
Fast Byte-Granularity Software Fault Isolation

Miguel Castro, Manuel Costa, Jean-Philippe Martin, Marcus Peinado,
Periklis Akritidis∗, Austin Donnelly, Paul Barham, Richard Black

Microsoft Research
Cambridge, UK

ABSTRACT
Bugs in kernel extensions remain one of the main causes
of poor operating system reliability despite proposed tech-
niques that isolate extensions in separate protection domains
to contain faults. We believe that previous fault isolation
techniques are not widely used because they cannot iso-
late existing kernel extensions with low overhead on stan-
dard hardware. This is a hard problem because these ex-
tensions communicate with the kernel using a complex in-
terface and they communicate frequently. We present BGI
(Byte-Granularity Isolation), a new software fault isolation
technique that addresses this problem. BGI uses efficient
byte-granularity memory protection to isolate kernel exten-
sions in separate protection domains that share the same
address space. BGI ensures type safety for kernel objects
and it can detect common types of errors inside domains.
Our results show that BGI is practical: it can isolate Win-
dows drivers without requiring changes to the source code
and it introduces a CPU overhead between 0 and 16%. BGI
can also find bugs during driver testing. We found 28 new
bugs in widely used Windows drivers.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection; D.4.5
[Operating Systems]: Reliability; D.4.8 [Operating Sys-
tems]: Performance

General Terms
Reliability, Security, Performance, Measurement

1. INTRODUCTION
Kernel extensions are used to customize commodity op-

erating systems. A typical operating system runs tens of
kernel extensions including device drivers, file systems, and

∗Work done while an intern at MSR Cambridge. Periklis
Akritidis is affiliated with Cambridge University.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SOSP’09, October 11–14, 2009, Big Sky, Montana, USA.
Copyright 2009 ACM 978-1-60558-752-3/09/10 ...$10.00.

even web servers. To achieve good performance, most of
these extensions are fully trusted: they are written in unsafe
languages and they share the address space of the operating
system kernel. Empirical evidence shows that this trust is
misplaced. Bugs in kernel extensions are one of the main
causes of poor reliability in operating systems [7, 42] and
they can often be exploited by attackers [16,21,25].

Previous work proposed techniques that isolate kernel ex-
tensions in separate protection domains to contain faults
(e.g., [11, 28, 35, 36, 41–43, 45]) or that move extensions to
user mode processes (e.g., [12,13,18,19,26]). Unfortunately,
the reliability of commodity operating systems has benefited
little from this work. Both Linux and Windows support user
mode device drivers [9, 30] but only some types of devices
are supported and there is a significant performance penalty.
Therefore, the vast majority of extensions still runs in the
kernel address space without isolation. We believe that fault
isolation techniques are not widely used because they can-
not isolate existing kernel extensions with low overhead on
standard hardware. This is a hard problem because exten-
sions communicate with the kernel using a complex interface
and they communicate frequently.

We present BGI (Byte-Granularity Isolation), a new soft-
ware fault isolation technique that addresses this problem.
BGI uses efficient byte-granularity memory protection to
isolate kernel extensions. It can isolate existing Windows
drivers with low overhead and no modifications to the source
code. BGI can also be used to isolate extensions to other
software systems, for example, Internet browser plug-ins and
extensions to Microsoft Office. This paper focuses on isolat-
ing kernel extensions because we believe this is the most
compelling application for the technology.

BGI is implemented as a compiler plug-in that generates
instrumented code for kernel extensions, and an interposi-
tion library that mediates communication between the ex-
tensions and the kernel. BGI runs extensions in separate
protection domains that share the same address space. It
associates an access control list (ACL) with each byte of
virtual memory that lists the domains that can access the
byte and how they can access it. Access rights are granted
and revoked by code inserted by our compiler and by the
interposition library according to the semantics of the oper-
ation being invoked. Protection is enforced by inline checks
inserted by our compiler and by checks performed by the
interposition library.

Previous work on fine-grained memory protection [45] re-
lies on special hardware to achieve good performance. BGI
achieves good performance with a software implementation

by using a combination of compile time changes to the lay-
out of data, careful design of the data structures that store
ACLs, static analysis, and judicious tradeoffs between per-
formance and isolation. Like other systems [11,42,43], BGI
does not check ACLs before reads, and checks before other
types of access are not performed atomically with the ac-
cess [11]. This enables efficient but still effective isolation
of extensions that communicate frequently with the kernel.
Additionally, BGI can detect common types of errors inside
domains, for example, corruption of return addresses and
exception handler pointers, and sequential buffer overflows
and underflows.

Access rights in BGI include not only read and write but
also icall and type rights. BGI grants an icall right on the
first byte of functions that can be called indirectly or passed
in kernel calls that expect function pointers. This is used to
enforce a form of control flow integrity [1, 24] that prevents
extensions from bypassing our checks and ensures that con-
trol flow transfers across domains target only allowed entry
points. Cross domain control transfers are implemented as
simple function calls without stack switches, extra copies, or
page table changes.

Type rights are used to enforce dynamic type safety for
kernel objects. There is a different type right for each type of
kernel object, for example, mutex and device. When an ex-
tension receives an object from the kernel, the interposition
library grants the appropriate type right on the first byte of
the object, grants write access to fields that can be written
directly by the extension, and revokes write access to the
rest of the object. Access rights change as the extension in-
teracts with the kernel, for example, rights are revoked when
the object is deleted. The interposition library also checks if
extensions pass objects of the expected type in cross domain
calls. This ensures type safety: extensions can only create,
delete, and manipulate kernel objects using the appropriate
interface functions. Type safety prevents many incorrect
uses of the kernel interface.

We implemented a BGI prototype that can isolate existing
Windows Vista drivers in x86 computers. We chose Win-
dows because it is widely used, there are many millions of
lines in drivers that use the Windows driver interfaces, and
these interfaces are complex. We believe that previous fault
isolation systems would be unable to provide strong isolation
guarantees for Windows drivers or would incur an unaccept-
able performance overhead.

We used BGI to isolate 16 Windows drivers including the
FAT file system and the driver for a 10Gb/s network card.
Our experimental results show that BGI can isolate faults in-
jected in these drivers effectively and that BGI’s CPU over-
head is between 0 and 16% with an average of only 6.4%.
We believe this overhead is low enough for BGI to be used
in practice to improve reliability, security, and availability of
Windows drivers. BGI can prevent errors in isolated drivers
from corrupting state elsewhere in the operating system, it
can prevent attackers from exploiting these errors, and it
can recover drivers with errors.

BGI is also a good bug finding tool. We ran existing tests
on drivers isolated with BGI and found 28 new bugs due to
incorrect use of kernel interfaces. Since BGI has low over-
head, it can be used not only during pre-release testing but
also during production to collect better debugging informa-
tion for error reporting tools (e.g. [15]).

void ProcessRead(PDEVICE_OBJECT d, IRP *irp) {
KEVENT e;
int j=0;
PIO_STACK_LOCATION isp;

KeInitializeEvent(&e,NotificationEvent,FALSE);

SetParametersForDisk(irp);
IoSetCompletionRoutine(irp,&DiskReadDone,&e,

TRUE,TRUE,TRUE);
IoCallDriver(diskDevice,irp);
KeWaitForSingleObject(&e,Executive,

KernelMode,FALSE,NULL);

isp = IoGetCurrentIrpStackLocation(irp);
for(; j < isp->Parameters.Read.Length; j++) {
irp->AssociatedIrp.SystemBuffer[j] ^= key;

}
IoCompleteRequest(irp,IO_DISK_INCREMENT);

}

Figure 1: Example extension code: processing a
read request in an encrypted file system driver.

2. OVERVIEW
Figure 1 highlights some of the difficulties in isolating ker-

nel extensions. It shows how a simplified encrypted file sys-
tem driver might process a read request in the Windows
Driver Model (WDM) [31]. We will use this example to il-
lustrate how BGI works. We omit error handling for clarity.

The driver registers the function ProcessRead with the ker-
nel when it is loaded. When an application reads data from
a file, the kernel creates an I/O Request Packet (IRP) to
describe the operation and calls ProcessRead to process it.
ProcessRead sends the request to a disk driver to read the
data from disk and then decrypts the data (by XORing the
data with key). SetParametersForDisk and DiskReadDone are
driver functions that are not shown in the figure.

ProcessRead starts by initializing an event synchronization
object e on the stack. Then it modifies the IRP to tell the
disk driver what to do. Windows drivers are stacked and
IRPs contain a stack location for each driver in the driver
stack. This IRP stack location has parameters for the op-
eration that the driver should perform and a completion
routine that works like a return address. ProcessRead sets
the parameters for the disk in the next IRP stack location
and it sets DiskReadDone as the completion routine (with ar-
gument &e). Then it passes the IRP to the disk driver and
waits on e. When the disk read completes, the kernel calls
the DiskReadDone function, which signals event e. This un-
blocks ProcessRead allowing it to decrypt the data read from
disk. When it finishes, the driver calls IoCompleteRequest to
complete the request and tell the kernel the data is ready.

The example shows some of the complexity of the WDM
interface and it shows that drivers interact with the kernel
frequently. A practical fault isolation mechanism for WDM
drivers could have a significant impact on the reliability of
Windows because the vast majority of Windows extensions
use the WDM interface. Some previous fault isolation tech-
niques target existing extensions and commodity operating
systems [11,28,41–43,46] but we believe they are unable to
provide strong isolation guarantees for WDM drivers with
acceptable overhead.

