixel-wise likelihoods, and pair-wise terms for contrast-sensitive
regularization. A modern view of this prototypical approach is to
associate the energy function to the posterior distribution of the hid-
den label field, which is turned this way into a conditional (Markov)

5Bai’s technique has been designed solely forinteractivesegmentation.

random filed, or CRF. The global optimum of the energy is then the
maximum a posteriori estimate (MAP) of the hidden field.

In [Criminisi et al. 2008] the GSF filter was used within such a
CRF energy minimization framework. However, [Criminisi etal.
2008] showed that the output ofeachGSF operation is itself spa-
tially smooth (for large values ofθ). Thus, in a graphics application
we can assume that the user has interactively set the geometric pa-
rametersθ 6 and the output segmentation is that achieved directly as
the output of the GSF filter. This approach, proposed here, removes
the need for energy minimization altogether with considerable re-
duction of computation times.7

In this paper, we show that efficient segmentation, and associ-
ated tasks, can be simply achieved by applying the GSF to the

real-valuedlog-odds mapM(x) = σ
(

ln p(z(x)|α(x)=Bg)
p(z(x)|α(x)=Fg)

)

, with

σ(.) the sigmoid transformationσ(t) = 1/(1 + exp(−t/µ)). In
all experiments in this paper we have fixedµ = 5. The output seg-
mentation maskMGSF is simply obtained by selecting a value of
θ (e.g., based on the observed spatial extent of noise speckles) and
applying the GSF filter in (11) to the input maskM (cf. fig. 5).

Spatial smoothness and robustness to noise.Figure 6 illustrates
the behaviour of the GSF filter in the presence of weak unaries(i.e.

6e.g., typically hereθe = θd = 10pix, but depends on image resolution.
7Avoiding the definition and the minimization of a global CRF energy func-
tion might appear as conceptually less appealing. Note however that there
is arguably no fundamental or practical superiority to the energy-based ap-
proach when the energy is designed in an ad-hoc fashion, as itis often the
case. In fact, we shall see in sec.5.1.2 that good segmentation of fine struc-
tures can be obtained with our segmentation approach with noenergy mini-
mization. Finally, recent studies showed that there are cases where segmen-
tation based on geodesic distances can in fact be related to the global min-
imization of new energy functions [Sinop and Grady 2007; Couprie et al.
2009].
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Fig. 6. Spatial smoothness and robustness to noise. (a) Input soft mask (i.e. pixel-wise likelihoods, green forFg and red forBg). Notice the large amount
of noise and the large uncertain region (in grey).(b) Magnitude of gradient of input image. This is used in the computation of geodesic distance transforms.
(c-f) Computed segmentation boundary (white curve) for increasing values ofθd = θe. Larger values ofθ yield smoother segmentation boundaries in the
presence of weak edges and/or weak likelihoods; and thus stronger robustness to noise. In contrast, strong gradients “lock” the segmentation in place.

weak input likelihoods) and weak gradients, in a toy example. De-
spite the lack of a Markov Random Field energy model our GSF
operator achieves spatially smooth segmentation. The key is in the
geometric parametersθ. As illustrated also in fig. 5, larger values
of θ tend to produce smoother segmentations (less broken up and
smoother contours) despite the fact that the GDT itself is not robust
to noise. Robustness of the GSF filter comes from combining dif-
ferent distance transforms together. Robustness to bleeding effects
is also illustrated in fig. 4.

Note also that the symmetric signed distanceDs
s(.,M,∇I) does

not need to be thresholded and can often be used as a soft seg-
mentation map. An example of such use for re-colorization isillus-
trated in section 5.3.3. Segmentation results and comparisons are
presented in Section 5. Next, we describe application of thegener-
alized geodesic distance to other non-linear image filtering opera-
tions.

4.2 Edge-sensitive smoothing via Generalized
Geodesic Distances

In this section we propose a method to turn an input image into
a piece-wise smooth image, while mantaining sharp transitions at
object boundaries. Such edge-preserving image flattening is useful
for a number of applications such as denoising, texture flattening
and cartooning.

