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Abstract

We describe computationally e�cient methods for Bayesian model selection. The methods
select among mixtures in which each component is a directed acyclic graphical model (mix-
tures of DAGs or MDAGs), and can be applied to data sets in which some of the random
variables are not always observed. The model-selection criterion that we consider is the
posterior probability of the model (structure) given data. Our model-selection problem is
di�cult because (1) the number of possible model structures grows super-exponentially with
the number of random variables and (2) missing data necessitates the use of computationally
slow approximations of model posterior probability. We argue that simple search-and-score
algorithms are infeasible for a variety of problems, and introduce a feasible approach in
which parameter and structure search is interleaved and expected data is treated as real
data. Our approach can be viewed as a combination of the Cheeseman{Stutz asymptotic ap-
proximation for model posterior probability and the Expectation{Maximization algorithm.
We evaluate our procedure for selecting among MDAGs on synthetic and real examples.

Keywords : Model selection, asymptotic methods, mixturemodels, directed acyclic graphs,
hidden variables, EM algorithm

1 Introduction

Directed acyclic graph (DAG) models graphically represent conditional independencies among
a set of random variables. For over �fteen years, decision analysts and computer scientists
have used these models to encode the beliefs of experts (e.g., Howard & Matheson, 1981; Pearl,
1982; Heckerman & Wellman, 1995). More recently, statisticians and computer scientists have
used these models for statistical inference or learning from data (e.g., Cooper & Herskovits,
1992; Spirtes, Glymour, & Scheines, 1993; Spiegelhalter, Dawid, Lauritzen, & Cowell, 1993;
Buntine, 1994; and Heckerman, Geiger, & Chickering, 1995). In particular, these researchers
have applied model selection and model averaging techniques to the class of DAGmodels for the
purposes of prediction and identifying cause and e�ect from observational data. The basic idea
behind these endeavors has been that many domains exhibit conditional independence (e.g.,
due to causal relationships) and that DAG models are useful for capturing these relationships.

In this paper, we consider mixtures of DAG models (MDAG models) and methods for
choosing among models in this class. MDAG models generalize DAG models, and should more
accurately model domains containing multiple distinct populations. In general, our hope is that
the use of MDAG models will lead to better predictions and more accurate insights into causal
relationships. In this paper, we concentrate on prediction.

We take a decidedly Bayesian perspective on the problem of learning MDAG models. In
principle, learning is straightforward: we compute the posterior probability of each model in
the class given data and use this criterion to average over the models or to select one or
more models. From a computational perspective, however, learning is extremely di�cult. One
problem is that the number of possible model structures grows super-exponentially with the
number of random variables for the domain. A second problem is that all available methods

1



for computing the posterior probability of an MDAG model, including Monte-Carlo and large-
sample approximations, are slow. In combination, these problems make simple search-and-score
learning algorithms intractable for MDAG models.

In the paper, we introduce a heuristic method for MDAG model selection that addresses
both of these di�culties. The method is not guaranteed to �nd the MDAG model with the
highest probability, but experiments that we present suggest that it often identi�es a good one.
Our approach handles missing data and component DAG models that contain hidden or latent
variables. Our approach can be used to learn DAG models (single-component MDAG models)
from incomplete data as well. Our method is based on two observations.

One, an MDAG model can be viewed as a model containing (at least one) hidden variable.
In particular, consider a domain containing random variables X = (X1; : : : ; Xn) and a discrete
random variable C in which a DAG model for X is used to encode a conditional distribution
p(xjc) for each of the possible values c of C. We call such a model a multi-DAG model for C
and X. If we marginalize over C, then we obtain the joint distribution for X given by

p(x1; : : : ; xn) =
X
c

p(c) p(x1; : : : ; xnjc)

Thus, a multi-DAG model for C and X where C is hidden (or latent) is an mixture of DAG
models for X.

Two, there are e�cient algorithms for selecting among multi-DAG models when data is
complete|that is, when each sample contains observations for every random variable in the
model, including C. These algorithms, which use heuristic search (e.g., greedy search), are
straightforward generalizations of successful algorithms for selecting among DAG models given
complete data (e.g., Cooper & Herskovits, 1992; Heckerman, Geiger, & Chickering, 1995).
The algorithms for MDAG and DAG model selection are particularly e�cient1 because, given
complete data, the posterior probability of a DAG model has a closed-form expression that
factors into additive components for each node and its parents.

These observations suggest that, to learn an MDAG model forX, one can augment the data
(observations of subsets of X) to include observations for all variables X and C, and apply an
e�cient algorithm for MDAG selection to the completed data. This strategy is the essence of
our approach. To augment or complete the data, we compute expected su�cient statistics as
is done in the Expectation{Maximization (EM) algorithm (Dempster, Laird, & Rubin, 1977).
Furthermore, we gradually improve data augmentation by interleaving search for parameters via
the EM algorithm with structure search. In more detail, we begin with an initial MDAG model
and parameter values. We then search for better parameter values for the current model using
the EM algorithm. Given this parameterization, we next compute expected su�cient statistics
of the data for an MDAG model that encodes no assumptions of conditional independence. We
treat these expected su�cient statistics as if they were statistics from a real data set, and search
for good MDAG models using one of the e�cient search algorithms just mentioned. Because
the DAG model for which we compute expected su�cient statistics is unconstrained, we can
use the statistics to evaluate any DAG model encountered during search. Finally, we are left
with a new structure and (after an M step) a new set of parameter values; and we iterate the
previous steps until some stopping criterion is satis�ed.

Our paper is organized as follows. In Section 2, we describe multi-DAG and MDAG mod-
els. In Section 3, we describe Bayesian methods for learning multi-DAG models, concentrating
on the case where data is complete. In Section 4, we consider a simple approach for learn-
ing MDAGs that is computationally infeasible; and in Section 5, we modify the approach to
produce a tractable class of algorithms. In Section 6, we evaluate the predictive accuracy of
models produced by our approach using real examples. In Section 7, we describe a preliminary

1Throughout this paper, we use \e�ciency" to refer to computational e�ciency as opposed to statistical
e�ciency.
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evaluation of our method for structure learning. Finally, in Sections 8 and 9, we describe related
and future work, respectively.