SafeDrive [46] implements a bounds checking mechanism

unmodified driver
source code

BGI driver

instrumented
driver

BGI interposition
library

linker

BGI
compiler

Figure 2: Producing a BGI extension.

for C that requires programmers to annotate extension source
code. The overhead of SafeDrive is low but it provides weak
isolation guarantees. SafeDrive does not prevent temporal
errors, for example, if DiskReadDone erroneously completes
the IRP, SafeDrive does not prevent the decryption code
from writing to a deleted buffer. SafeDrive prevents out-
of-bounds reads and BGI does not but this can be a prob-
lem because SafeDrive does not distinguish between read
and write accesses. For example, SafeDrive would allow the
driver to write to fields in the IRP that can be read but not
modified by extensions.

The other isolation techniques also fail to provide strong
isolation guarantees for WDM drivers. They allocate a range
of addresses to an extension and allow writes to addresses
in this range. Since the stacks and heaps used by the exten-
sion lie within this range, these isolation techniques do not
prevent writes to kernel objects stored in extension stacks or
heaps. They also fail to ensure that these objects are initial-
ized before they are used. For example, they do not prevent
writes to event e in the example above. This is a problem
because the event object includes a linked list header that is
used internally by the kernel. The driver can cause the ker-
nel to write to arbitrary addresses if it overwrites the event
or fails to initialize it.

These techniques also perform poorly when extensions in-
teract with the kernel frequently because they copy objects
passed by reference in cross domain calls. For example, they
would copy the buffer to allow ProcessRead to write to the
buffer during decryption. Nooks [41, 42] incurs additional
overhead when switching domains because it uses hardware
page protection for isolation. XFI [11] can avoid these copies
at the expense of slow write checks. XFI checks if writes tar-
get an address within the range allocated to the extension
and, if this fails, checks if the target address is within an
address range in a list of exceptions. This performs poorly
with WDM drivers because the list of exceptions is long.

Byte-granularity memory protection provides BGI with
adequate spatial and temporal resolution to avoid these prob-
lems. BGI can grant access to precisely the bytes that a
domain should access and it can check accesses to these
bytes efficiently regardless of where they are in memory. It
can also control precisely when the domain is allowed to
access these bytes because it can grant and revoke access ef-
ficiently. Therefore, BGI can provide strong isolation guar-
antees for WDM drivers with low overhead and no changes
to the source code. For example, it can contain all the errors
discussed above within the domain of the extension.

We designed our data structures carefully to allow a com-
pact representation for ACLs. In the common case, we store
information about ACLs in an array that has one byte of in-
formation for each 8 bytes of memory, which adds a space
overhead of approximately 12.5%. This array can be ac-

kernel address space

kernel

kernel API

driver
BGI interposition library

driver
BGI driverBGI driver

Figure 3: Kernel address space with BGI.

cessed efficiently to check and modify ACLs: we check ACLs
for a byte range by comparing consecutive entries in the ar-
ray with small integer values, and we modify ACLs by set-
ting consecutive entries in the array. There is a slow path
that covers the general case but our compiler changes the
layout of data to ensure this slow path is rarely taken.

BGI is not designed to isolate malicious code. Attackers
can control the input to a driver but we assume that they do
not write the driver code. BGI is designed to contain faults
due to errors in the driver and to contain attacks that exploit
these errors. We trust driver writers to use our compiler.
The compiler could be distributed with the Windows Driver
Kit [31], which already includes a compiler that is used by
most driver writers.

Nooks and SafeDrive assume a similar attacker model but
SFI [43] and XFI were designed to isolate malicious exten-
sions. XFI uses a static verifier [32] to verify that untrusted
code has appropriate checks before it is allowed to execute.
The BGI compiler generates code that satisfies properties
similar to those enforced by XFI’s verifier and BGI performs
a superset of XFI’s runtime checks. So in principle, we would
be able to isolate malicious code if we implemented a verifier
similar to XFI’s. In practice, there are a several issues that
make it hard. First, a malicious driver can subvert SFI and
XFI by calling host functions in the wrong order or with the
wrong arguments. BGI’s dynamic type checks can prevent
these attacks but it is hard to prove that they are sufficient
given the complexity of the interfaces. Second, the inline ac-
cess checks in XFI and BGI are not atomic with the access
to improve performance: thread t can check if an access is
allowed, access can be revoked by thread t′, and then t may
perform an access that is no longer allowed. This small win-
dow of vulnerability is hard to exploit if the attacker does
not control the driver code but it is easily exploitable by
malicious code. Third, SFI, XFI, and BGI improve perfor-
mance by not checking reads, which is not acceptable when
isolating malicious code that can read secrets from memory.
Fourth, none of these systems prevents malicious code from
programming device hardware to write to arbitrary mem-
ory locations. To isolate malicious code, they would have
to be extended to use emerging IO MMU technology. It
would be possible to address all these issues at the expense
of decreased performance but this would hinder adoption.

To isolate a Windows driver using BGI, a user compiles
the driver with the BGI compiler and links the driver with
the BGI interposition library as shown in Figure 2. This
driver runs on Windows Vista (with the patch that we de-
scribe in Section 6.2). BGI-isolated drivers can run alongside
trusted extensions on the same system, as shown in Figure 3.
The instrumentation inserted by the compiler and the inter-
position library enforce isolation as described next.

�� ��� ������ � � ������	������
��������� ��������� �������� ��������� �������� � ������ �������� � ������ ������
����� ���� ��������� �������� ��������� ������ ����� ���� ��������� �������� ��������� ����������� ��

Figure 4: Example partition into domains.

3. PROTECTION MODEL
BGI runs code in separate protection domains to contain

faults. There is one trusted domain where the kernel and
trusted extensions run and one or more untrusted domains.
Each untrusted domain can run one or more untrusted ex-
tensions. We say that a thread is running in a domain when
it executes code that runs in that domain. BGI does not
constrain memory accesses performed by threads running in
the trusted domain.

Virtual memory includes both system space and user space.
System space is shared by all processes and each process has
a private user space. All BGI domains share system space
and the process user spaces but BGI associates an access
control list (ACL) with each byte of virtual memory to con-
trol memory accesses. An ACL lists the domains that can
access the byte and the access rights they have to the byte.
Some extensions can access user space directly in the con-
text of the user process that initiates the I/O operation.
Extensions do not access physical addresses directly.

The access rights in BGI are read, write, and several icall,
type and ownership rights. All access rights allow read access
and, initially, all domains have the read right to every byte
in virtual memory. BGI does not constrain read accesses be-
cause checking reads in software is expensive and the other
checks prevent errors due to incorrect reads from propagat-
ing outside the domain. We already mentioned icall, and
type rights. ownership rights are used to keep track of the
domain that should free an allocated object and which deal-
location function to use. In the current implementation, a
domain cannot have more than one of these rights to the
same byte of virtual memory.

The interposition library and the code inserted by the
compiler use two primitives to manipulate ACLs: SetRight,
which grants and revokes access rights, and CheckRight,
which checks access rights before memory accesses. When
a thread running in domain d calls SetRight(p,s,r) with r 6=
read, BGI grants d access right r to all the bytes in the
range [p, p + s). For example, SetRight(p,s,write) gives the
domain write access to the byte range. To revoke any other
access rights to byte range [p, p + s), a thread running in
the domain calls SetRight(p,s,read). To check ACLs before
a memory access to byte range [p, p + s), a thread running
in domain d calls CheckRight(p,s,r). If d does not have right
r to all the bytes in the range, BGI throws an exception.

BGI defines variants of SetRight and CheckRight that are
used with icall and type rights. SetType(p,s,r) marks p as
the start of an object of type r and size s that can be used
by the domain and prevents writes to the range [p, p + s).
CheckType(p,r) checks if the domain has the right to use p

������ !�"���� !�#���� $%$$$$$$$$ &'()*++ , -+*' +&.)* &'()*++ / -+*' +&.)*���0�12 �!�"���� !�#���� ������ !�"���� !�#���� ������ !�"���� !�#�0�12 ������� !�"���� !�#���� $%3$$$$$$$$%45555555
$%55555555 +6+7*8 +&.)*

������ !�"���� !�#���� ������ !�"���� !�#����
������ !�"���� !�#���� ���9:;<!�"�9:;<!�#���� ������ !�"���� !�#�0�12 ������� !�"�0�12 �!�#����

Figure 5: Example access control lists (ACLs).

as the start of an object of type r. SetType(p,s,r) is semanti-
cally equivalent to SetRight(p,1,r); SetRight(p+1,s-1,read),
and CheckType(p,r) is equivalent to CheckRight(p,1,r) but
we have specific optimizations for these variants.

Figure 4 shows an example partition of seven kernel drivers
into domains. Driver 1 runs in the trusted domain with the
kernel code because it is trusted. The other drivers are parti-
tioned into three untrusted domains. There is a single driver
in domain d2 but the other untrusted domains run more than
one driver. Frequently, the functionality needed to drive a
device is implemented by multiple driver binaries that com-
municate directly through custom interfaces. These drivers
should be placed in the same domain. Figure 5 shows ex-
ample ACLs for the domains in Figure 4. The greyed boxes
correspond to the default ACL that only allows domains to
read the byte. The other ACLs grant some of the domains
more rights on accesses to the corresponding byte, for ex-
ample, one of them grants domains d1 and d2 the right to
use a shared lock.

4. INTERPOSITION LIBRARY
An untrusted extension is linked with the BGI interpo-

sition library that mediates all communication between the
extension and the kernel. The library contains two types
of wrappers: kernel wrappers wrap kernel functions that are
called by the extension and extension wrappers wrap ex-
tension functions that are called by the kernel. Wrappers
use the memory protection primitives to grant, revoke, and
check access rights according to the semantics of the func-
tions they wrap. Since these primitives target the domain
of the thread that calls them, we say that the wrappers run
in the extension’s domain even though they are trusted.

