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Abstract. Determining the optimal implementation of a quantum gate is critical for designing a quantum
computer. We consider the crucial task of efficiently decomposing a general single-qubit quantum gate into
a sequence of fault-tolerant quantum operations. For a given single-qubit circuit, we construct an optimal
gate sequence consisting of fault-tolerant Hadamard (H) and π/8 rotations (T ). Our scheme is based on
a novel canonical form for single-qubit quantum circuits and the corresponding rules for exactly reducing
a general single-qubit circuit to our canonical form. The result is optimal in the number of T gates. We
demonstrate that a precomputed ε-net of canonical circuits in combination with our scheme lowers the
depth and number of T gates of approximation circuits by up to three orders of magnitude compared to
previously reported results.
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1 Introduction

Quantum algorithms can be described by unitary
transformations and projective measurements of a quan-
tum state vector. A unitary transformation can be de-
scribed by a sequence of unitary matrices, each of which
we call a quantum gate. A sequence of one or more quan-
tum gates is called a quantum circuit. A quantum circuit
representing a quantum algorithm uses general quantum
gates, despite potential challenges with their physical im-
plementations. Therefore, a scalable quantum computer
will require processing a general quantum gate into a
fault-tolerant, implementable sequence of gates. Vari-
ous techniques for decomposing quantum gates into a se-
quence of gates drawn from a discrete gate set are known
[1, 2, 3]. However, it is crucial that the resulting gate se-
quence be optimal in resources such as circuit depth, the
number of gates, or the number of qubits are minimized.
Achieving lower complexity gate sequences is necessary
in order to achieve shorter execution time as well as a
smaller probability of error.

Decomposition of a single-qubit quantum circuit most
often results in a gate sequence that is approximately
equal to the original gate, while exact equivalence is
achieved in rare cases. When exact equivalence is not
possible or when the circuit must be resource-optimized
at the expense of precision, the Solovay-Kitaev theorem
[3] guarantees that any single-qubit circuit can be ap-
proximated to precision ε with a gate sequence of depth
Θ(logc(1/ε)), where c is a small constant. Dawson and
Nielsen [4] developed an algorithm to find an approxima-
tion with precision ε, which begins with a base approxi-
mation to a single-qubit circuit and proceeds recursively,
resulting in a circuit that grows in depth as O(5n), where
n depends on the level of precision. Optimizing the base
approximation is therefore especially important. Fowler
gives an exponential-time algorithm (albeit much faster
than brute-force search) for improving the base circuit
[5] that finds its depth-optimal ε-approximation.

Here, we address the challenge of optimally decom-
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posing quantum circuits that act on a single qubit. To
produce optimal gate sequences, we derive a canonical
form for single-qubit unitaries and corresponding rules
for reducing a single-qubit circuit into our canonical form.
Our canonical form is similar in spirit to the normal
form for single-qubit circuits given by Matsumoto and
Amano [6]. However, their normal form is expressed in
SU(2), while our canonical form uses group identities in
the projective special unitary group PSU(2), allowing
further circuit optimization. We then develop an algo-
rithm for finding an exact, resource-optimal decompo-
sition of a single-qubit gate, if it exists; if it does not
exist, our algorithm finds an approximation with preci-
sion ε that significantly reduces the resource cost of the
circuit. Our scheme can be used for the base approxi-
mation in the Dawson-Nielsen algorithm. We choose to
decompose into Hadamard (H) and π/8 (T ) rotations,
denoted as {H,T}, since these gates can be implemented
fault-tolerantly in high-threshold codes. We minimize the
number of T gates, called the T -count, since the fault-
tolerant implementation of T is significantly more ex-
pensive than the H gate. Our approach simultaneously
reduces circuit depth.

2 A Resource-Optimal Canonical Form

We use . to represent gate composition, {·} to indi-
cate the basis elements of a group, and 〈·〉 to indicate
the group generated by those elements, where elements
are single-qubit gates. We start with PSU(2) represen-
tations of the Hadamard gate H and the π/8-gate T :
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The Phase gate S = T 2 and the Hadamard gate H
together generate a 24-element subgroup in PSU(2). We
denote this group, the Clifford group, as C.