2 Multi-DAG models and mixtures of DAG models

In this section, we describe DAG, multi-DAG, and MDAG models. First, however, let us intro-
duce some notation. We denote a random variable by an upper-case letter (e.g., X; Y;Xi;�),
and the value of a corresponding random variable by that same letter in lower case (e.g.,
x; y; xi; �). When X is discrete, we use jX j to denote the number of values of X , and sometimes
refer to a value of X as a state. We denote a set of random variables by a bold-face capitalized
letter or letters (e.g., X;Y;Pai). We use a corresponding bold-face lower-case letter or letters
(e.g., x;y;pai) to denote an assignment of value to each random variable in a given set. When
X = x we say that X is in con�guration x. We use p(X = xjY = y) (or p(xjy) as a short-
hand) to denote the probability or probability density that X = x given Y = y. We also use
p(xjy) to denote the probability distribution (both mass functions and density functions) for
X given Y = y. Whether p(xjy) refers to a probability, a probability density, or a probability
distribution should be clear from context.

Suppose our problem domain consists of random variables X = (X1; : : : ; Xn). A DAG model
for X is a graphical factorization of the joint probability distribution of X. The model consists
of two components: a structure and a set of local distribution families. The structure b for
X is a directed acyclic graph that represents conditional-independence assertions through a
factorization of the joint distribution for X:

p(x) =
nY
i=1

p(xijpa(b)i) (1)

where pa(b)i is the con�guration of the parents of Xi in structure b consistent with x. The
local distribution families associated with the DAG model are those in Equation 1. In this
discussion, we assume that the local distribution families are parametric. Using �b to denote
the collective parameters for all local distributions, we rewrite Equation 1 as

p(xj�b) =
nY
i=1

p(xijpa(b)i; �b) (2)

With one exception to be discussed in Section 6, the parametric family corresponding to the
variable X will be determined by (1) whether X is discrete or continuous and (2) the model
structure. Consequently, we suppress the parametric family in our notation, and refer to the
DAG model simply by its structure b.

Let bh denote the assertion or hypothesis that the \true" joint distribution can be repre-
sented by the DAG model b and has precisely the conditional independence assertions implied
by b. We �nd it useful to include the structure hypothesis explicitly in the factorization of the
joint distribution when we compare model structures. In particular, we write

p(xj�b;b
h) =

nY
i=1

p(xijpai; �b;b
h) (3)

This notation often makes it unnecessary to use the argument b in the term pa(b)i, and we
use the simpler expression where possible.

The structure of a DAG model encodes a limited form of conditional independence that we
call context-non-speci�c conditional independence. In particular, if the structure implies that
two sets of random variables Y and Z are independent given some con�guration of random
variablesW, thenY and Z are also independent given every other con�guration ofW. In a more
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general form of conditional independence, two sets of random variables may be independent
given one con�guration of W, and dependent given another con�guration ofW.

A multi-DAG model, called a Bayesian multinet by Geiger & Heckerman (1996), is a gen-
eralization of the DAG model that can encode context-speci�c conditional independence. In
particular, a multi-DAG model for X and distinguished random variable C is a set of component
DAG models for X, each of which encodes the joint distribution for X given a state of C, and
a distribution for C. Thus, the multi-DAG model for X and C encodes a joint distribution
for X and C, and can encode context-speci�c conditional independence among these random
variables, because the structure of each component DAG model may be di�erent.

Let s and �s denote the structure and parameters of a multi-DAG model for X and C. In
addition, let bc and �c denote the structure and parameters of the cth DAG-model component
of the multi-DAG model. Also, let sh denote the hypothesis that the \true" joint distribution
for X and C can be represented by the MDAG model s and has precisely the conditional
independence assertions implied by s. Then, the joint distribution forX and C encoded by this
multi-DAG model is given by

p(c;xj�s; s
h) = p(cj�s; s

h) p(xjc; �s; s
h)

= �c p(xj�c;b
h
c ) (4)

where �s = (�1; : : : ; �jCj; �1; : : : ; �jCj) are the parameters of the multi-DAG model, �c =

p(cj�s; s
h), and bhc is a shorthand for the conjunction of the events sh and C = c. As with DAG

models, we sometimes use the structure alone to refer to the multi-DAG model.
In what follows, we assume that the distinguished random variable has a multinomial dis-

tribution. In addition, with one exception to be discussed in Section 6, we limit the structure
of the component DAG models and the parametric families for the local distributions as fol-
lows. When Xi 2 X is a discrete random variable, we require that every random variable in
Pai (for every component model) also be discrete, and that the local distribution families for
X be a set of multinomial distributions, one for each con�guration of Pai. When Xi 2 X

is a continuous random variable, we require that the local distribution family for Xi be a set
of linear-regressions over Xi's continuous parents with Gaussian error, one regression for each
con�guration of Xi's discrete parents. Lauritzen (1992) refers to this set of restrictions as a
conditional-Gaussian distribution for a DAG model.

In this paper, we concentrate on the special case where the distinguished random variable
C is hidden. In this situation, we are interested in the joint distribution for X, given by

p(xj�s; s
h) =

jCjX
c=1

�c p(xj�c;b
h
c ) (5)

This joint distribution is a mixture of distributions determined by the component DAG models,
and has mixture weights �1; : : : ; �jCj. Thus, when C is hidden, we say that the multi-DAGmodel
for X and C is a mixture of DAG models (or MDAG model) for X.

An important subclass of DAG models is the Gaussian DAG model (e.g., Shachter & Ken-
ley, 1989). In this subclass, the local distribution family for every random variable given its
parents is a linear regression with Gaussian noise. It is well known that a Gaussian DAG model
for X1; : : : ; Xn uniquely determines a multivariate-Gaussian distribution for those random vari-
ables. In such a model, the structure of the DAG model (in part) determines the \shape"
of the multivariate-Gaussian distribution. Thus, the MDAG model class includes mixtures of
multivariate-Gaussian distributions in which each component may have a di�erent shape.