Edge-aware flattening can be achieved for example by
anisotropic diffusion [Perona and Malik 1990], or bilateral filter-
ing [Tomasi and Manduchi 1998]. Here instead we follow the ap-
proach used in gray-scale morphology, where binary morphology
filters are run on each intensity level and the results combined into
the final output. In order to achieve edge sensitivity we replace con-
ventional morphology filtering with ourgeodesictransforms ap-
plied to small number ofsoftly quantized image layers. The pro-
cessed components are then recombined to produce the flattened
output.

In detail, given a color imageI and its luma channelY taking
values in the range{0, · · · , τ−1}, all pixel intensities are quantized
into k bins,e.g., using conventional K-means clustering. Each bin
or cluster is associated with a mean luma valueµi and standard
deviationσi.

At this point,k soft masksMi(x) are computed as a function of
the probability of each pixel belonging to theith cluster as follows:

Mi(x) = 1− e
− 1

2

(

Y (x)−µi
σi

)2

. (13)

For each maskMi we then compute the corresponding GGDT,
Di(x) = D(x;Mi,∇I), as in (3). For each pixelx and each layer
i, a weight measuring the contribution of the intensityµi at pixelx
in the final image is computed as

Wi(x) = e
−

D2
i
(x)

φ2 , (14)

whereφ > 0 is a parameter (a valueφ = 100 is used here). The
flattened luma at pixelx is finally obtained as a weighted average
of cluster intensities:

Y ′(x) =
k

∑

i=1

µiWi(x) /
k

∑

i=1

Wi(x). (15)

Combining the flattened lumaY ′ with the unprocessed chromatic-
ity channels yields the output flattened color image. Note that in
this work we have chosen to process only the luma channel for
speed. Alternatives where all three RGB colour channels arepro-
cessed independently may also be considered.

Since the different image levels are processed independently
from one another the algorithm is intrinsically parallel and can be
easily implemented to run on multiple cores. Furthermore, strong
quantization of the input levels (i.e., k � τ ) can produce artefact-
free results at great speed (cf. fig. 20).

5. APPLICATION OF GSF-BASED
SEGMENTATION AND COMPARISONS

This section demonstrates the use of the geodesic symmetricfil-
ter as an efficient and precise segmentation tool. Its performance is
assessed through a number of quantitative and qualitative compar-
isons with state of the art. Note that all experiments presented in
this section, unless specified differently, were run on a Core 2 Duo
desktop machine with 4GB RAM.

5.1 Interactive segmentation of high-resolution
images

In all the examples in this section the pixel likelihoodL(x) is com-
puted from user-entered brush strokes as follows. The pixels in the
strokes are accumulated into two32 × 32 × 32 RGB histograms,
one for theFg and one for theBg strokes. ThenL(x) is estimated
as the log of the ratio of those histograms, evaluated at eachimage
pixel x. This simple, non-parametric model avoids inefficient Ex-
pectation Maximization (as used in GrabCut [Rother et al. 2004])
while providing good accuracy.
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Fig. 7. Examples of interactive image segmentation. (a) Original photo of a swan (3200 × 2400 pix. Area= 7.3Mpix). (b) The user-entered background
strokes (dark, superimposed).(c) The segmented foreground obtained in∼ 43ms.(d) Photo of a derelict castle (4600× 4627 pix. Area= 20.3Mpix). (e) The
two Fg andBg brush strokes.(f) The segmented foreground obtained in∼ 120ms.

Fig. 8. Comparisons with Bai et al. (Left panel)Run time comparisonsfor Bai’s segmentation algorithm (red curves) and ours (blue). Grey lines indicate
linear fit to the curves. For Bai’s algorithm we have used the run-times reported in Table 1 of [Bai and Sapiro 2008]. All curves were obtained on similar spec.
machines (2GB RAM, 2GHz CPU). As predicted by their theoretical efficiency, a roughly linear behaviour is shown by the run-times of both algorithms; but
the slope of ours is much lower, indicating greater efficiency. (Right panel) Robustness to complex topology.(a) Original. (b) User strokes.(c) Segmentation
results from Bai et al.(d) Segmentation results from our algorithm. Identical strokes are used in both cases. In Bai et al. the implicit connectivity prior produces
erroneous connected regions which can be removed only with further interaction. Both graph-cut and our algorithm by acting on the pixel likelihoods overcome
such problem.

