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Abstract

This review presents a unified, efficient model of random decision forests
which can be applied to a number of machine learning, computer vision,
and medical image analysis tasks.

Our model extends existing forest-based techniques as it unifies
classification, regression, density estimation, manifold learning, semi-
supervised learning, and active learning under the same decision forest
framework. This gives us the opportunity to write and optimize the core
implementation only once, with application to many diverse tasks.



The proposed model may be used both in a discriminative or gen-
erative way and may be applied to discrete or continuous, labeled or
unlabeled data.

The main contributions of this review are: (1) Proposing a
unified, probabilistic and efficient model for a variety of learning
tasks; (2) Demonstrating margin-maximizing properties of classifica-
tion forests; (3) Discussing probabilistic regression forests in compari-
son with other nonlinear regression algorithms; (4) Introducing density
forests for estimating probability density functions; (5) Proposing an
efficient algorithm for sampling from a density forest; (6) Introducing
manifold forests for nonlinear dimensionality reduction; (7) Proposing
new algorithms for transductive learning and active learning. Finally,
we discuss how alternatives such as random ferns and extremely ran-
domized trees stem from our more general forest model.

This document is directed at both students who wish to learn the
basics of decision forests, as well as researchers interested in the new
contributions. It presents both fundamental and novel concepts in a
structured way, with many illustrative examples and real-world appli-
cations. Thorough comparisons with state-of-the-art algorithms such
as support vector machines, boosting and Gaussian processes are pre-
sented and relative advantages and disadvantages discussed. The many
synthetic examples and existing commercial applications demonstrate
the validity of the proposed model and its flexibility.



1
Overview and Scope

This review presents a unified, efficient model of random decision forests
which can be used in a number of applications such as scene recognition
from photographs, object recognition in images, automatic diagnosis
from radiological scans and semantic text parsing. Such applications
have traditionally been addressed by different, supervised or unsuper-
vised machine learning techniques.

In this review, we formulate diverse learning tasks such as regres-
sion, classification and semi-supervised learning as instances of the
same general decision forest model. The unified framework further
extends to novel uses of forests in tasks such as density estimation
and manifold learning. The underlying unified framework gives us the
opportunity to implement and optimize the general algorithm for all
these tasks only once, and then adapt it to individual applications with
relatively small changes.

This review is directed at engineers and PhD students who wish to
learn the basics of decision forests as well as more senior researchers
interested in the new research contributions.

We begin by presenting a roughly chronological, non-exhaustive
survey of decision trees and forests, and their use in the past two
decades. Further references will be available in the relevant sections.
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84 Overview and Scope

1.1 A Chronological Literature Review

One of the earlier works on decision trees is the seminal “Classification
and Regression Trees (CART)” book by Breiman et al. [12], where the
authors describe the basics of decision trees and their use for both classi-
fication and regression problems. Following that publication researchers
then focused on algorithms for constructing (learning) optimal decision
trees for different tasks using available training data. For this pur-
pose, one of the most popular algorithms is “C4.5” of Quinlan [81].
Although, decision trees were proven to be useful, their application
remained limited to relatively low dimensional data.

In the nineties, researchers discovered how using ensembles of
learners (e.g., generic “weak” classifiers) yields greater accuracy and
generalization. This seems particulary true for high dimensional data,
as often encountered in real life applications. One of the earliest refer-
ences to ensemble methods is the boosting algorithm of Schapire [87],
where the author discusses how iterative re-weighting of training data
can be used to build “strong” classifiers as linear combination of many
weak ones.

Combining the ideas of decision trees and ensemble methods gave
rise to decision forests, that is, ensembles of randomly trained decision
trees. The idea of constructing and using ensembles of trees with ran-
domly generated node tests was introduced for the first time in the work
of Amit and Geman [1, 2] for handwritten digit recognition. In that
work the authors also propose using the mean of the tree probabilities
as output of the tree ensemble.

In the subsequent work of Ho [47] tree training via randomized
partitioning of the feature space is discussed further, and in [48] forests
are shown to yield superior generalization to both boosting and pruned
C4.5-trained trees, on some tasks. The author also shows comparisons
between different split functions in the tree nodes.

Breiman’s later work in [10, 11] further consolidated the role of
random forests and popularized their use. There, the author intro-
duces a different way of injecting randomness in the forest by randomly
sampling the labeled training data (namely “bagging”). The author
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also describes techniques for predicting the forest test error based on
measures of tree strength and correlation.

In computer vision, ensemble methods became popular with
the seminal face and pedestrian detection papers of Viola and
Jones [107, 108]. Random decision forests where used in [63] for image
classification and in [60] for keypoint tracking in videos. Recent years
have seen an explosion of forest-based techniques in the machine learn-
ing, vision and medical imaging literature [9, 15, 25, 31, 35, 37, 58, 59,
65, 67, 68, 69, 74, 79, 89, 92, 97, 110]. Decision forests compare favor-
ably with respect to other techniques [15] and have lead to one of the
biggest success stories of computer vision in recent years: the Microsoft
Kinect for XBox 360 [39, 91, 66].



2
The Random Decision Forest Model

Problems related to the automatic or semi-automatic analysis of com-
plex data such as text, photographs, videos and n-dimensional medical
images can be categorized into a relatively small set of prototypical
machine learning tasks. For instance:

• Recognizing the type (or category) of a scene captured in a
photograph can be cast as a classification task, where the
desired output is a discrete, categorical label (e.g., a beach
scene, a cityscape, indoor etc.).