3 Learning multi-DAG models

In this and the following two sections, we consider a Bayesian approach for learning multi-DAG
models and MDAG models. Let us assume that our data is exchangeable so that we can reason
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as if the data is a random sample from a true joint distribution. In addition, let us assume
that the true joint distribution for X is encoded by some multi-DAG model, and that we are
uncertain about both its structure and parameters. We de�ne a discrete random variable Sh

whose states sh correspond to the possible true model hypotheses, and encode our uncertainty
about structure using the probability distribution p(sh). In addition, for each model s, we
de�ne a continuous vector-valued random variable �s, whose con�gurations �s correspond to
the possible true parameters. We encode our uncertainty about �s using the probability density
function p(�sjs

h).
Given a random sample d = (x1; : : : ;xN) from the true distribution for X, we compute the

posterior distributions for each sh and �s using Bayes' rule:

p(shjd) =
p(sh) p(djsh)P
sh
p(sh) p(djsh)

p(�sjd; s
h) =

p(�sjs
h) p(dj�s; s

h)

p(djsh)

where

p(djsh) =

Z
p(dj�s; s

h) p(�sjs
h) d�s (6)

is the marginal likelihood of the model.
We can use the model posterior probability for various forms of model comparison, including

model averaging (e.g., Bernardo & Smith, 1994). In this work, we limit ourselves to the selection
of a model with a high posterior probability. In what follows, we concentrate on model selection
using the (log) posterior model probability. To simplify the discussion, we assume that all
possible model structures are equally likely, a priori, in which case our selection criterion is the
(log) marginal likelihood.

3.1 The marginal likelihood criterion

Consider a DAG model b that encodes a conditional-Gaussian distribution for X. Let �i; i =
1; : : : ; n denote the random variables corresponding to the parameters of the local distribution
family for Xi. Buntine (1994) and Heckerman and Geiger (1995) have shown that, if (1) the
parameters �1; : : : ;�n are mutually independent given bh, (2) the parameter priors p(�ijbh)
are conjugate for all i, and (3) the data d is complete for C and X, then the marginal likelihood
p(djbh) has a closed form that can be computed e�ciently.

This observation extends to multi-DAG models. Let �ic denote the set of random variables
corresponding to the local distribution family of Xi in component c. Also, let � denote the set
of random variables (�1; : : : ;�jCj�1) corresponding to the mixture weights. If (1) �; �11; : : : ;

�n1; : : : ; �1jCj; : : : ; �njCj are mutually independent given s
h, (2) the parameter priors p(�icjs

h)

are conjugate for all i and c, and (3) the data d is complete, then the marginal likelihood p(djsh)
has a closed form. In particular,

log p(djsh) = log p(dC) +

jCjX
c=1

log p(dX;C=cjbhc ) (7)

where dC is the data restricted to the variable C, and dX;C=c is the data restricted to the
variables X and those cases in which C = c. The term p(dC) is the marginal likelihood of a
trivial DAG model having only a single discrete node C. The terms in the sum are log marginal
likelihoods for the component DAG models of the multi-DAG. Hence, p(djsh) has a closed form.

3.2 Structure search

An important issue regarding model selection is the search for models (structures) with high
posterior probabilities. Consider the problem of �nding the DAG model with the highest
marginal likelihood from the set of all models in which each node has no more than k parents.
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Chickering (1996) has shown the problem for k > 1 is NP-hard. It follows immediately that
the problem of �nding the multi-DAG model with the highest marginal likelihood from the
set of all multi-DAGs in which each node in each component has no more than k parents is
NP-hard. Consequently, researchers use heuristic search algorithms including greedy search,
greedy search with restarts, best-�rst search, and Monte-Carlo methods.

One consolation is that various model-selection criteria, including log marginal likelihood
(under the assumptions just described), are factorable. We say that a criterion crit(s;d) for a
multi-DAG structure s is factorable if it can be written as follows:

crit(s;d) = f(dC) +

jCjX
c=1

nX
i=1

gc(d
Xi;Pa

c

i ) (8)

where dC is the data restricted to the set C, Paci are the parents of Xi in component c, dXi;Pa
c

i

is the data restricted to the random variables Xi and Pa
c
i and to those cases in which C = c,

and f and gc are functions. When a criterion is factorable, search is more e�cient for two
reasons. One, the component DAG models have non-interacting subcriteria so that we may
search for a good DAG structure for each component separately. Two, as we search for a good
structure in any one component, we need not reevaluate the criterion for the whole component.
For example, in a greedy search for a good DAG structure, we iteratively transform the graph
by choosing the transformation that improves the model criterion the most, until no such
transformation is possible. Typical transformations include the removal, reversal, and addition
of an arc (constrained so that the resulting graph is acyclic). Given a factorable criterion, we
only need to reevaluate gc for Xi if it's parents have changed.

4 Learning MDAGs: A simple approach

When learning multi-DAG models given complete data, the marginal likelihood has a closed
form. In contrast, when learning MDAGs, the assumption that data is complete does not hold,
because the distinguished random variable C is hidden. When data is incomplete, no tractable
closed form for marginal likelihood is available. Nonetheless, we can approximate the marginal
likelihood using either Monte-Carlo or large-sample methods (e.g., DiCiccio, Kass, Raftery, and
Wasserman, 1995). Thus, a straightforward class of algorithm for choosing an MDAG model is
to search among structures as before (e.g., perform greedy search), using some approximation
for marginal likelihood. We shall refer to this class as simple search-and-score algorithms.

As we shall see, simple search-and-score algorithms for MDAG model selection are computa-
tionally infeasible in practice. Nonetheless, let us consider one approximation for the marginal
likelihood that will help motivate a tractable class of algorithms that we consider in the next
section. The approximation that we examine is a large-sample approximation �rst proposed by
Cheeseman & Stutz (1995). Here, we develop the approximation using a heuristic argument
given in Chickering & Heckerman (1997).