A first example of interactive segmentation on a high-resolution
image is shown in fig. 1. The flower image is∼ 20Mpix in size
and the segmentation is updated on our machine in only121 msfor
changes toθ and810 msfor changes to the user strokes. This is
to be compared with a graph-cut segmentation time of∼13.3s.8 As
in [Rother et al. 2004] the color models are updated iteratively (typ-
ically 2 iterations suffice) to achieve accurate segmentation with
economical interaction. Further results on relatively simple images
are shown in fig. 7. More results are in fig. 9 and the accompanying
video.9

5.1.1 Comparison with Bai et al..Our technique takes inspi-
ration from [Bai and Sapiro 2007] and extends that work in many
ways. In this section we compare the two approaches in terms of
both efficiency and accuracy.

5.1.1.1 Computational efficiency.Figure 8(Left) com-
pares the run times achieved by the recent FMM method in [Yatziv
et al. 2006] (employed in [Bai and Sapiro 2007]) with those
achieved by our technique, as a function of the image sizeN .
The task is that of image segmentation and it was run on similar-
spec. machines. As discussed earlier, despite both algorithms being
O(N) in complexity, our technique achieves lower run-times in
practice, thanks to its contiguous memory access.

5.1.1.2 Topological differences.In Bai’s work GDTs are
computed from binary, user-entered strokes. This implies that each
output, segmented region needs to be connected to at least one

8With our own implementation of graph-cut, optimized for regular grids
and thus about 1/3 faster than publicly available C implementations.
9http://research.microsoft.com/apps/pubs/default.aspx?id=81528

such stroke.10 This effect is due to the algorithm’s implicit “con-
nectivity prior”, which can often turn out to be useful in practice.
In contrast, our GSF operator is applied to real-valued pixel like-
lihoods. This removes any topological restrictions and extends the
applicability of our algorithm to automatic segmentation tasks. Fig-
ure 8(Right) illustrates those points by comparing segmentation re-
sults on a standard test image. Another example of robustness to
complex topology is shown in fig. 7f. Next we compare our results
with those obtained by graph-cut based techniques.

5.1.2 Comparison with min-cut.Figure 9 presents a compar-
ison with min-cut [Boykov and Jolly 2001], obtained on standard
test images. Our algorithm achieves similar segmentationsto min-
cut, but about two orders of magnitude faster. Furthermore,while
our algorithm’s runtimes are linear with the image area (cf. fig. 8,
blue curve), for min-cut we have observed a slightly super-linear
behaviour. Fig. 10 presents another comparison with min-cut, in-
dicating similar (if not better) segmentation quality at a fraction of
the computational cost. Here, the unaries were fixed and the pa-
rameters optimized (manually) individually for each algorithm. In
this specific example our algorithm seems to be more robust tothe
“shrinking bias” problem.

5.1.3 Comparison with multi-resolution techniques.In order
to run on high resolution images both graph-cut [Boykov and Jolly
2001] and random walker [Sinop and Grady 2007] require a multi-
resolution approach.11 The unavoidable loss of details is illustrated

10e.g.segmenting the image of a chess board would require at least8×8 =
64 user strokes.
11In random walker the time-consuming step is the inversion ofanN ×N

matrix, whereN is the number of pixels.
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Fig. 9. Comparison with min-cut. (a) Input images. The input imagesand the associated input user strokes come from the standard GrabCut dataset which
was used for comparisons in [Szeliski et al. 2006].(b) Our segmentation results.(c) Min-cut results.(d) Segmentation errors, measured as the percentage of
differently classified pixels. The segmentation results are extremely similar, with our technique being much faster. The segmentation of the “llama” test image
is shown in the accompanying video.