Wrappers: BGI wrappers serve a similar purpose to Nooks
wrappers [42] but they transfer control across domains using
a simple function call without changing page tables, stacks,
or copying arguments. Additionally, byte-granularity mem-
ory protection allows extensive checking with low overhead.

A kernel wrapper does not trust the caller but trusts the
callee. It checks rights to the arguments supplied by the
extension, it may revoke rights to some of those arguments,

it calls the wrapped kernel function, and it may grant rights
to some objects returned by the function. The sequence of
steps executed by an extension wrapper is different because
the caller is trusted but the callee is not. An extension wrap-
per may grant rights to some arguments, it calls the wrapped
extension function, it may revoke rights to some arguments,
and it checks values returned by the extension. There are
different types of argument and result checks for the differ-
ent types of rights: write, ownership, icall, and type.

Write and ownership checks prevent extension errors
from making threads in other domains write to arbitrary
locations. A kernel wrapper calls CheckRight(p,s,write) for
each memory range argument, [p, p+s), that may be written
to by the function being wrapped. An extension wrapper
performs similar checks on memory ranges returned by the
extension that may be written to by the caller.

Write access is granted and revoked by the interposition
library and code inserted by the compiler. The wrapper for
the extension initialization function grants write access to
global variables. Write access to local variables is granted
and revoked by code inserted by the compiler.

Most fault isolation systems require a separate heap per
domain but fine-grained memory protection allows all do-
mains to share the same heap. The kernel wrappers for heap
allocation functions grant write access to allocated memory
and the wrappers for deallocation functions revoke it. The
wrappers for allocation functions also grant ownership rights
on a guard before or after the allocated memory (depending
on whether the allocation is smaller or larger than a page).
Guards are 8-byte memory areas that are not writable by
extensions. ownership rights are used to identify the allo-
cation function and the domain that allocated the memory.
The wrappers for deallocation functions check that the call-
ing domain has the appropriate ownership right and that it
has write access to the region being freed. If these checks
fail, they signal an error. Otherwise, they revoke the owner-
ship right and write access to the memory being freed. This
ensures that only the domain that owns an object can free
the object, that it must use the correct deallocation func-
tion, and that an object can be freed at most once.

Call checks prevent extension errors from making threads
in other domains execute arbitrary code. Some kernel func-
tions take function pointer arguments. Since the kernel may
call the functions they point to, the interposition library
checks if the extension has the appropriate icall right to
these functions. Kernel wrappers call CheckType(p,icallN)
on each function pointer argument p before calling the kernel
function they wrap, where N is the number of stack bytes
used by the arguments to an indirect call through p. The
stdcall calling convention used in Windows drivers requires
the callee to remove its arguments from the stack before
returning. Therefore, the icall rights encode N to prevent
stack corruption when functions with the wrong type are
called indirectly. Extension wrappers check function point-
ers returned by extension functions.

The icall rights are also granted and revoked by the in-
terposition library with help from the compiler. The com-
piler collects the addresses of all functions whose address is
taken by the extension code and the number of bytes con-
sumed by their arguments on the stack. This information is
stored in a section in the extension binary. The wrapper for

the driver initialization function calls SetType(p,1,icallN) for
every function address p and byte count N in this section.
When kernel functions return function pointers, their wrap-
pers replace these pointers by pointers to the corresponding
kernel wrappers and grant the appropriate icall rights. Since
BGI does not grant icall rights in any other case, cross-
domain calls into the domain can only target valid entry
points: functions whose address was taken in the code of an
extension running in the domain and kernel wrappers whose
pointers were returned by the interposition library.

Type checks are used to enforce a form of dynamic type
safety for kernel objects. There is a different type right for
each type of kernel object. When a kernel function allocates
or initializes a kernel object with address p, size s, and type
t, its wrapper calls SetType(p,s,t) and grants write access to
any fields that can be written directly by the extension. The
wrappers for kernel functions that receive kernel objects as
arguments check if the extension has the appropriate type
right to those arguments, and wrappers for kernel functions
that deallocate or uninitialize objects revoke the type right
to the objects. Since many kernel objects can be stored in
heap or stack memory allocated by the extension, BGI also
checks if this memory holds active kernel objects when it
is freed. Together these checks ensure that extensions can
only create, delete, and manipulate kernel objects using the
appropriate kernel functions. Furthermore, extensions in an
untrusted domain can only use objects that were received
from the kernel by a thread running in the domain.

The checks performed by BGI go beyond traditional type
checking because the type, i.e., the set of operations that
are allowed on an object, changes as the extension interacts
with the kernel. BGI implements a form of dynamic type-
state [38] analysis. For example in Figure 1, the extension
wrapper for ProcessRead grants irp right to the first byte
of the IRP. This allows calls to IoSetCompletionRoutine and
IoCallDriver that check if they receive a valid IRP. But the
irp right is revoked by the wrapper for IoCallDriver to pre-
vent modifications to the IRP while it is used by the disk
driver. The extension wrapper for DiskReadDone grants the
irp right back after the disk driver is done. Then the right is
revoked by the wrapper for IoCompleteRequest because the
IRP is deleted after completion. These checks enforce inter-
face usage rules that are documented but were not enforced.

Another example are the checks in the wrappers for kernel
functions that manage splay trees. Objects that can be in-
serted in splay trees contain a field of type RTL_SPLAY_LINKS.
The wrapper for the insertion function takes a pointer p to
one of these fields, calls CheckRight(p,sizeof(*p),write) fol-
lowed by SetType(p,sizeof(*p),splay) and inserts the object
in the tree. The wrapper for the remove function calls Check-
Type(p,splay), removes the object from the tree, and calls
SetRight(p,sizeof(*p),write). This prevents many incorrect
uses of the interface, e.g., an object cannot be removed from
a tree before being inserted, it cannot be inserted a second
time without first being removed, and the extension cannot
corrupt the tree pointers while the object is inserted in the
tree. Wrappers for list functions are similar.

In addition to using access rights to encode object state,
some kernel wrappers use information in the fields of ob-
jects to decide whether a function can be called without
corrupting kernel state. This is safe because BGI prevents
the extension from modifying these fields.

_BGI_KeInitializeDpc(PRKDPC d,
PKDEFERRED_ROUTINE routine, PVOID a) {
CheckRight(d, sizeof(KDPC), write);
CheckFuncType(routine, PKDEFERRED_ROUTINE);
KeInitializeDpc(d, routine, a);
SetType(d, sizeof(KDPC), dpc);

}

BOOLEAN
_BGI_KeInsertQueueDpc (PRKDPC d, PVOID a1,

PVOID a2) {
CheckType(d, dpc);
return KeInsertQueueDpc(d, a1, a2);

}

Figure 6: Kernel wrappers for KeInitializeDpc and
KeInsertQueueDpc.

Figure 6 shows two example kernel wrappers. The first
one wraps the KeInitializeDpc function that initializes a
data structure called a deferred procedure call (DPC). The
arguments are a pointer to a memory location supplied by
the extension that is used to store the DPC, a pointer to
an extension function that will be later called by the ker-
nel, and a pointer argument to that function. The wrap-
per starts by calling CheckRight(d, sizeof(KDPC), write) to
check if the extension has write access to the memory re-
gion where the kernel is going to store the DPC. Then it
checks if the extension has the appropriate icall right to
the function pointer argument. CheckFuncType is a macro
that converts the function pointer type into an appropriate
icall right and calls CheckType. In this case, it calls Check-
Type(routine, icall16). If these checks succeed, the DPC is
initialized and the wrapper grants the extension dpc right
to the byte pointed to by d and revokes write access to the
DPC object. It is important to prevent the extension from
writing directly to the object because it contains a function
pointer and linked list pointers. If the extension corrupted
the DPC object, it could make the kernel execute arbitrary
code or write to an arbitrary location. KeInsertQueueDpc is
one of the kernel functions that manipulate DPC objects.
Its wrapper performs a type check to ensure that the first
argument points to a valid DPC. These type checks prevent
several incorrect uses of the interface, for example, they pre-
vent a DPC object from being initialized more than once or
being used before it is initialized.

In Figure 6, the wrapper for KeInitializeDpc passes the
function pointer routine to the kernel. In some cases, the
wrapper replaces the function pointer supplied by the exten-
sion by a pointer to an appropriate extension wrapper. This
is not necessary in the example because routine returns no
values and it is invoked with arguments that the extension
already has the appropriate rights to (d, a, a1, and a2).

We have implemented 262 kernel wrappers and 88 exten-
sion wrappers. These cover the most common WDM, WDF,
and NDIS interface functions [31] and include all interface
functions used by the drivers in our experiments. Most of
the wrappers are as simple as the ones in our example and
could be generated automatically from source annotations
similar to those proposed in [17, 46]. There are 16700 lines
of code in the interposition library. Although writing wrap-
pers represents a significant amount of work, it only needs
to be done once for each interface function by the OS ven-
dor. Driver writers do not need to write wrappers or change
their source code.

5. COMPILER
Windows kernel extensions are written in C or C++. The

BGI compiler instruments untrusted extensions to redirect
kernel function calls to the interposition library, to grant and
revoke access rights to stack locations, and to check access
rights before writes and indirect calls. We used the Phoenix
framework [29] to implement the BGI compiler. We also
implemented a binary rewriter based on Vulcan [37] that
performs similar transformations on binaries with symbols.
The rewriter allows driver writers to use compilers other
than ours but we do not discuss it further because it cur-
rently produces somewhat slower code.