The approximation is based on the fact that p(djsh) can be computed e�ciently for complete
data. Consider the identity

p(djsh) = p(d0jsh)

R
p(d; �sjsh) d�sR
p(d0; �sjsh) d�s

(9)

where d0 is any completion of the data set d. Because d0 is a complete data set, we can
determine p(d0jsh) in closed form. Now, suppose we use Laplace's method to approximate the
numerator and denominator of the second term. Roughly speaking, the resulting approximation
for p(d) will be best if the quantities p(d; �sjs

h) and p(d0; �sjs
h)|regarded as functions of �s|

are similar in shape, so that errors in the two Laplace approximations tend to cancel (Tierney &
Kadane, 1986). The two functions cannot be similar in an absolute sense, because d0 contains
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more information than does d, and hence p(d0; �sjsh) will be more peaked than p(d; �sjsh).
Nonetheless, we can make the two functions more similar by completing d0 so that they peak

for the same con�guration of �s. That is, we want ~�
0
s, the MAP con�guration of �s given d

0, to
be equal to ~�s, the MAP con�guration given d. One way to obtain this equality is to complete
d0 so that its su�cient statistics match the expected su�cient statistics given d and sh. This
choice for d0 is also computationally desirable because|when using the EM algorithm to �nd
~�s|the expected su�cient statistics are computed in the last expectation step.

Thus, if we set ~�
0
s =

~�s and apply Laplace's method to the numerator and denominator of
Equation 9, keeping only terms that increase with the sample size N , we obtain

p(djsh) � p(d0jsh)
p(d0j~�s; sh) Nd0=2

p(dj~�s; sh) Nd=2
(10)

where d and d0 are the dimensions of the model with respect to d and d0, respectively.2 Equa-
tion 10 (without the correction for dimension) was introduced by Cheeseman & Stutz (1995)
for use as a model-selection criterion in AutoClass. We sometimes refer to Equation 10 as the
Cheeseman{Stutz criterion.

The approximation is a heuristic one. Nonetheless, in an empirical study with multinomial
mixtures, Chickering & Heckerman (1997) have found the approximation to be quite good. In
all experiments, this approximation was at least as accurate and sometimes more accurate than
the standard approximation obtained using Laplace's method (e.g., Tierney & Kadane, 1986).

An important idea behind the Cheeseman{Stutz approximation is that we treat data com-
pleted by the EM algorithm as if it were real data. This same idea underlies the M step of the
EM algorithm. As we shall see in the next section, this idea also can be applied to structure
search.

5 Learning MDAGs: A practical approach

Simple search-and-score algorithms for selecting MDAG models are ine�cient for two reasons.
One is that approximations for the marginal likelihood are slow to compute (DiCiccio et al.,
1995). Another is that these approximations do not factor. Consequently, every time a trans-
formation is applied to a structure during search, the entire structure may need to be rescored.
In this section, we consider a heuristic approach that addresses both of these problems.

The basic idea behind the approach is that we interleave (partial) parameter search with
structure search. A schematic of this approach is shown in Figure 1. First, we choose some
initial model and parameter values. Then, we perform several iterations of the EM algorithm to
�nd fairly good values for the parameters of the structure. Next, we use these parameter values
and the current model to compute expected su�cient statistics for a complete MDAG (one
that encodes no conditional-independence facts). We call these statistics for the current model
s, parameters �s, and data d the expected complete model su�cient statistics and denote the
quantity by ECMSS(d; �s; s). A detailed discussion of the computation of this quantity is given
in the Appendix. Next, we treat these expected su�cient statistics as if they were su�cient
statistics from a complete data set, and perform structure search. Because we pretend the data
set is complete, the model scores have a closed form and are factorable, making structure search
e�cient. After structure search, we reestimate the parameters for the new structure to be the
MAP parameters given the expected su�cient statistics. Finally, the EM, the ECMSS(d; �s; s)
computation, the structure search, and the parameter reestimation steps are iterated until some
convergence criterion is satis�ed.

In the remainder of this section, we discuss variations of the approach as well as the criterion
used for model search, the initialization of both the structure and parameters, and an approach

2In general, d will be less than or equal to d
0. See Geiger, Heckerman, & Meek (1996) for a discussion.
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Pick initial structure

Run EM for a while (parameter search)

Compute expected sufficient statistics of the complete model

Search structure, pretending that the expected sufficient statistics
are real sufficient statistics of complete data

Figure 1: A schematic of our approach for MDAG model selection.

for determining the number of mixture components and the number of states of any hidden
variables in the component models.

Our search criterion is the log marginal likelihood of the expected complete model su�cient
statistics:

crit(s0jd; ~�s; s) = log p(ECMSS(d; ~�s; s)js
0h) (11)

where s0 is the model being evaluated and (s; �s) are the model and parameters used to compute
the expected complete model su�cient statistics.

We use (s; �s) to compute su�cient statistics for the complete model, because we want
all possible dependencies in the data to be reected in the statistics. If we were to compute
su�cient statistics for an incomplete (constrained) model, then models visited during search
that violates these constraints would not be supported by the data.

The criterion in Equation 11 is related to the Cheeseman{Stutz approximation for the
marginal likelihood, which we can rewrite as

log p(djs
0h) = log p(ECMSS(d; ~�s0 ; s0)js

0h) + log
p(dj~�s0 ; s

0h)

p(ECMSS(d; ~�s0 ; s0)j~�s0 ; s
0h)

: (12)

Although the heuristic argument of Chickering & Heckerman (1997) suggests that Equation 12
is a more accurate approximation for the log marginal likelihood than is Equation 11, we use the
less accurate criterion for two practical reasons. One, if we were to include the likelihood ratio
\correction term" in Equation 12, then the criterion would not factor. Two, if we were to use
just the �rst term in Equation 12, then we would still need to compute the MAP con�guration
~�s0 for every structure that we evaluate. In contrast, by using Equation 11, we compute the
MAP con�guration ~�s only once. Despite these shortcuts, experiments described in Section 6
suggest that the use of the criterion in Equation 11 guides the structure search to good models.

Our approach requires that both an initial structure and an initial parameterization be
chosen. First, let us consider structural initialization. We initialize the structure of each
component model by placing an arc from every hidden variable to every observable variable,
with the exception that nodes corresponding to continuous random variables do not point to
nodes corresponding to discrete random variables. A simpler choice for an initial graph is one in
which every component consists of an empty graph|that is, a graph containing no arcs. With
such an initialization, however, we conjecture that our approach would be unable to discover
connections between hidden and observable variables.