Fig. 10. Further comparisons with min-cut. (a) Original image (2048 × 1536 pix). (b) The likelihood signal used for all segmentation results (dark for
Fg). (c) Simply thresholding the unaries is very fast but produces significant segmentation artefacts. This is due to the lack of spatial smoothness priors.(c’)
Zooming in on those artefacts.(d, d’) The segmentation produced by min-cut, at full resolution in1126 ms. Isolated pixels have disappeared at the price of
high computational cost.(e, e’)The segmentation produced by our geodesic algorithm in26 ms. The segmentations in (d) and (e) are similar in quality. Both
encourage connected regions separated by strong image edges. In this example, our algorithm is more than40 times faster than graph-cut.

for graph-cut in fig. 11b. The more recent work in [Grady and Sinop
2008] achieves run-times of the order of seconds on small images,
which is much slower than our approach.

5.2 Segmenting n-dimensional data

Geodesic distances are easily defined in an n-dimensional space,
with n > 2. Hence, our algorithm is not restricted to 2D image data
and can easily be extended to n-D data such as videos or medical
image datasets (typically 3D or even 4D). In fig. 12 we show an
example of bilayer video segmentation where the whole videocube
(709×540×120 voxels) is segmented at once as opposed to frame-
by-frame. Batch video processing of this kind minimzes temporal
instability.

5.3 Other segmentation-based applications

5.3.1 Panoramic image stitching.As a further application of
our technique we present results on panoramic image stitching.
This task can be interpreted as a version of segmentation. Infact,

given two registered, overlapping images of a scene, we wishto find
the cut through the stitching map such that the two output regions
are smooth and their interface aligned with strong image edges.

In this case we define the log-likelihood mapL as L ∈
{−∞, 0,∞} with L = 0 in the overlapping region. Then, our GSF
operator encourages the separating cut to lie in the overlapregion
and follow strong image edges. Figure 13 shows stitching results on
two 1650 × 1500 pre-registered photos of Rome’s Piazza Navona.
The parametersθ andγ where set interactively. High quality stitch-
ing results are achieved with our algorithm in only∼ 10ms on 2
cores and∼ 4ms on 4 cores.

5.3.2 Applications in Computer Aided Diagnosis.As illus-
trated in fig. 14 our technique may be used to segment anatomi-
cal structures within 3D medical images. In the figure the patient’s
skull has been segmented in 3D from the noisy input CT slices
with a few brush strokes. More strokes are then used to segment the
teeth which were then highlighted with a different colour and opac-
ity. Figure 15 shows another example, where the patient’s aorta has
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Fig. 11. Retaining fine details. (a)A 13Mpix image of an aeroplane.(b) Min-cut segmentation.(c) Segmentation obtained by our algorithm. The multi-
resolution approach necessary for min-cut misses the thin structures of the aeroplane. This is in contrast to our algorithm which runs on the original resolution.

Fig. 13. Panoramic image stitching. (a,b)Two registered1650 × 1500 images from a rotating camera with people moving between shots. (c,d) The
seamless stitched panorama obtained by our algorithm in only ∼ 10ms. (c) ...with separating cut superimposed in red.

Fig. 12. Batch segmentation of video. (a) A few frames from a time-
lapse video of a growing flower.(b,c,d) 3D snapshots from the segmented
video. Segmentation was performed directly in the 3D space-time volume.
Only two user brush strokes were sufficient.

been accurately segmented and highlighted. Notice the thinvessels
connecting the main artery to the vertebrae.

5.3.3 Colorization via soft segmentation.Soft segmentation of
an object is also useful for a number of image editing tasks, such as

Fig. 14. Segmentation of anatomical structures in 3D medical images.
(a) Input noisy Computed Tomography images of a patient’s head.(b,c,d,)
Segmented and colorized 3D rendered views. The teeth regionand the rest
of the skull are assigned different colours and opacities toaid medical diag-
nosis.