To ensure that all communication between untrusted ex-
tensions and the kernel is mediated by the interposition li-
brary, the compiler rewrites all calls to kernel functions to
call the corresponding wrappers in the interposition library.
The compiler also modifies extension code that takes the
address of a kernel function to take the address of the cor-
responding kernel wrapper in the interposition library. This
ensures that indirect calls to kernel functions are also redi-
rected to the interposition library.

The compiler inserts calls to SetRight in function pro-
logues to grant the domain write access to local variables
on function entry. In the example in Figure 1, it inserts
SetRight(&e,sizeof(e),write) in the prologue of the function
ProcessRead. To revoke access to local variables on function
exit, the compiler modifies function epilogues to first verify
that local variables do not store active kernel objects and
then call SetRight to revoke access.

The compiler inserts a check before each write in the ex-
tension code to check if the domain has write access to the
target memory locations. It inserts CheckRight(p,s,write)
before a write of s bytes to address p. The compiler also
inserts checks before indirect calls in the extension code. It
inserts CheckType(p,icallN) before an indirect call through
pointer p that uses N bytes for arguments in the stack.

To prevent untrusted extensions from executing privileged
instructions or bypassing our checks because of programmer
mistakes, the compiler does not allow inline assembly or calls
to BGI’s memory protection primitives. Use of inline assem-
bly in Windows drivers is already discouraged [31].

Together the checks inserted by the compiler and per-
formed by the interposition library are sufficient to ensure
control flow integrity: untrusted extensions cannot bypass
the checks inserted by the compiler, direct calls target func-
tions in the extension or wrappers of kernel functions that
are named explicitly in the extension code, indirect calls tar-
get functions whose address was taken in the extension code
or whose address was returned by the interposition library,
returns transfer control back to the caller, and exceptions
transfer control to the appropriate handler. BGI does not
need additional checks on returns or exception handling be-
cause write checks prevent corruption of return addresses
and exception handler pointers. Since we control the com-
piler, we can ensure that there are no other types of indirect
control flow transfer, e.g., jump tables for switch statements.

We also prevent many attacks internal to a domain. Con-
trol flow integrity prevents the most common attacks that
exploit errors in extension code because these attacks require
control flow to be transferred to injected code or to chosen
locations in code that is already loaded. BGI also prevents
sequential buffer overflows and underflows that can be used
to mount attacks that do not violate control flow integrity.

These are prevented by the write checks because heap mem-
ory has guards and the compiler modifies the layout of global
and local variables such that there is a guard between con-
secutive variables (as in [2]). The checks performed by heap
allocation functions also prevent attackers from exploiting
errors that corrupt heap metadata (e.g., double frees).

6. BYTE-GRANULARITY PROTECTION
We have shown how byte-granularity memory protection

enables BGI to provide strong isolation guarantees for exist-
ing Windows kernel extensions. But this protection mecha-
nism must have low overhead for BGI to be practical. This
section describes our efficient software implementation of
byte-granularity memory protection.

6.1 Drights
To store ACLs compactly, BGI uses a small integer, a

dright, to encode a pair with a domain and an access right.
When a domain is created to contain a set of extensions, we
count the number of distinct access rights used by the exten-
sions and we allocate the same number of distinct drights to
the domain. These drights are unique across domains except
for the one corresponding to the read access right, which is
zero for all domains. When a domain is destroyed, its drights
can be reclaimed for use by other domains.

We use two optimizations to reduce the number of bits
needed to encode drights. The first one reduces the number
of distinct access rights used in extensions by exploiting a
form of subtyping polymorphism in the kernel. Several types
of kernel object have the same super type: they have a com-
mon header with an integer field that indicates the subtype.
For example, there are 17 subtypes of dispatcher object in
the WDM interface, which include events, mutexes, DPCs,
and threads. We take advantage of this by using a single
type right for the super type and checking the field that in-
dicates the subtype when necessary. This is safe because we
prevent write access to this field. This optimization is very
effective because this pattern is common.

The other optimization reduces the number of distinct
icall rights. We use a single icall right per domain and store
the number of bytes used by function arguments in an inte-
ger just before the function code. The write checks prevent
untrusted extensions from modifying this integer. The in-
direct call checks start by checking if the domain has icall
right to the first byte in the target function and then check
the number of bytes stored before the function.

Currently, our x86 implementation uses 1-byte drights and
we used 47 distinct access rights across our 16 test drivers.
Many of these rights are used only by a particular type of
driver (e.g., a file system or a network driver) or by drivers
that use a particular version of the interface (e.g, WDF [31]).
If every untrusted domain used all these rights, we would be
able to support five separate untrusted domains but this is
unlikely. In practice, we expect to support up to 15 or more
independent untrusted domains in addition to the trusted
domain. We believe this is sufficient for most scenarios be-
cause we expect many drivers developed by the operating
system vendor to run in the trusted domain and we expect
each untrusted domain to run several related drivers.

6.2 Tables
BGI uses four data structures to store ACLs at runtime: a

kernel table, a user table per process, a kernel conflict table,

kernel rights table

user rights table

0xe0000000

0x80000000

0x10000000

kernel
address space

user address
space

Figure 7: Kernel and user tables in an x86 Windows
address space.

and a user conflict table per process. These tables are shared
by all domains. The kernel and user tables are implemented
as large arrays of drights to enable efficient access. The
kernel table stores a dright for each 8-byte slot of virtual
memory in kernel space and a user table stores a dright for
each 8-byte slot of virtual memory in a process’ user space
to support direct access to user space (see Section 3).

These data structures are optimized for the case when
there is a single dright associated with an 8-byte memory
slot, i.e., when only one domain has an access right different
from read to bytes in the slot and that domain has the same
access right to all the bytes in the slot. These tables store
a special dright value conflict in the entries for slots that
do not satisfy these conditions. This value indicates that
the drights for the bytes in the slot are stored in a conflict
table. A conflict table is a splay tree that maps the address
of a slot to a list of arrays with 8 drights. Each array in the
list corresponds to a different domain and each dright in an
array corresponds to a byte in the slot. The kernel conflict
table is used for slots in kernel space and a process’ user
conflict table is used for slots in the process’ user space.

Figure 7 shows the location of the user and kernel tables in
the address space of an x86 Windows operating system. The
conflict tables are allocated in kernel space and we modified
process objects to include a pointer to their user conflict ta-
ble. We also modified the kernel to reserve virtual address
space for the kernel table at address 0xe0000000 when the
system boots, and to reserve virtual address space in every
process at address 0x10000000 when the process is created.
Therefore, we have a single kernel table and a user table per
process that is selected automatically by the virtual memory
hardware. The kernel allocates physical pages to the tables
on demand when they are first accessed and zeroes them to
set access rights to read for all domains. This prevents incor-
rect accesses by default, for example, it protects the tables
themselves from being overwritten. Since some extension
code cannot take page faults, we also modified the kernel to
preallocate physical pages to back kernel table entries that
correspond to pinned virtual memory pages.

The same strategy could be used to implement BGI on
the x64 architecture. Even though it is necessary to reserve
a large amount of virtual memory for the tables in a 64-
bit architecture, only top level page table entries need to be
allocated to do this. Additional page meta-data and physical
pages only need to be allocated to the tables on demand.

Figure 8 shows an example of how the tables are used
to record ACLs. There are two untrusted domains in this
example d1 and d2. As shown in the diagram for system
memory, d1 has write access to the 10 bytes shaded light

������������ 	��
� � ����� ����� 	��
� ���
� ���� �����
��
� ���� ������
������� ���������������� ��!���"�� ����#�#�#�#�$%�&'()*+,$%�&'()*+,

Figure 8: Example rights and data structures.

grey and d2 has write access to the 4 bytes shaded dark
grey. The figure also shows how these bytes are partitioned
into slots and the corresponding entries in the kernel table.
The first entry in the kernel table has dright zero because
all the bytes in the corresponding slot have the default ACL
<d1, read>,<d2, read>. The second entry has dright 12,
which encodes <d1, write>, because all the bytes in the cor-
responding slot are writable by d1 and no other untrusted
domain has rights other than read to these bytes. The third
entry has dright 255, which encodes a conflict, because both
d1 and d2 have write access to some bytes in the slot. Since
there is a conflict, there is an entry in the kernel conflict
table keyed by a pointer to the third entry. The conflict ta-
ble entry points to a list of arrays. The first array describes
the access rights of d1 and the second the access rights of d2.
The first two entries in the first array have dright 12 because
d1 can write to the first two bytes in the slot, and the last
four entries in the second array have dright 41 because d2

can write to the last four bytes in the slot and 41 encodes
<d2, write> in this example. The other entries in the two
arrays have dright zero because the corresponding bytes can
only be read by the two domains.

6.3 Avoiding accesses to conflict tables
To achieve good performance both in space and in time,

it is important to avoid accesses to the conflict tables. BGI
uses several optimizations to ensure that most slots have a
single associated dright.

First, BGI does not restrict read accesses. Therefore, sup-
porting the common cases of read-read and read-write shar-
ing across domains does not require accesses to conflict ta-
bles. We also observed that it is rare for two extensions to
have non-read access rights to the same byte at the same
time. In fact, we do not allow an untrusted domain to have
a non-read right to a byte of memory that is writable by an-
other untrusted domain. Similarly, different domains never
have icall rights to the same function because they are only
granted icall rights to functions in extensions they contain or
to wrappers in the copies of the interposition library linked
with those extensions. But it is possible for different exten-
sions to have type rights to the same kernel object.