The 〈T,H〉 group allows an alternative set of two gen-
erators, which we call syllables, each of which are com-
posed of two quantum gates: TH = T.H, and SH =
S.H. In PSU(2), TH has infinite order and SH has
order 3: SH.SH.SH = (SH)3 = I.



We define a non-empty circuit in 〈TH, SH〉 to be nor-
malized if it ends with TH and does not explicitly contain
(SH)2. A normalized circuit is either the identity I or
a non-empty normalized circuit. In other words, a nor-
malized circuit is either the identity I or follows one of
two patterns: n.TH or n.SHTH, where n is a shorter
normalized circuit. The T -count of a normalized circuit
is defined as the number of TH syllables in that circuit.
A normalized circuit is said to be canonical if it does not
contain SH earlier than the fifth syllable. Thus the short-
est canonical circuit that contains SH is (TH)4.SH.TH.

We develop a constructive proof that each 〈H,T 〉 cir-
cuit U can be efficiently represented as U = g1.c.g2,
where c is a canonical circuit and g1, g2 ∈ C:

Theorem 1 If c1, c2 are C-equivalent canonical circuits,
i.e., ∃g1, g2 ∈ C such that c2 and g1.c1.g2 evaluate to
the same gate in PSU(2), then c1 and c2 are equal as
〈TH, SH〉 circuits.

It follows that T -count is an invariant of the gate rep-
resented by a canonical circuit. There are exactly 2k−4

canonical circuits with T -count k. Our canonical form
minimizes the T -count of the circuit and optimizes for cir-
cuit depth. We can scalably search a collection of canon-
ical circuits on a classical computer due since we prove
that canonical circuits with distinct T -counts evaluate
to unitary matrices with distinct matrix traces (proofs
given in full paper). This implies that if several canoni-
cal circuits have the same trace value, they have the same
T -count, reducing the search for a more optimized circuit
to searching over different trace values.

3 Single-Qubit Circuit Approximation

We approximate a single-qubit circuit by first building
a database of canonical circuits by iterating over T -count.
We compute precision ε between two circuits with the
trace distance. Given a single-qubit gate U ∈ PSU(2),
U can be ε-approximated with an 〈H,T 〉 circuit with
T -count < t if and only if one of the gates in the double

coset C.U.C = {g1.U.g2
∣∣∣g1, g2 ∈ C} can be ε-approximated

by a canonical circuit with T -count < t. The optimal ε-
approximation of U under a certain T -count t is immedi-
ately derived from the optimal ε-approximation of some
gate G ∈ C.U.C under T -count t.

We built three ε-nets for ε = 0.002 of circuits with
T -count < 24, 25, 26, respectively. The performance of
our ε-nets within a Solovay-Kitaev algorithm is shown in
Fig. 1, which plots the T -count versus ε, averaged over
the approximation of 10, 000 random unitary gates, for
three levels of recursion, for our method and the baseline
from [4]. Axes are plotted on the log scale. For a given
precision ε, we produce gate sequences with up to three
orders of magnitude fewer T s than the baseline approach.
For a given T -count, we achieve gate sequences that are
up to three orders of magnitude more precise than the
baseline approach.
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Figure 1: T -count versus mean precision ε (trace dis-
tance) of the approximation of 10, 000 random unitaries,
for recursion levels n = 0, 1, 2, 3, indicated by markers.

4 Conclusion

We have defined a resource-optimal canonical form and
rules to reduce a single-qubit circuit to our canonical
form. Our scheme produces a gate sequence with a mini-
mal number of T gates that is exactly equivalent to the in-
put gate, and it can be used determine a resource-optimal
base approximation. When using our technique within
the Dawson-Nielsen algorithm, we achieve up to three
orders of magnitude improvement in both precision and
T -count over the baseline. A future direction is to gener-
alize the definition of a canonical form to other libraries
of gates and to extend the form to n-qubit circuits. An-
other direction is to determine if for a slight decrease
in precision ε there exists an ε-approximate circuit that
requires even fewer resources.
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