cutout with transparency (matting) or color and tone adjustments.
To this end, specific techniques such as border matting [Rother
et al. 2004] or geodesic matting [Bai and Sapiro 2007] can be ap-
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Fig. 15. Segmentation of anatomical structures in 3D medical images.
(a) Input noisy Computed Tomography images of a patient’s thorax. (b,c,d,)
Segmented and colorized 3D rendered views. The aorta has been segmented
and highlighted. The opacity of all remaining organs has been reduced
though not set to zero (to provide visual context). Notice the thin vessels
connecting the aorta to the spine.

plied. Alternatively, the symmetric signed distanceDs
s(.,M,∇I)

to a soft or binary maskM can also be used, with no threshold-
ing, as a soft segmentation map. Figure 16 illustrates an example
where: 1) the user has drawn a couple of foreground and back-
ground brushes (not shown), 2) foreground and background pixel-
wise likelihoods have been estimated, 3) the soft segmentation map
Ds

s has been computed (see eq. 12) and 4) used to weight the
amount of per-pixel colorization where the target colour (yellow
in this case) has been manually selected. Notice that this isa very
different task than the one in [Levin et al. 2004]. Here re-colouring
is achieved as a soft segmentation task. Also, in contrast to[Yatziv
and Sapiro 2006] here the user did not need to touch every petal in
order to get a convincing colorization. These results are achieved
with only 4 GGDT computations. Finally the fact that the GSF fil-
ter imposes spatial smoothness helps avoid colour bleedingeffects
(cf. section 4.1. Larger values ofθ produce larger robustness to
noise).

5.4 Limitations

Like all segmentation algorithms the quality of the resultsdepends
on how diverse the foreground and background appearance statis-
tics are. When the two layers look similar, like in the case ofcam-
ouflage, more user interaction is required to obtain a good segmen-
tation (e.g., see the challenging “llama” image in the accompanying
video). As shown in fig. 6, unlike [Bai and Sapiro 2007] our tech-
nique does encourage smoothness. At this stage, however, itis not
clear whether imposing smoothness via GSF filtering is sufficient
in general, and when/if a full MRF energy model is more appropri-
ate.

Fig. 16. Foreground colorization. (a) Original image; (b) Colorized out-
put. Only a couple of user brush strokes were sufficient to change the
colours of all flowers.

6. APPLICATIONS OF GGDT-BASED FLATTENING
WITH COMPARISONS

We show in this section how denoising, flattening and cartoon-
ing/abstraction applications can be effectively addressed using the
same edge-preserving smoothing engine based on Generalized
GDT. Different tasks are characterized by small variationsin terms
of the parameters used and the additional presence of boundary
strokes in the case of image tooning.

6.1 Image denoising

Accurate and efficient denoising algorithms find wide application
for example when dealing with camera-phone videos, old video
footage, ultrasound scans and astronomical imaging.

Image denoising is implemented here via the edge-sensitive
smoothing algorithm described in Section 4.2. Figure 17 shows
quantitative comparison with respect to the following state of the
art algorithms: i) “Non-local Means”’ (nlm) [Buades et al. 2005],
ii) “Fields of Experts” (foe) [Roth and Black 2005], and iii) the
“Basis Rotation Algorithm” (brfoe) [Weiss and Freeman 2007].
The figure shows PSNR curves computed for all algorithms applied
to the standard test “peppers” image in fig. 1, for varying levels of
added Gaussian noise. Thenlm, foe andbrfoe results were ob-
tained by using publicly available matlab implementationsfrom the
original authors. The parameters of each algorithm were optimized
for each algorithm to achieve the highest possible PSNR, andthen
kept fixed for all test images.

Our algorithm’s PSNR curve extensively overlaps the best per-
forming technique (nlm) and is better than the fields of experts-
based algorithms. Furthermore, avoiding the patch search neces-
sary innlm ensures lower running times (in the order of hundreds
of ms). Extensive tests have been run on seven other standardtest
images (e.g., “Lena”, “House”, “Boats” etc.) with similar results. In
this casek = τ andφ = 10 were used. At this point we would like
to remind the reader that in a parallel implementation each intensity
level may be processed by a separate thread/core. In a machine with
k cores denoising an image will take the time of flattening a single
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Fig. 17. Image de-noising comparisons. Signal-to-noise curves as a
function of noise level for four different algorithms. The proposed algorithm
(in green) achieves accuracy similar to the best performing, state-of-the-art
technique (non-local means); and in some cases it achieves better PSNR.
See text for details.

intensity level. A more thorough analysis of denoising properties
goes beyond the scope of this paper.