BGI also ensures that, for most slots, a domain has the
same access right to all the bytes in the slot. The choice of
an 8-byte slot is not a coincidence. We chose 8-byte slots
because the dynamic memory allocators in x86 Windows

allocate 8-byte aligned memory in multiples of 8 bytes. The
BGI compiler also changes the layout of local and global
variables in the extension code: it aligns them on 4 byte
boundaries and inserts pads around them. This allows BGI
to grant write access to all the slots that overlap a variable
location while maintaining guard slots before and after the
variable. These guard slots are not writable and prevent
sequential overflows and underflows as discussed previously.
We borrowed this technique from WIT [2].

A naive implementation of SetType and CheckType would
always access the kernel conflict table because they set and
check access rights to the first byte of an object. BGI
takes advantage of the fact that most objects are 8-byte
aligned to implement these primitives efficiently. The op-
timized implementation of SetType(p,s,r) checks if p is 8-
byte aligned and s is at least 8. If this check succeeds,
it executes SetRight(p,8,r); SetRight(p+8,s-8,read), which
avoids the access to the conflict table. Otherwise, it executes
SetRight(p,1,r); SetRight(p+1,s-1,read) as before. Similarly,
CheckType(p,r) checks if p is 8-byte aligned and the dright
in the kernel table corresponds to access right r for the do-
main. Only if this check fails, does it access the conflict
table to check if the byte pointed to by p has the appropri-
ate dright. To further reduce the number of accesses to the
conflict table, the BGI compiler aligns local variables and
fields in local driver structs on 8-byte boundaries if they
have a kernel object type. Functions are 16-byte aligned.

A final optimization avoids accesses to the conflict table
while allowing a domain to have different access rights to
the bytes in a slot in two common cases: when a domain
has right write to the first half of the bytes in the slot and
read to the second half of the bytes, and when a domain has
right read to the first half of the bytes in the slot and write to
the second half of the bytes. BGI uses two additional drights
per domain to encode these cases. This is important to avoid
accesses to conflict tables when a domain is granted write
access to individual fields in a kernel object whose layout
cannot be modified.

Our experiments show that these optimizations are very
effective. Since most ACLs can be represented without us-
ing the conflict tables, ACLs can be modified and checked
efficiently as we describe next and BGI introduces a space
overhead of approximately 12.5%. It is interesting to point
out that the space overhead could be reduced significantly
on the x64 architecture because it imposes stricter alignment
requirements than the x86. Since in x64 Windows dynamic
memory allocators allocate 16-byte aligned memory in mul-
tiples of 16 bytes, pointers are 8-byte aligned, and stack
variables are 8-byte aligned, we could use 16-byte memory
slots without significantly increasing the use of the conflict
tables. This should nearly halve the space overhead.

6.4 Table accesses
The optimizations described above enable efficient imple-

mentations of SetRight and CheckRight. In the common
case, SetRight sets the access rights to all the bytes in a se-
quence of slots to write or read. Figure 9 shows an efficient
code sequence that implements SetRight(p,32,write) in this
case. In the examples in this section, the dright for the write
right and the domain that runs the sample code sequences is
0x02. The dright values are immediates in the code. When
the extension is added to a domain, these values must be
changed to match the drights allocated to the domain. This

mov eax,ebx
sar eax,3
btc eax,0x1C
mov dword ptr [eax],0x02020202

Figure 9: Code sequence that implements
SetRight(p,32,write) for the x86.

is similar to a relocation and requires the compiler to record
the locations of these constants in the code.

Initially, pointer p is in register ebx and it can point either
to kernel or to user space. The first instruction moves p into
register eax. Then, the sar and btc instructions compute
the address of the entry for the slot pointed to by p in either
the kernel or the user table. They store this address in eax.
This code sequence is interesting because it computes the
address of the entry in the right table without checking if
p points to kernel or user space and without using the base
addresses of the tables. We refer to Figure 7 to explain how
this works. Addresses in user space have the most significant
bit set to 0 and addresses in kernel space have the most
significant bit set to 1. The sar instruction shifts eax right
by 3 bits and makes the 3 most significant bits equal to the
most significant bit originally in eax. After executing sar,
the four most significant bits in eax will be 1111 for a kernel
address and 0000 for a user address. The btc instruction
complements the least significant of these 4 bits. So the
most significant 4 bits in the result are 0xe when p is a kernel
address and 0x1 when it is a user address. The remaining bits
in eax are the index of the table entry for the slot pointed to
by p. The final mov instruction sets four entries in the table
to 0x02, which grants the domain write access to [p, p+32).

We could use this code sequence on the x64 architecture
by replacing 32-bit by 64-bit registers (because pointers are
64 bits long), shifting by 4 instead of 3 (because we would use
16-byte slots), and complementing a different bit (because
the table bases would be at different addresses).

The BGI compiler inserts a code sequence similar to the
one in Figure 9 in the prologues of instrumented functions
to grant write access to local variables. The code sequence
to revoke write access to local variables on function exit is
more complicated because it must check if a local variable
stores an active kernel object. We show an example in Fig-
ure 10. The code stores the address of the guard before
the first local variable in eax (after saving eax) and the sar

and btc instructions compute the address of the kernel ta-
ble entry for the guard. The add instruction updates eax to
point to the table entry right after the last table entry mod-

push eax
lea eax,[ebp-38h]
sar eax,3
btc eax,0x1C
add eax,5
xor dword ptr [eax-4],0x02020202
jne L1

L2: pop eax
...
ret 4
...

L1: push eax
lea eax,[ebp-38h]
push eax
push 6
call _BGI_slowRevokeAccess
jmp L2

Figure 10: Code sequence that revokes access to
local variables on function epilogues.

mov eax,ebx
sar eax,3
btc eax,1Ch
cmp byte ptr [eax],2
je L1
push ebx
call _BGI_slowCheck1

L1:

Figure 11: Code sequence that implements Check-
Right(p,1,write) for the x86.

ified by the xor. It adds 5 to eax to account for the guard
slot before the local variable and the 4 slots occupied by
the variable. If the local variable does not store any kernel
object, the xor revokes access to the local variable and the
branch is not taken. Otherwise, the branch is taken and the
_BGI_slowRevokeAccess function is called. This function un-
does the failed xor and checks if the table entries for the slots
occupied by the local variables have drights corresponding
to kernel objects. If it finds an active kernel object, it sig-
nals an error. When functions have more local variables, the
compiler adds another add, xor, and jne for each variable.

The BGI compiler also inserts checks before writes and
indirect calls. Figure 11 shows an efficient code sequence
that implements CheckRight(p,1,write). Initially, p is in ebx.
The code computes the address of the table entry for the
slot pointed to by p in the same way as SetRight. Then,
the cmp instruction checks if the entry has dright 0x02. If
the check fails, the code calls one of the _BGI_slowCheck func-
tions. These functions receive a pointer to the memory range
being checked and their name encodes the size of the range.
In this case, the code calls _BGI_slowCheck1, which checks if
the table entry contains a dright that encodes write access
to the half slot being accessed and, if this fails, checks the
dright for the appropriate byte in the conflict table. The
indirect call check is similar but it also checks the number of
stack bytes stored before the function and it does not have
a slow path because functions are always 16-byte aligned.

The BGI compiler uses simple static analysis to elimi-
nate SetRight and CheckRight sequences. It does not add
SetRight for local variables that are not arrays or structs

and whose address is not taken. It also eliminates Check-
Right before the writes to these variables.

The interposition library implements SetRight(p,s,r) sim-
ilarly to the compiler but uses memset to set drights when
s is not known statically or is large. Additionally, it must
deal with the case where p or p+s are not 8-byte aligned. In
this case, the interposition library sets drights as before for
slots that are completely covered by the byte range but calls
a function to deal with the remaining slots. This function
sets the corresponding table entries to the drights that en-
code write access to half a slot when possible. Otherwise, it
records drights for individual bytes in the appropriate con-
flict table. The interposition library implements CheckRight
as in Figure 11 but it iterates the check for larger memory
ranges. To improve performance, we implemented a func-
tion that compares four drights at a time when checking
write access to large memory ranges.

6.5 Synchronization of table accesses
BGI avoids synchronization on table accesses as much as

possible to achieve good performance. We use enough syn-
chronization to ensure that there are no false positives (i.e.,
that we only signal an error when there is one) but we may
fail to isolate errors in some uncommon schedules when there

are races. We believe it is hard for attackers to exploit these
races to escape containment given that we assume they do
not write the extension code.

We use no synchronization when granting or revoking write
access to all the bytes in a slot, which is the common case.
Synchronization is not necessary because: (1) it is an error
for an untrusted domain to have non-read rights to a byte
of memory that is writable by another untrusted domain
and (2) there is a race in the code when threads running in
the same domain attempt to set conflicting drights on the
same byte. But we need synchronization when granting and
revoking type rights and when granting and revoking write
access to half a slot. We use atomic compare-and-swap on
kernel or user table entries to prevent false positives in this
case. Similarly, we need synchronization when granting or
revoking rights involves an access to a conflict table. We use
an atomic swap to record the conflict in the appropriate ker-
nel or user table entry and we have a spin lock per conflict
table. Since these tables are rarely used, contention for the
lock is not a problem.

There is no synchronization in the fast path when check-
ing rights. To prevent false positives, the slow path retries
the check after a memory barrier and uses spin locks to syn-
chronize accesses to the conflict tables when needed. The
right checks are not atomic with the access they check. This
can never lead to false positives because there is a race in
the code when the right is revoked between the check and
the access, but we may fail to prevent the access in some
schedules if there is such a race.

7. RECOVERY
We prototyped a simple recovery mechanism for misbe-

having domains [42, 46]. When an extension in a domain
fails, BGI can unload the extensions in the domain, release
all resources they hold, and then reload and restart them.