Next, let us consider parameter initialization. When the mixture components contain no
hidden continuous variables, we initialize parameters for a component DAG structure b as
follows. First, we remove all hidden nodes and adjacent arcs from b, creating model b0. Next,
we determine ~�b0 , the MAP con�guration for �b0 given data d. Since the data is complete with
respect to b0, we can compute this MAP in closed form. Then, we create a conjugate distribution
for �b0 whose con�guration of maximum value agrees with the MAP con�guration just computed
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and whose equivalent sample sizes are speci�ed by the user. Next, for each non-hidden node Xi

in b and for each con�guration of Xi's hidden discrete parents, we initialize the parameters of
the local distribution family for Xi by drawing from the conjugate distribution just described.
For each hidden discrete node Xi in b and for each con�guration of Xi's (possible) parents,
we initialize the multinomial parameters associated with the local distribution family of Xi

to be some �xed distribution (e.g., uniform). When the mixture components contain hidden
continuous variables, we use the simpler approach of initializing parameters at random (i.e., by
drawing from a distribution such as the prior). Methods for initializing the parameters of the
distinguished random variable C include (1) setting the parameters to be equal, (2) setting the
parameters to their prior means, and (3) drawing the parameters from a Dirichlet distribution.

As we have mentioned, our approach has several variations. One source of variation is the
heuristic algorithm used for search once ECMSS(d; �s; s)) is computed. The options are the
same as those for the simple search-and-score algorithms, and include greedy search, greedy
search with restarts, best-�rst search, and Monte-Carlo methods. In preliminary studies, we
have found greedy search to be e�ective; and in our analysis of real data in Section 6, we use
this technique.

Another source of variation is the schedule used to alternate between parameter and struc-
ture search. With respect to parameter search, we can run EM to convergence for one step, for
some �xed number of steps, or for a number of steps depending on how many times we have
performed the search phase. With respect to structure search, we can perform model-structure
transformations for some �xed number of steps, for some number of steps that depends on how
many times we have performed the search phase, or until we �nd a local maximum. Finally,
we can iterate the steps consisting of EM, the computation of ECMSS(d; �s; s), and structure
search until either (1) the MDAG structure does not change across two consecutive search
phases, or (2) the approximate marginal likelihood of the resulting MDAG structure does not
increase. Under the second schedule, the algorithm is guaranteed to terminate, because the
marginal likelihood cannot increase inde�nitely. Under the �rst schedule, we do not know of
a proof that the algorithm will terminate. In our experiments with greedy structure search,
however, we have found that this schedule halts.

We �nd it convenient to describe these schedules using a regular grammar, where E, M, Ec, S
denote an E step, M step, computation of ECMSS(d; �s; s), and structure search, respectively.
For example, we use ((EM)�EcS�M)� to denote the case where, within each outer iteration,
we (1) run EM to convergence, (2) compute the expected complete model su�cient statistics,
(3) run structure search to convergence, and (4) perform an M step. Another schedule we
examine is ((EM)10EcS

�M)�. In this schedule, we run EM for only 10 steps before computing
the expected complete model su�cient statistics.3

In a technical report that is a companion to this paper (Thiesson, Meek, Chickering, and
Heckerman, 1997), we evaluate various combinations of these schedules. Our experiments indi-
cate that, although it is not necessary to run EM to convergence between structure search, a
single EM step between structure searches selects models that have lower prediction accuracy.
We have found that the schedule ((EM)10EcS

�M)� works well for a variety of problems.
Finally, the algorithm as described can compare neither models that contain di�erent ran-

dom variables nor models in which the same random variable has a di�erent number of states.
Nonetheless, we can perform an additional search over the number of states of each discrete
hidden variable by applying the algorithm in Figure 1 to initial models with di�erent numbers
of states for the hidden variables. We can discard a discrete hidden variable from a model by
setting its number of states to one. After the best MDAG for each initialization is identi�ed, we
select the overall best structure using some criterion. Because only a relatively small number

3When the structure search leaves the model structure unchanged, we force another iteration of the outer
loop in which we run EM to convergence rather than for 10 steps. If the model structure changes in this forced
iteration, we continue to iterate with 10 EM steps.
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of alternatives are considered, we can use a computationally expensive approximation for the
marginal likelihood such as the Cheeseman-Stutz approximation or a Monte-Carlo method.

6 Examples

In this section, we evaluate the predictive performance of MDAG models on real data. In ad-
dition, we evaluate some of the assumptions underlying our method for learning these models.
In the domains that we consider, all the observable random variables are continuous. Conse-
quently, we focus our attention on mixtures of Gaussian DAG models. To accommodate the
outliers contained in the data sets that we analyze, each of the mixture models that we consider
has a noise component in addition to one or more Gaussian components. The noise component
is modeled as a multivariate uniform distribution, and can be viewed as an empty DAG model
in which the distribution function for each of the random variables is uniform.

We compare the predictive performance of (1) mixtures of DAG models (MDAG/n) (2)
mixtures of multivariate-Gaussian distributions for which the covariance matrices are diagonal
(MDIAG/n), and (3) mixtures of multivariate-Gaussian distributions for which the covariance
matrices are full (MFULL/n). The MDIAG/n and MFULL/n model classes correspond to
MDAG models with �xed empty structures and �xed complete structures, respectively, for all
Gaussian components. The /n su�x indicates the existence of a uniform noise component.

For every data set and every model class, we perform an outer search to identify the number
of components within each mixture model as described in Section 5. In particular, we �rst learn
a two-component model (one Gaussian and one noise component), and then increase by one the
number of Gaussian mixture components until the model score is clearly decreasing. We choose
the best number of components using the Cheeseman{Stutz criterion. Then, we measure the
predictive ability of the chosen model s using the logarithmic scoring rule of Good (1952):

1

jdtestj

X
l2dtest

log p(xljs
h) (13)

where dtest is a set of test cases and jdtestj is the number of test cases. We approximate p(xljs
h)

by p(xlj~�s; s
h), the likelihood evaluated at the MAP parameter con�guration.4

When learning MDAG/n models, we use the ((EM)10EcS
�M)� search schedule; and when

learning MDIAG/n and MFULL/n models, we run the EM algorithm to convergence. In all
experiments, we deem EM to have converged when the relative change in log likelihood of the
model falls below 10�6. We initialize structure and parameters for our search procedures as
described in Section 5 with with equivalent sample sizes equal to 200.