6.2 Texture flattening

Detail-preserving texture flattening is achieved with exactly the
same algorithm as the one used for denoising, but with typically
larger values ofφ in (14) (e.g., φ = 100) to allow a larger basin of
influence of each pixel and thus a longer range “diffusion” effect.
For this kind of abstraction results a small number (e.g., k = 16)
of intensity clusters suffices. An example is shown in fig. 1. Notice
how fine details in the lady’s face are preserved (e.g., the ear rings),
while the skin texture is effectively smoothed. The effect is visu-
ally related to that of bilateral filtering [Chen et al. 2007;Tomasi
and Manduchi 1998], but is achieved in real-time on large images
with our CPU-based, parallel algorithm. Also, we have observed
that the quality of the final output seems slightly better that the one
obtained by bilateral filtering. As an example fig. 18 shows a com-
parison between the flattening results obtained with our approach
and those obtained via bilateral filtering.12 With bilateral filtering
it is often difficult to select a value of the range varianceσr which
simultaneously produces enough flattening while avoiding blurring
of important details.

6.3 Image and video tooning

To apply a cartoon effect to an image, we first perform edge-
preserving texture flattening. We then overlay ink strokes using a
mask computed as the contrast-enhanced gradient magnitudeof the
flattened image, similar to [Winnemoller et al. 2006]. Computing
the gradient map on the flattened image rather than the original one
ensures longer, visually pleasing strokes. Example tooning results
are shown in fig. 19.

The video tooning work in [Wang et al. 2004] used a mean-shift
based approach to segment the video into flat regions. However,
such hard segmentation technique is likely to produce largetempo-
ral instability visible as disturbing flicker. Expensive application of
mean-shift to spatio-temporal volumes reduces this effect. In con-
trast, our technique avoids hard commitment and retains smoothly-
varying gradients where necessary, thus reducing temporalflicker.
However, large amounts of input noise will still introduce flicker
artefacts. This is a problem for old videotape footage and less for

12We used the implementation of [Chen et al. 2007] publically available at
http://people.csail.mit.edu/sparis/bf/

Fig. 18. Comparing our geodesic-based texture flattening with bilat-
eral filter. Figure best viewed on screen.(a) Original image.(b) Geodesic
flattening results. Strong flattening of the skin is achievedwithout blurring
facial details such as the eye region.(c) Bilateral filter results, withσs = 5
andσr = 0.1. The flattening effect is similar to the one in (b) on parts of
the image but much less noticeable on other parts, such as theface of the
mum.(d) Increasing the variance of the bilateral filter in the range domain
(to σr = 0.2) to try and flatten the skin texture results in over-smoothing
important facial details.

modern digital cameras. This problem could be corrected by in-
creasing the number of intensity levels but at the cost of lower ef-
ficiency. The accompanying video demonstrates the quality of our
video tooning results.

6.4 Further discussion of GGDT-based flattening

6.4.1 Robustness to quantization.Figure 20 demonstrates the
robustness of our flattening algorithm to quantization of the input
image levels. Strong quantization ratios (smallk/τ ) can effectively
increase computational efficiency without affecting the visual qual-
ity significantly. In fact, in the algorithm described in section 4.2
the use of “soft” intensity quantization and weighted reconstruc-
tion (15) allows us to minimize banding artefacts, typical of simpler
quantization techniques. A value ofk betweenk = 8 andk = 32
(tested on many images with diverse colour palettes) represents a
good operating setting for most images.