BGI uses Structured Exception Handling (SEH) to imple-
ment recovery: extension wrappers call the extension func-
tion within a try clause, BGI raises an exception when it de-
tects a failure, and the except clause handles the exception
by starting recovery (if not started already). If the domain
is already recovering, the except clause simply returns an ap-
propriate error code. Recovery support requires wrapping of
additional extension functions to ensure there is an excep-
tion handler in the stack whenever extension code runs, e.g.,
functions in deferred procedure calls must be wrapped.

We avoid running extension code during recovery because
domain state may already be corrupt [42, 46]. Extension
wrappers return an appropriate error code when recovery is
in progress without calling the extension function. Kernel
wrappers check if the domain is recovering after the kernel
function returns and they raise an exception if it is. This
exception is handled by the except clause in an extension
wrapper, which returns an appropriate error code.

BGI uses the Plug and Play (PnP) manager in the Win-
dows kernel to unload and restart misbehaving domains.
This simplifies recovery because the PnP manager deals with
many of the synchronization issues necessary to unload a
driver safely, but our current prototype only supports re-
covery of PnP drivers. When BGI starts recovery, it invokes
the PnP manager to send a sequence of requests (IRPs) to
the recovering extensions: the first IRP asks an extension
if a device it manages can be removed and the second in-
forms the extension that the device is being removed. The

extension wrappers for the functions that handle these IRPs
perform driver-independent processing to advance the PnP
state machine until the extension is unloaded. The exten-
sion wrapper that handles the second IRP also invokes a
small device-specific function to reset the device hardware.
We expect device vendors to provide these functions.

When there are no more references to the devices managed
by an extension, the PnP manager invokes the extension’s
unload function. The extension wrapper for the last unload
function called by the PnP manager releases resources held
by the extensions in the domain being recovered. Since the
drights in BGI’s tables record all the information necessary
to release these resources, there is no need for a separate ob-
ject tracker (which can introduce a significant overhead [42]).
The wrapper walks the BGI tables to find drights belonging
to the domain. It frees heap memory and calls the appro-
priate functions to release different types of kernel objects,
for example, it completes IRPs owned by the domain. Our
prototype is not complete yet: there are some types of ker-
nel objects that are not released by the wrapper. After the
wrapper returns, the PnP manager reloads and restarts the
extensions in the domain.

8. EVALUATION
We ran fault-injection experiments to evaluate BGI’s abil-

ity to isolate extensions and we measured the overhead in-
troduced by BGI. The results show that BGI provides strong
isolation guarantees with low overhead. We also found new
bugs by running existing driver tests with BGI. This section
describes these experiments.

We used the kernel extensions listed in Table 1 to evaluate
BGI. classpnp implements common functionality required
by storage class drivers like disk. The last five drivers sit
at the bottom of the USB driver stack in Windows Vista.
usbehci, usbuhci, usbohci, and usbwhci implement dif-
ferent USB host controller interfaces and usbport imple-
ments common functionality shared by these drivers. These
16 extensions have a total of more than 400,000 lines of code
and use 350 different functions from WDM, IFS, NDIS, and
KMDF interfaces [31]. The source code for the first 8 exten-
sions is available in the Windows Driver Kit [31].

All experiments ran on HP xw4600 workstations with an
Intel Core2 Duo CPU at 2.66 GHz and 4GB of RAM, run-
ning Windows Vista Enterprise SP1. The workstations were
connected with a Buffalo LSW100 100 Mbps switching hub
for the Intel PRO/100 driver tests and with an HP 10-
GbE CX4 cable for the Neterion Xframe driver tests. Ex-
periments with the FAT file system and disk drivers ran
on a freshly formatted Seagate Barracuda ST3160828AS
160GB disk. Experiments with the USB drivers used a
SanDisk 2GB USB2.0 Flash drive. The extensions were
compiled, with and without BGI instrumentation, using the
Phoenix [29] compiler with the -O2 (maximize speed) op-
tion. The experiments ran without recovery support except
where noted. All the performance results are averages of at
least three runs.

8.1 Effectiveness
We injected faults into the fat and intelpro drivers to

measure BGI’s effectiveness at detecting faults before they
propagate outside a domain.

We used a methodology similar to the one described in [46].
We injected bugs from the five types in Table 2 into the

Extension #lines Description
xframe 39,952 Neterion Xframe 10Gb/s Ethernet driver
fat 68,409 FAT file system
disk 13,330 Disk class driver
classpnp 27,032 Library for storage class drivers
intelpro 21,153 Intel PRO 100Mb/s Ethernet driver
kmdf 2,646 Benchmark: store/retrieve buffer
ramdisk 1,023 RAM disk driver
serial 19,466 Serial port driver
rawether 5,523 Ethernet packet capture driver
topology 7,560 Network topology discovery driver
usbhub 74,921 USB hub driver
usbport 77,367 USB host controller port driver
usbehci 22,133 USB EHCI miniport driver
usbuhci 8,730 USB UHCI miniport driver
usbohci 8,218 USB OHCI miniport driver
usbwhci 5,191 USB WHCI miniport driver

Table 1: Kernel extensions used to evaluate BGI.

source code of the drivers. Empirical evidence indicates that
these types of bugs are common in operating systems [8,40].
The random increment to loop upper bounds and to the
number of bytes copied was 8 with 50% probability, 8 to 1K
with 44% probability and 1K to 2K with 6% probability.

We produced buggy drivers by choosing a bug type and
injecting five bugs of that type in random locations in the
driver source. Then we tested the buggy drivers that com-
piled successfully without BGI. We tested 304 buggy fat
drivers by formatting a disk, copying two files onto it, check-
ing the file contents, running the Postmark benchmark [23],
and finally running chkdsk. We tested 371 buggy intelpro
drivers by downloading a large file over http and checking
its contents.

There were 173 fat tests and 256 intelpro tests that failed
without BGI. There were different types of failure: blue
screen inside driver, blue screen outside driver, operating
system hang, test program hang, and test program failure.
A blue screen is inside the driver if the faulting thread was
executing driver code. We say injected faults escape when
the test ends with a blue screen outside the driver or an op-
erating system hang. These are faults that we know affected
the rest of the system. We say injected faults are internal
when the test ends with one of the other types of failure.

We isolated buggy drivers with escaping faults in a sep-
arate BGI domain and repeated the tests. Table 3 reports
the number of faults that BGI was able to contain before
they caused an operating system hang or a blue screen out-
side the driver. We investigated the faults that caused hangs
and found infinite loops and resource leaks. These faults af-
fect the rest of the system not by corrupting memory but by
consuming an excessive amount of CPU or other resources.
It is surprising that BGI can contain 60% of the hangs in
fat and 47% in intelpro because it does not include explicit
checks to contain this type of faults. BGI is able to contain
some hangs because it can detect some internal driver er-
rors before they cause the hang, for example, it can prevent
buffer overflows from overwriting a loop control variable. We
could improve containment by modifying extension wrap-

Fault type Description
flip if condition swap the “then” and “else” cases
lengthen loop increase loop upper bounds
larger memcpy increase number of bytes copied
off by one replace “>” with “>=” or similar
delete assignment remove an assignment statement

Table 2: Types of faults injected in extensions.

driver type contained not contained

fat
blue screen 45 (100%) 0
hang 3 (60%) 2

intelpro
blue screen 116 (98%) 2
hang 14 (47%) 16

Table 3: Number of injected faults contained.

pers to impose upper bounds on the time to execute driver
functions, and by modifying the kernel wrappers that allo-
cate and deallocate resources to impose an upper bound on
resources allocated to the driver [35,44].

BGI can contain more than 98% of the faults before they
cause a blue screen outside the drivers. These faults cor-
rupt state: they violate some assumption about the state
in code outside the driver. These are the faults that BGI
was designed to contain and they account for 90% of the
escaping faults in fat and 80% in intelpro. BGI can con-
tain a number of interesting faults, for example, three buggy
drivers complete IRPs incorrectly. This bug is particularly
hard to debug without isolation because it can corrupt an
IRP that is now being used by the kernel or a different
driver. BGI contains these faults and pinpoints the call to
IoCompleteRequest that causes the problem.

We investigated the two faults that cause a blue screen
outside the intelpro driver. One is due to a bug in another
driver in the stack that is triggered by the modified behavior
in this variant of intelpro. We were unable to understand
the other fault.

Next, we ran experiments to evaluate recovery with the
intelpro driver. We did not run recovery experiments with
fat because, currently, BGI can recover only PnP drivers.
We selected 50 buggy drivers at random from the set of
buggy drivers with escaping blue screens that BGI can con-
tain. We loaded them into a BGI domain with recovery sup-
port and then activated the injected faults. We recovered
the 21 drivers that raised a BGI exception while attempting
to download a large file. After recovery, we loaded the ver-
sion of the driver without injected faults and checked if the
recovered driver was able to download a large file. BGI re-
covered all these drivers successfully except two (which failed
to recover due to limitations in the current prototype).

We also ran experiments to evaluate BGI’s ability to de-
tect internal faults. We isolated buggy drivers with internal
faults in a separate BGI domain and repeated the tests. Ta-
ble 4 shows the number of internal errors that BGI can de-
tect before they are detected by checks in the test program
or checks in the driver code. The results show that BGI can
simplify debugging by detecting many internal errors early.

8.2 Performance
We also measured the overhead introduced by BGI. For

the disk, file system, and USB drivers, we used the Post-
Mark [23] file system benchmark that simulates the work-
load of an email server. For fat, we configured PostMark
to use cached I/O with 10,000 files and 1 million transac-
tions. For the other drivers, we used synchronous I/O with
100 files and 10,000 transactions. We disabled caching for
these drivers because, otherwise, most I/O is serviced from
the cache masking the BGI overhead.

driver detected not detected
fat 54 (44%) 68
intelpro 36 (33%) 72

Table 4: Number of internal faults detected by BGI.