6.1 Handwritten Digits

Our �rst example addresses the digital encoding of handwritten digits (Hinton, Dayan, &
Revow, 1997). In this domain, there are 64 random variables corresponding to the gray-scale
values [0,255] of scaled and smoothed 8-pixel x 8-pixel images of handwritten digits obtained
from the CEDAR U.S. postal service database (Hull, 1994). Applications of joint prediction
include image compression and digit classi�cation. The sample sizes for the digits (\0" through
\9") range from 1293 to 1534. For each digit, we use 1100 samples for training, and the
remaining samples for testing.

We use a relatively di�use Normal-Wishart parameter prior for each of the Gaussian com-
ponents of MDIAG/n and MFULL/n models. In the notation of DeGroot (1970), our prior
has � = 2, � set to the empirical mean from the training samples, � = � + 64, and � set to
the identity matrix. We choose � to be the sum of � and the number of observed variables
to compute the MAP parameter values in closed form. The parameter priors for the Gaussian

4We are currently implementing a Monte-Carlo method to average over the parameter con�gurations.
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Figure 2: Logarithmic predictive scores on the test sets for the digit data.

MDAG/n MFULL/n MDIAG/n
Digit k d k d k d

\0" 5 1793 2 4290 8 1032
\1" 7 2803 2 4290 4 516
\2" 5 1544 1 2145 6 774
\3" 6 1828 1 2145 6 774
\4" 6 1966 2 4290 6 774
\5" 9 2697 1 2145 6 774
\6" 8 2514 2 4290 6 774
\7" 8 2855 2 4290 4 516
\8" 8 2350 2 4290 7 903
\9" 7 2280 2 4290 5 645

Table 1: Number of Gaussian components and parameters in the learned models for the digit
data.

components of the MDAG/n models are Normal-Wishart priors speci�ed using the hyperpa-
rameters described above and the methods described in Heckerman and Geiger (1995). We use
a uniform prior on the number of components in the mixture and, when learning MDAG/n
models, a uniform prior on the structure of the component DAG models. Because we know
that the values of each of the 64 variables are constrained to the range [0,255], we �x the pa-
rameters for the noise model to these values. Finally, the hyperparameters f�0; : : : ; �kg of the
Dirichlet prior on the mixture weights (i.e., the distinguished variable) are �0 = 0:01 for the
noise component, and �1 = : : := �k = 0:99=k for the Gaussian components.

The predictive logarithmic score on the test set for each digit is shown in Figure 2. The
number of Gaussian components k and the model dimension d for the best model in each class
are displayed in Table 1. Figure 2 indicates that MDAG/n models, on average, improve the
predictive accuracy by 8% over MFULL/n models and 19% over MDIAG/n models. Note that
the gains in predictive accuracy over MFULL/n models are obtained while reducing the average
number of parameters by one third.

Using a P6 200MHz computer, the time taken to learn the MDAG/n, MFULL/n, and
MDIAG/n models for a single digit|including the time needed to �nd the optimal number
of components|is, on average, 6.0, 1.5, and 1.9 hours, respectively. These times could be
improved by using a more clever search for the optimal number of mixture components.

To better understand the di�erences in the distributions that these mixture models repre-
sent, we examine the individual Gaussian components for the learned MDAG/n, MFULL/n,
and MDIAG/n models for the digit \7". The �rst row of Figure 3 shows the means for each of
the components of each of the models. The mean values for the variables in each component
are displayed in an 8 x 8 grid in which the shade of grey indicates the value of the mean. The
displays indicate that each of the components of each type of model are capturing distinctive
types of sevens. They do not, however, reveal any of the dependency structure in the component
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Mean

Samples

MDAG/n MDIAG/nMFULL/n

Weight 0.12 0.16 0.330.63 0.150.200.220.370.030.290.130.110.070.08

Figure 3: Means and samples from the components of the learned MDAG/n, MFULL/n, and
MDIAG/n models for digit \7".
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Figure 4: The Cheeseman{Stutz criterion for each intermediate model obtained during structure
search when learning a three-component model for the digit \7".

models. To help visualize these dependencies, we drew four samples from each component for
each type of model. The grid for each sample is shaded to indicate the sampled values. Whereas
the samples from the MDIAG/n components do look like sevens, they are mottled. This is not
surprising, because each of the variables are conditionally independent given the component.
The samples for the MFULL/n components are not mottled, but indicate that multiple types
of sevens are being represented in one component. That is, several of the samples look blurred
and appear to have multiple sevens superimposed. Generally, samples from each MDAG/n
component look like sevens of the same distinct style, all of which closely resemble the mean.

Let us turn our attention to the evaluation of one of the key assumptions underlying our
learning method. As we have discussed, the criterion used to guide structure search (Equa-
tion 11) is only a heuristic approximation to the true model posterior. To investigate the
quality of this approximation, we can evaluate the model posterior using the Cheeseman-Stutz
approximation (what we believe to be a more accurate approximation) for intermediate models
visited during structure search. If the heuristic criterion is good, then the Cheeseman{Stutz
criterion should increase as structure search progresses. We perform this evaluation when learn-
ing a three-component MDAG model for the digit \7" using the ((EM)10EcS�M)� schedule. For
149 out of the 964 model transitions, the Cheeseman{Stutz approximation decreased. Overall,
however, as shown in Figure 4, the Cheeseman{Stutz score progresses upward to apparent con-
vergence. We obtain similar results for other data sets. These results suggest that the heuristic
criterion (Equation 11) is a useful guide for structure search.

Using statistics from this same experiment, we are able to estimate the time it would take
to learn the MDAG model using the simple search-and-score approach described in Section 4.
We �nd that the time to learn the three-component MDAG model for the digit \7", using
the Cheeseman{Stutz approximation for model comparison, is approximately 6 years on a P6
200MHz computer, thus substantiating our previous claim about the intractability of simple
search-and-score approaches.