6.4.2 More on computational efficiency.On our test machine,
the time taken to run a single GGDT on a VGA-sized image
(640X480) ist = 0.9ms. Then the whole smoothing algorithm
takesT ≈ tk/Nc ms for a gray image (or a single, luma chan-
nel); withk the number of image levels andNc the number of CPU
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Fig. 19. Examples of image and video tooning. (Left panel) Image tooning.(a) Original photo.(b) Tooned results.(c) Enlarged version of (b), to show
details.(Right panel) Video tooning.From the movie “Dust to Glory”.(d,e,f) Different frames from the cartooned video. Please see the submitted video to
appreciate temporal consistency.

Fig. 20. Robustness to quantization of input image levels. (a) Twenty
different test photographs have been flattened for varying values ofk ∈
{8, 16, 32, 64, 128, 256}. The difference with respect to thek = 256 im-
ages have been computed as RMS errors and plotted in different (bright)
colors. The mean RMS curve is plotted in red. As expected larger values
of k produce lower errors but at a computational cost.(b) Two flattened
version of a test image obtained for different values ofk. There is no per-
ceivable visual difference between the two images, this is often true even
for smaller values ofk. Achieving good flattening with such hard intensity
quantization yields great advantages in terms of speed.

cores.13 The following table shows the timeT as a function ofk
with Nc = 4 cores:

k 8 16 32 64 128 256
T (ms) 1.8 3.6 7.2 14.4 28.8 57.6

To our knowledge ours is the fastest flattening algorithm which
does not necessitate resolution reduction, while avoidingbanding
artefacts.

6.4.3 Comparison with state of the art.The work in [Durand
and Dorsey 2002; Paris and Durand 2009] has addressed very well
the issue of accelerating the bilateral filter. This is achieved in [Paris
and Durand 2009] by subsamplingboth in the spatial and intensity

13Our algorithm benefits straight away from architectures with Nc >> 2
cores.

domain. The best performance that they report is 38ms on a VGA-
sized image. While avoiding spatial subsampling, which is impor-
tant for preserving thin structures (see fig. 11), we can process an
image of the same size in 28ms on a single core CPU (withNc = 1
andk = 32) and much quicker if more cores are available. We have
also implemented the core GGDT on the GPU following [Weber
et al. 2008]. In this case the same texture flattening operation takes
less than 4ms. Hence, relying on our generic geodesic machinery
(which has been demonstrated on many other tasks) we perform
texture flattening faster than in [Paris and Durand 2009] andobtain
results which tend to better preserve fine details (see fig. 18).

The best-performing algorithms for median and bilateral filtering
have complexityO(N log r) [Weiss 2006], withr the radius of
the spatial filter. The complexity of our algorithm is linearin the
number of pixels andindependentof the spatial extent of the filter.

The intensity clustering employed in this work is related tochan-
nel smoothing [Felsberg et al. 2006]. In [Felsberg et al. 2006] the
authors employ quadratic B-Splines for the smoothing of theindi-
vidual channels. The authors also compare their technique to non-
linear diffusion, bilateral filtering and mean-shift. In contrast, here
we achieve channel smoothing by means of efficient geodesic trans-
forms.

6.5 Limitations

Exploiting the full potential of our flattening algorithms requires
some experience in parallel programming. For instance, each thread
may be assigned the task of flattening a single channel. This is a lit-
tle more involved than writing a single-threaded program but with
great efficiency benefits. Finally, reducing the number of levels k
too much (e.g., k = 4) may result in unsatisfactory results.

7. CONCLUSION

The main contribution of this paper is in having presented a single,
efficient algorithm for handling a variety of image and videoedit-
ing tasks: n-dimensional segmentation, edge-aware denoising and
flattening, cartooning, soft selection and panoramic stitching.

At the core is the fast generalized geodesic distance (GGDT)
and the geodesic and symmetric operator (GSF) which is built
upon it. The algorithm’s contiguous memory access and parallelism
account for its high efficiency. In turn, this enables very high-
resolution images to be processed at interactive rates on the CPU
or on the GPU without the need for spatial subsampling.

Quantitative and qualitative experiments on high resolution im-
ages and videos, and comparisons with state of the art algorithms
have demonstrated the validity of the proposed framework. We be-
lieve our technique can be extended to address further taskssuch
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as tone mapping and compression, and can have a high impact on
future image and video editing applications.
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