We ran disk and classpnp in the same protection domain
because classpnp provides services to disk. This is common
in Windows: a port driver implements functionality common
to several miniport drivers to simplify their implementation.
Similarly, we ran usbport and usbehci in the same domain.
We tested the other drivers separately.

We measured throughput in transactions per second (Tx/s)
as reported by PostMark, and we measured kernel CPU time
with the kernrate kernel profiler [31]. Table 5 shows the
percentage difference in kernel CPU time and throughput.
BGI increases kernel CPU time by a maximum of 10% in
these experiments. The throughput degradation is negligi-
ble in the 4 test cases that use synchronous I/O because the
benchmark is I/O bound. For fat, the benchmark is CPU
bound and throughput decreases by only 12%.

These results are significantly better than those reported
for Nooks [42]. Nooks increased kernel time by 185% in a
FAT file system benchmark. BGI performs better because it
does not change page tables or copy objects in cross domain
calls. Additionally, the BGI tables that store ACLs keep
track of the information needed to recover domains. Nooks
required a separate object tracking mechanism that added
a significant overhead.

Next, we measured the overhead introduced by BGI to
isolate the network card drivers. For our TCP tests, we
used socket buffers of 256KB and 32KB messages with in-
telpro and socket buffers of 1MB and 64KB messages with
xframe. We enabled IP and TCP checksum offloading with
xframe. We used 16-byte packets for our UDP tests with
both drivers. We measured throughput with the ttcp utility
and we measured kernel CPU time with kernrate. These
tests are similar to those used to evaluate SafeDrive [46].
Table 6 shows the percentage difference in kernel CPU time
and throughput due to BGI.

The results show that isolating the drivers with BGI has
little impact on throughput. There is almost no throughput
degradation with intelpro because this is a driver for a slow
100Mb/s Ethernet card. There is a maximum degradation
of 10% with xframe. BGI reduces UDP throughput with
xframe by less than SafeDrive [46]: 10% versus 11% for
sends and 0.2% versus 17% for receives. But it reduces TCP
throughput by more than SafeDrive: 2.5% versus 1.1% for
sends and 3.7% versus 1.3% for receives. We should note
that the SafeDrive results were obtained with a Broadcom
Tigon3 1Gb/s card while xframe is a driver for a faster
10Gb/s Neterion Xframe E.

The average CPU overhead introduced by BGI across the
network benchmarks is 8% and the maximum is 16%. For
comparison, Nooks [42] introduced a CPU overhead of 108%
on TCP sends and 46% on TCP receives using similar bench-
marks with 1Gb/s Ethernet. Nexus [44] introduced a CPU
overhead of 137% when streaming a video using an isolated
1Gb/s Ethernet driver. Nexus runs drivers in user space,
which increases the cost of cross domain switches. BGI’s
CPU overhead is similar to the CPU overhead reported for

Driver ∆ CPU(%) ∆ Tx/s(%)
disk+classpnp 2.88 -1.37
ramdisk 0.00 0.00
fat 10.01 -12.31
usbport+usbehci 0.91 0.00
usbhub 4.20 0.00

Table 5: Overhead of BGI on disk, file system, and
USB drivers, when running PostMark.

Driver Benchmark ∆ CPU(%) ∆ bps(%)

xframe

TCP Send 11.94 -2.53
TCP Recv 3.12 -3.65
UDP Send 16.06 -10.26
UDP Recv 6.86 -0.18

intelpro

TCP Send 13.57 0.00
TCP Recv 11.69 0.00
UDP Send -1.74 -0.41
UDP Recv 3.89 -0.84

Table 6: Overhead of BGI on network device drivers.

SafeDrive in the network benchmarks [46] but BGI provides
stronger isolation.

Finally, we used the kmdf benchmark driver to compare
the performance of BGI and XFI [11]. We measured the
number of transactions per second for different buffer sizes.
In each transaction, a user program stores and retrieves a
buffer from the driver. BGI and XFI have similar perfor-
mance in this benchmark but XFI cannot provide strong
isolation guarantees for drivers that use the WDM, NDIS,
or IFS interfaces (as we discussed in Section 2). XFI was de-
signed to isolate drivers that use the new KMDF interfaces.
KMDF is a library that simplifies development of Windows
drivers. KMDF drivers use the simpler interfaces provided
by the library and the library uses WDM interfaces to com-
municate with the kernel. However, many KMDF drivers
have code that uses WDM interfaces directly because KMDF
does not implement all the functionality in the WDM inter-
faces. For example, the KMDF driver serial writes to some
fields in IRPs directly and calls WDM functions that manip-
ulate IRPs. Therefore, it is unclear whether XFI can provide
strong isolation guarantees for real KMDF drivers.

Our experimental results show that the overhead intro-
duced by BGI is low. We believe it could be used in practice
to isolate Windows drivers in production systems.

8.3 Real bugs
In our last experiment, we tested 6 of the extensions with

BGI. We used existing test suites that achieve good code
coverage. BGI found 28 new bugs in these widely used Win-
dows extensions. Table 8 shows the different types of bugs
found by BGI.

BGI found 3 cases where an event object is reinitialized.
These bugs can corrupt the list of threads waiting on the
event, which can lead to hangs and corruption elsewhere in
memory. BGI detected these bugs because the wrapper for
the event initialization function checks if the extension has
write access to the event and then revokes write access to
disallow further writes. BGI also found 4 cases where an
event is passed to a kernel function without being initial-
ized. These were detected because the kernel wrappers that
receive events check if the extension has the appropriate type
right, which is granted by the event initialization function.

There were 5 incorrect uses of functions that manipulate
linked lists, for example, reinitializing a list head, removing
an entry from a list twice, and freeing an entry that is still
in a list. These bugs can also lead to memory corruption
and hangs. BGI detects these bugs using checks similar to

Buffer size ∆ Tx/s(%)
1 -8.76

512 -7.08
4K -2.48

64K -1.14

Table 7: Overhead of BGI on the kmdf driver.

Bug type Count
reinitialization of event 3
use of invalid event 4
incorrect use of list interface 5
write to invalid device extension 5
use of invalid device object 1
failure to uninitialize object 2
null pointer dereference 2
abstraction violation 6
Total 28

Table 8: Real bugs found while testing kernel exten-
sions isolated using BGI.

those used for events. Whereas removing an entry from a
list twice can be found using simple assertions in the list
functions, the other errors cannot.

The write checks inserted by the compiler found 5 writes
to invalid device extension objects. In four cases the ob-
jects had been deleted and in one the object had not been
allocated. BGI also found one case where a deleted device
object is passed to a kernel function. The type checks in
kernel wrappers find these bugs because the type right is
revoked when an object is deleted.

BGI found two bugs where an extension failed to unini-
tialize a kernel object before freeing the heap block where
the object was stored. This can lead to resource leaks and
memory corruption if the kernel uses the object after the
memory is reallocated. The bugs were found by the check
for active objects when heap memory is freed.

BGI also found 2 cases where extensions passed null point-
ers to the kernel. These bugs were found by the write checks
in the kernel wrappers for these functions. It would be easy
to find these two bugs with simple assertions.

Finally, the write checks inserted by the compiler and the
type checks in kernel wrappers found 6 cases of abstraction
violation. These are bugs where the extension writes directly
to object fields that should be modified only by kernel func-
tions. For example, writing to flags that encode the state
of an object or inserting a list entry by hand. These bugs
do not result in incorrect behavior while the kernel does not
change but may cause subtle problems when a new version
of the kernel is released. They were immediately fixed after
we reported them to the developers.

These results show that BGI is also a good bug-finding
tool. It can find incorrect uses of the kernel interface in
drivers that have been extensively tested and analyzed using
dynamic tools like driver verifier [31] and static tools like
static driver verifier and prefast [31]. Since BGI has low
overhead, it can be used not only for pre-release testing but
also to collect better information about bugs in customer
machines than is currently available to error reporting tools
like Microsoft’s Windows Error Reporting [15].

9. RELATED WORK
Many systems proposed techniques to isolate faults in ker-

nel extensions. Some systems isolate extensions by running
them in user space (e.g., [12, 18, 19, 26]) but this introduces
high overhead. Microdrivers [13] improve performance by
splitting a driver into a kernel and a user component with
help from programmer annotations, but they do not isolate
the kernel component. Nexus [44] can enforce safety prop-
erties beyond what previous user-level driver systems pro-
vide but it requires additional device-specific safety specifi-

cations. Extensions can also be isolated on virtual machines
(e.g., [4, 34]) by running a dedicated operating system with
the extension in a separate virtual machine (e.g., [27, 39]),
but this also has high overhead.

Other systems isolate extensions while running them in
the kernel address space. Nooks [41,42] was the first system
to provide isolation of existing extensions for a commodity
operating system, but it has high overhead because it uses
hardware page protection. Mondrix [45] uses fine-grained
hardware memory protection to isolate kernel extensions
with low overhead, but it requires special hardware, does
not check for incorrect uses of the extension interface, and
it only supports 4 byte granularity (which we found insuffi-
cient without major changes to the operating system).

Software fault isolation techniques like SFI [43], Pitts-
field [28] and XFI [11] can isolate kernel extensions with low
overhead but they do not deal with the complex extension
interfaces of commodity operating systems as we discussed
in Section 2. Other software fault isolation techniques have
similar problems as discussed in [36]. Vino [35] describes
a new operating system designed to deal with misbehaving
kernel extensions.