Finally, a natural question is whether the Cheeseman{Stutz approximation for the marginal
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Figure 5: Logarithmic predictive scores on the test sets for the vehicle data.

likelihood is accurate for model selection. The answer is important, because the MDAG models
we select and evaluate are chosen using this approximation. Some evidence for the reasonable-
ness of the approximation is provided by the fact that, as we vary the number of components
of the MDAG models, the Cheeseman-Stutz and predictive scores roughly rise and fall in syn-
chrony, usually peaking at the same number of components.

6.2 Vehicle Images

Our second example addresses the digital encoding of vehicle images. In this domain, there are
18 continuous features extracted from the silhouettes of four types of vehicles: a double decker
bus (218 cases), a Saab 9000 (212 cases), an Opel Manta 400 (217 cases), and a Cheverolet
van (199 cases). For each of the vehicles, we use 60% of the samples for training and 40%
for testing. The data was obtained from the Machine Learning Repository (Siebert, 1987).
As in the previous example, applications of joint prediction include image compression and
classi�cation.

The parameter priors for the Gaussian components, structure prior, and mixture priors
are speci�ed as described for the digits data set. For the variables in this data set, there are
no natural constraints on the range of their values, so we use mutually independent bilateral
bivariate Pareto priors for the independent uniform distributions within the noise component.
In the notation of DeGroot (1970), the hyperparameters r1 and r2 for each of the 18 random
variables are set using the minimum and maximum observed values for the Opel Manta. The
hyperparameter � is set to 2 for each of these random variables.

The logarithmic predictive scores on the remaining types of vehicles are shown in Figure 5.
For each of the vehicles, the learned MDAG/n models perform better in predictive scores than
the other types of models. The improvements, however, are not as substantial as in the case of
the digits data set.

7 Structure learning: A preliminary study

As we have mentioned in the introduction, many computer scientists and statisticians are
using statistical-inference techniques to learn the structure of DAG models from observational
(i.e., non-experimental data). Spirtes et al. (1993) have argued that, under a set of simple
(and sometimes reasonable) assumptions, the structures so learned can be used to infer cause-
and-e�ect relationships. An interesting possibility is that these results can be generalized so
that we may use the structure of learned MDAG models to infer causal relationships in mixed
populations (populations in which subgroups have di�erent causal relationships). In this section,
we present a preliminary investigation into how well our approach can learn MDAG structure.

We perform our analysis as follows. First, we construct a \gold-standard" MDAG model,
and use the model to generate data sets of varying size. Then, for each data set, we use our
approach to learn an MDAG model (without a noise component). Finally, we compare the
structure of the learned model to that of the gold-standard model, and measure the minimum
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Figure 6: (a) The graphical structure for �rst and third components in the gold-standard
MDAG. (b) The graphical structure for second component.

Arc di�erences
Sample size k Total weight COMP1 COMP2 COMP3

93 2 1.00 - 4 0
186 2 1.00 - 2 0
375 3 1.00 1 1 0
750 5 0.98 1 1 0
1500 3 1.00 0 3 0
3000 5 0.99 1 1 0

Table 2: Performance on the task of structure learning as a function of sample size.

number of arc manipulations (additions, deletions, and reversals) needed to transform each
learned component structure to the corresponding gold-standard structure.

The gold-standard model is an MDAG model for �ve continuous random variables. The
model has three mixture components. The structure of the �rst and third components (COMP1
and COMP3) are identical and this structure is shown in Figure 6a. The structure of the second
component (COMP2) is shown in Figure 6b. The DAGs are parameterized so that there is some
spatial overlap. In particular, all unconditional means in COMP1 and COMP2 are zero; all
means in COMP3 are equal to �ve; and all linear coe�cients and conditional variances are one
(see Shachter & Kenley, 1989).

We construct a data set of size N = 3000 by sampling 1000 cases from each component of
the gold-standard model. We then iteratively subsample this data, creating data sets of size
N = 93, 186, 375, 750, 1500, and 3000.

Table 2 shows the results of learning models from the six data sets using the ((EM)10EcS�M)�

schedule. The columns of the table contain the number of components k in the learned MDAG,
the sum of the mixture weights in the three largest components (total weights) and the min-
imum number of arc manipulations (additions, deletions, and reversals) needed to transform
each learned component structure to the corresponding gold-standard structure for the three
components with the largest mixture weights. Arc manipulations that lead to a model with
di�erent structures but the same family of distributions are not included in the count. All
learned MDAG structures are close to that of the gold-standard model. In addition, although
not apparent from the table, the structure of every learned component has only additional arcs
in comparison with the gold-standard model for sample sizes larger than 375. Finally, it is
interesting to note that, essentially, the structure is recovered for a sample size as low as 375.

8 Related work

DAG models (single-component MDAG models) with hidden variables generalize many well-
known statistical models including linear factor analysis, latent factor models (e.g., Clogg,
1995), and probabilistic principle component analysis (Tipping & Bishop, 1997). MDAGmodels
generalize a variety of mixtures models including naive-Bayes models used for clustering (e.g.,
Clogg, 1995; Cheeseman and Stutz, 1995), mixtures of factor analytic models (Hinton, Dayan,
& Revow, 1997), and mixtures of probabilistic principle component analytic models (Tipping
& Bishop, 1997).
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Another interesting class of mixture models that has been considered can be obtained by
enforcing equality constraints across the mixture components. Ban�eld & Raftery (1993) de-
veloped a class of models for continuous variables in which the covariance matrix of each com-
ponent is reparameterized into a volume, a shape, and an orientation. In terms of mixtures of
DAG models, these authors consider equality constraints on volume, shape, orientation, and
size (magnitude of mixture weight), in various combinations for mixtures of complete mod-
els, empty models, and empty models with equal variances. Using MDAGs, it is possible to
further extend the class of models developed by Ban�eld and Raftery. In particular, the size
and volume of a multivariate-Gaussian distribution may be varied independently of the model
structure. In contrast, the structure of a DAG model constrains the shape and orientation of
the multivariate-Gaussian distributions. Thus, by considering MDAG models in which (1) the
component structures are equal, and (2) we have equality constraints on various combinations
of the size, volume, structure, shape, and orientation across components, we can capture the
entire Ban�eld and Raftery hierarchy. Because the component model structures need not be
restricted to complete or empty models, this MDAG hierarchy extends the original hierarchy.