We also discussed SafeDrive [46] in Section 2. It is an
efficient software fault-isolation technique but it provides
weaker isolation than BGI, e.g., it does not provide protec-
tion from temporal errors. It also requires programmers to
annotate the extensions. The Ivy project aims to combine
SafeDrive with Shoal [3] and HeapSafe [14], which should
provide improved isolation when completed. However, this
combination would still be missing BGI’s dynamic typestate
checking and it would likely perform worse than BGI because
both Shoal and HeapSafe can introduce a large overhead.

SVA [10] can enforce some safety properties for commod-
ity systems, but it does not isolate extensions and it incurs
higher overhead than BGI. Writing extensions in type safe
languages [5, 6, 20, 22, 33] can provide strong isolation guar-
antees but it requires rewriting the extensions and using a
different runtime system. Proving that extensions are cor-
rect makes runtime checks to enforce isolation unnecessary
(e.g., [32]) but is hard to achieve for complex extensions.

10. CONCLUSION
Faults in extensions continue to be the primary cause

of unreliability in commodity operating systems. Previous
fault isolation techniques are not widely used because they
cannot isolate existing kernel extensions with low overhead
on standard hardware. We presented BGI, a new software
fault isolation technique that addresses this problem using
efficient byte-granularity memory protection. We applied
BGI to 16 extensions that use the complex extension inter-
face of the Windows operating system. Our results show
that BGI incurs only a 6.4% CPU overhead on average.
Therefore, we believe BGI can be used to isolate existing
kernel extensions in production systems. The results also
show that BGI can be used effectively as a bug-finding tool:
we found 28 new bugs in widely used Windows extensions.

Acknowledgments
We thank Solom Heddaya for encouraging us to pursue this
work. We had many interesting discussions with Solom,
Jonathan Morrison, Gretchen Loihle, Neil Clift, Nar Gana-
pathy, John Lee, Landy Wang, Daniel Mihai, Matt Thom-

linson, and Tim Burrell. We thank Jonathan Morrison for
evaluating BGI by developing a driver and injecting common
faults into it. Nar helped us understand the semantics of
WDM interfaces. We thank Martin Borve, Glen Slick, Rob-
bie Harris, and Tomas Perez-Rodriguez for helping us test
USB drivers isolated with BGI. Gloria Mainar-Ruiz helped
developing BGI. Andy Ayers, Chris McKinsey, and Matt
Moore answered many questions about Phoenix. We also
thank our shepherd Andrew Myers and the anonymous re-
viewers for comments on earlier drafts of this paper.

11. REFERENCES

[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti.
Control-Flow Integrity: Principles, Implementations, and
Applications. In ACM CCS, 2005.

[2] P. Akritidis, C. Cadar, C. Raiciu, M. Costa, and M. Castro.
Preventing memory error exploits with WIT. In IEEE
Symposium on Security and Privacy, 2008.

[3] Z. Anderson, D. Gay, and M. Naik. Lightweight
annotations for controlling sharing in concurrent data
structures. In PLDI, 2009.

[4] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen and
the art of virtualization. In SOSP, 2003.

[5] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer,
M. Fiuczynski, D. Becker, S. Eggers, and C. Chambers.
Extensibility, safety and performance in the SPIN
operating system. In SOSP, 1995.

[6] H. Bos and B. Samwel. Safe kernel programming in the
OKE. In OPENARCH, 2002.

[7] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler. An
empirical study of operating system errors. In SOSP, 2001.

[8] J. Christmansson and R. Chillarege. Generation of an error
set that emulates software faults - based on field data. In
FTCS, 1996.

[9] P. Chubb. Get more device drivers out of the kernel! In
Linux Symposium, 2004.

[10] J. Criswell, A. Lenharth, D. Dhurjati, and V. Adve. Secure
virtual architecture: a safe execution environment for
commodity operating systems. In SOSP, 2007.

[11] U. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and G. C.
Necula. XFI: software guards for system address spaces. In
OSDI, 2006.

[12] A. Forin, D. Golub, and B. Bershad. An I/O system for
Mach 3.0. In Proc. USENIX Mach Symposium, 1991.

[13] V. Ganapathy, M. Renzelmann, A. Balakrishnan, M. Swift,
and S. Jha. The Design and Implementation of
Microdrivers. 2008.

[14] D. Gay, R. Ennals, and E. Brewer. Safe manual memory
management. In ISMM, 2007.

[15] K. Glerum, K. Kinshumann, S. Greenberg, G. Aul,
V. Orgovan, G. Nichols, D. Grant, G. Loihle, and G. Hunt.
Debugging in the (Very) Large: Ten Years of
Implementation and Experience. In SOSP, 2009.

[16] L. H. Linux Kernel Heap Tampering Detection. Phrack,
13(66), 2009.

[17] B. Hackett, M. Das, D. Wang, and Z. Yang. Modular
checking for buffer overflows in the large. In ICSE, 2006.

[18] H. Härtig, M. Hohmuth, J. Liedtke, S. Schönberg, and
J. Wolter. The performance of µ-kernel-based systems. In
SOSP, 1997.

[19] J. N. Herder, H. Bos, B. Gras, P. Homburg, and A. S.
Tanenbaum. Minix 3: a highly reliable, self-repairing
operating system. SIGOPS OSR, 40(3):80–89, 2006.

[20] G. C. Hunt and J. R. Larus. Singularity: rethinking the
software stack. SIGOPS OSR, 41(2):37–49, 2007.

[21] A. Ionescu. Pointers and Handles: A Story of Unchecked
Assumptions in the Windows Kernel. In Black Hat, 2008.

[22] T. Jim, J. G. Morrisett, D. Grossman, M. W. Hicks,
J. Cheney, and Y. Wang. Cyclone: A Safe Dialect of C. In
USENIX Annual Technical Conference, 2002.

[23] J. Katcher. Postmark: A new file system benchmark.
Technical Report TR3022, Network Appliance, 1997.

[24] V. Kiriansky, D. Bruening, and S. P. Amarasinghe. Secure
Execution via Program Shepherding. In USENIX Security
Symposium, 2002.

[25] K. Kortchinsky. Real World Kernel Pool Exploitation. In
SyScan’08 Hong Kong, 2008.

[26] B. Leslie, P. Chubb, N. Fitzroy-Dale, S. Gotz, C. Gray,
L. Macpherson, D. Potts, Y. Shen, K. Elphinstone, and
G. Heiser. User-level device drivers: Achieved performance.
Journal of Computer Science and Technology, 20(5), 2005.

[27] J. LeVasseur, V. Uhlig, J. Stoess, and S. Gotz. Unmodified
Device Driver Reuse and Improved System Dependability
via Virtual Machines. In OSDI, 2004.

[28] S. McCamant and G. Morrisett. Evaluating SFI for a CISC
architecture. In USENIX Security Symposium, 2006.

[29] Microsoft. Phoenix SDK.
http://connect.microsoft.com/Phoenix.

[30] Microsoft. User-Mode Driver Framework.
http://www.microsoft.com/whdc/driver/wdf/UMDF.mspx.

[31] Microsoft. Windows Driver Kit.
http://www.microsoft.com/wdk.

[32] G. C. Necula and P. Lee. Safe kernel extensions without
run-time checking. In OSDI, 1996.

[33] G. C. Necula, S. McPeak, and W. Weimer. CCured:
type-safe retrofitting of legacy code. SIGPLAN Not.,
37(1):128–139, 2002.

[34] L. Seawright and R. MacKinnon. VM/370—A Study of
Multiplicity and Usefulness. IBM Systems Journal,
18(1):4–17, 1979.

[35] M. I. Seltzer, Y. Endo, C. Small, and K. A. Smith. Dealing
with disaster: surviving misbehaved kernel extensions. In
OSDI, 1996.

[36] C. Small and M. Seltzer. MiSFIT: A tool for constructing
safe extensible C++ systems. IEEE Concurrency,
6(3):34–41, 1998.

[37] A. Srivastava, A. Edwards, and H. Vo. Vulcan: Binary
transformation in a distributed environment. Technical
Report MSR-TR-2001-50, Microsoft Research, 2001.

[38] R. E. Strom and S. Yemini. Typestate: A programming
language concept for enhancing software reliability. IEEE
Transactions on Software Engineering, 12(1), 1986.

[39] J. Sugerman, G. Venkitachalam, and B.-H. Lim.
Virtualizing I/O devices on VMware Workstation’s hosted
virtual machine monitor. In USENIX Annual Technical
Conference, 2001.

[40] M. Sullivan and R. Chillarege. Software defects and their
impact on system availability - a study of field failures in
operating systems. In FTCS, 1991.

[41] M. M. Swift, M. Annamalai, B. N. Bershad, and H. M.
Levy. Recovering device drivers. ACM TOCS,
24(4):333–360, 2006.

[42] M. M. Swift, B. N. Bershad, and H. M. Levy. Improving
the reliability of commodity operating systems. ACM
TOCS, 23(1):77–110, 2005.

[43] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham.
Efficient software-based fault isolation. In SOSP, 1993.

[44] D. Williams, P. Reynolds, K. Walsh, E. G. Sirer, and F. B.
Schneider. Device driver safety through a reference
validation mechanism. In OSDI, 2008.

[45] E. Witchel, J. Rhee, and K. Asanović. Mondrix: memory
isolation for Linux using mondriaan memory protection. In
SOSP, 2005.

[46] F. Zhou, J. Condit, Z. Anderson, I. Bagrak, R. Ennals,
M. Harren, G. Necula, and E. Brewer. SafeDrive: safe and
recoverable extensions using language-based techniques. In
OSDI, 2006.