There is also work related to our learning methods. The idea of interleaving parameter
and structure search to learn graphical models has been discussed by Meil�a, Jordan, & Morris
(1997), Singh (1997), and Friedman (1997). Meil�a et al. (1997) consider the problem of learning
mixtures of DAGmodels for discrete random variables where each component is a spanning tree.
Similar to our approach, they treat expected data as real data to produce a completed data set
for structure search. Unlike our work, they replace heuristic model search with a polynomial
algorithm for �nding the \best" spanning-tree components given the completed data. Also,
unlike our work, they use likelihood as a selection criterion, and thus do not take into account
the complexity of the model.

Singh (1997) concentrates on learning a single DAG model for discrete random variables. He
does not consider continuous variables or mixtures of DAGmodels. In contrast to our approach,
Singh (1997) uses a Monte-Carlo method to produce completed data sets for structure search.

Like Singh (1997), Friedman (1997) focuses on learning a single DAG model for discrete
random variables. Similar to our approach and the approach of Meil�a et al. (1997), Friedman
treats expected data as real data to produce completed data sets. In contrast to our approach,
Friedman calculates the expected su�cient statistics for a new model using the current model.
That is, for each model that is considered, the expected su�cient statistics for every case con-
taining missing observations is computed by performing probabilistic inference in the current
DAG model. In our approach, we only need to perform inference once on every case that has
missing values to compute the expected complete model su�cient statistics. After these statis-
tics are computed, model scores for arbitrary structures can be computed without additional
inference.

9 Discussion and future work

We have described mixtures of DAG models, a class of models that is more general than
DAG models, and have presented a novel heuristic method for choosing good models in this
class. Although evaluations for more examples (especially ones containing discrete variables) are
needed, our preliminary evaluations suggest that model selection within this expanded model
class can lead to substantially improved predictions. This result is fortunate, as our evaluations
also show that simple search-and-score algorithms, in which models are evaluated one at a
time using Monte-Carlo or large-sample approximations for model posterior probability, are
intractable for some real problems.

One important observation from our evaluations is that the (practical) selection criterion
that we introduce|the marginal likelihood of the complete-model su�cient statistics|is a
good guide for model search. An interesting question is: Why? We hope that this work will
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stimulate theoretical work to answer this question and perhaps uncover better approximations
for guiding model search.

A possibly related challenge for theoretical study has to do with the apparent accuracy
of the Cheeseman{Stutz approximation for the marginal likelihood. As we have discussed,
in experiments with multinomial mixtures, Chickering & Heckerman (1997) have found the
approximation to be at least as accurate and sometimes more accurate than the standard
Laplace approximation. Our evaluations have also provided some evidence that the Cheeseman{
Stutz approximation is an accurate criterion for model selection.

In our evaluations, we have not considered situations where the component DAG models
themselves contain hidden variables. In order to learn models in this class, methods for structure
search are needed. In such situations, the number of possible models is signi�cantly larger
than the number of possible DAGs over a �xed set of variables. Without constraining the set
of possible models with hidden variables|for instance, by restricting the number of hidden
variables|the number of possible models is in�nite. On a positive note, Spirtes et al. (1993)
have shown that constraint-based methods under suitable assumptions can sometimes indicate
the existence of a hidden common cause between two variables. Thus, it may be possible to use
the constraint-based methods to suggest an initial set of plausible models containing hidden
variables that can then be subjected to a Bayesian analysis.

In Section 7, we saw that we can recover the structure of an MDAG model to a fair degree
of accuracy. This observation raises the intriguing possibility that we can infer causal relation-
ships from a population consisting of subgroups governed by di�erent causal relationships. One
important issue that needs to be addressed �rst, however, has to do with structural identi�-
ability. For example, two MDAG models may super�cially have di�erent structures, but may
otherwise be statistically equivalent. Although the criteria for structural identi�ability among
single-component DAG models is well known, such criteria are not well understood for MDAG
models.

Appendix: Expected complete model su�cient statistics

In this appendix, we examine complete model su�cient statistics more closely. We shall limit
our discussion to multi-DAG models for which the component DAG models have conditional-
Gaussian distributions. The extension to the noise component is straightforward.

Consider a multi-DAG model for random variables C and X. Let � denote the set of
continuous variables in X,  denote a con�guration of �, and nc denote the number of variables
in �. Let � denote the set of all discrete variables (including the distinguished variable C),
and m denote the number of possible con�gurations of �. In addition, let d = y1; : : : ;yN ,
where yi is the con�guration of the observed variables in case i. Note that di�erent variables
may be observed in di�erent cases. Finally, as in Dempster et al. (1977), let xi denote the ith
complete case|the con�guration of X and C in the ith case.

Now, consider the complete model su�cient statistics for a complete case, which we denote
T (x). For the multi-DAG model, T (x) is a vector hhN1; R1; S1i; : : : ; hNm; Rm; Smii of m triples,
where the Nj are scalars, the Rj are vectors of length nc, the Sj are square matrices of size
nc � nc. In particular, if the discrete variables in x take on the jth con�guration, then Nj = 1,
Rj = , and Sj =  0 � , and Nk = 0, Rk = 0, and Sk = 0 for k 6= j.

When we do not have a complete data set, we compute the expected complete model su�-
cient statistics ECMSS(d; �s; s), given by

ECMSS(d; �s; s) =
NX
i=1

E(T (xi)jyi; �s; s
h) (14)

The expectation is taken with respect to the joint distribution over the random variables C
and X given �s, s

h, and the observations for the current case. The expectation of T (x) is
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computed by performing probabilistic inference in the multi-DAG model. Such inference is a
simple extension of the work of Lauritzen (1992). The sum of expectations are simply scalar,
vector, or matrix additions (as appropriate) in each triple in each of the coordinates of the
vector.

Note that, in the computation as we have described it, we require a statistic triple for
every possible con�guration of discrete variables. In practice, however, we can use a sparse
representation in which we store triples only for those complete observations that are consistent
with the data.
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