• Predicting the price of a house as a function of its distance
from a good school may be thought of as a regression prob-
lem. In this case the output is a continuous variable.

• Detecting abnormalities in a medical scan can be achieved
by evaluating the image under a learned probability density
function for scans of healthy individuals.

• Capturing the intrinsic variability of size and shape of differ-
ent structures in the human brain from magnetic resonance
images may be cast as manifold learning.

86



2.1 Decision Tree Basics 87

• Interactive image segmentation may be thought of as a semi-
supervised problem, where the user’s brush strokes define
labeled data and the rest of image pixels provide already
available unlabeled data.

• Learning a general rule for detecting tumors in images using
minimal amount of manual annotations is an active learning
problem, where expensive expert annotations can be opti-
mally acquired in the most economical fashion.

The popularity of decision forests is mostly due to their recent success
in classification tasks. However, here we show that forests are a more
general tool which can be applied to many additional problems. This
section presents a unified model of decision forests which can be used
to tackle all the common learning tasks outlined above: classification,
regression, density estimation, manifold learning, semi-supervised
learning, and active learning.

The unification we present, yields both theoretical and practical
advantages. In fact, we show how multiple prototypical machine learn-
ing problems can all be mapped onto the same general model by means
of different parametrizations. As a result, properties of the general
framework are inherited by the specific instantiations. The major prac-
tical advantage of such unification is that one can implement and opti-
mize the associated inference algorithms only once and then use them,
with relatively small modifications, in many applications.

This section presents the model definitions and components in an
abstract manner. Some brief concrete examples for different tasks are
presented here, with further details in the relevant sections. Before delv-
ing into the model description we first provide an intuitive explanation
for the basic principles of decision trees. Then we introduce the general
mathematical notation that will be used throughout the manuscript.
Finally, we extend the tree formalism to the decision forest model.

2.1 Decision Tree Basics

Decision trees have been around for a number of years [12, 81]. Their
recent revival is mostly due to the discovery that ensembles of slightly
different trees tend to produce higher accuracy on previously unseen
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Fig. 2.1 Decision tree. (a) A tree is a set of nodes and edges organized in a hierarchical
fashion. A tree is a graph with no loops. Internal nodes are denoted with circles and terminal
nodes with squares. (b) A decision tree is a tree where each internal node stores a split
(or test) function to be applied to the incoming data. Each leaf stores the final answer
(predictor). Here we show an illustrative decision tree used to figure out whether a photo
represents an indoor or outdoor scene.

data, a property known as generalization [2, 11, 47]. Ensembles of trees
will be discussed extensively throughout this review. But let us first
focus on individual trees.

Tree data structure. A tree is a special type of graph. It is a data
structure made of a collection of nodes and edges organized in a hierar-
chical fashion (Figure 2.1(a)). Nodes are divided into internal (or split)
nodes and terminal (or leaf) nodes. We denote internal nodes with
circles and terminal ones with squares. All nodes have exactly one
incoming edge. In contrast to general graphs a tree cannot contain
loops. In this review we focus only on binary trees where each internal
node has exactly two outgoing edges.

Decision tree. A decision tree is a set of questions organized in
a hierarchical manner and represented graphically as a tree. For a
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given input object, a decision tree estimates an unknown property of
the object by asking successive questions about its known properties.
Which question to ask next depends on the answer of the previous ques-
tion and this relationship is represented graphically as a path through
the tree which the object follows. The decision is then made based on
the terminal node on the path.

For example, imagine we have a photograph and we need to con-
struct an algorithm for figuring out automatically whether it displays
an indoor or an outdoor scene. We have no other information but the
image pixels. We can start by looking at the top part of the image and
ask whether it is blue or not. If it is then that might be the sky. Based
on this, we ask another question, for instance whether the bottom part
is also blue. If it is not then our belief that this photograph displays
an outdoor scene increases. However, if the bottom part of the photo
is also blue then perhaps it is an indoor scene and we are looking at a
blue wall.

All these questions/tests help our decision making move toward
the correct region of the decision space. Also, the more questions the
higher the confidence in the response. The tests can be represented
hierarchically via a decision tree structure. In a decision tree, each
internal node is associated with one such question. In our example,
we can think of the image as being injected at the root node, and a
test being applied to it (see Figure 2.1(b)). Based on the result of this
first test the whole image data is then sent to the left or right child.
There, a new test is applied and so on until the data reaches a leaf. The
leaf contains the most probable answer based on the questions asked
throughout (e.g., “outdoor”). Therefore, key to the good functioning of
a decision tree is to establish: (i) the tests associated to each internal
node and (ii) the decision-making predictors associated with each leaf.

A decision tree can also be thought of as a technique for splitting
complex problems into a set of simpler ones. It is a hierarchical piece-
wise model. Its parameters (i.e., all node tests, the leaves predictors
etc.) could be selected by hand for simple problems. In more complex
problems (such as vision related ones) the tree parameters and struc-
ture are learned automatically from available training data. Next we
introduce some notation which will help us formalize these concepts.
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2.2 Mathematical Notation and Basic Definitions

We denote vectors with boldface lowercase symbols (e.g., v), matrices
with teletype uppercase letters (e.g., M) and sets in calligraphic notation
(e.g., S).

Data point and features. A generic object, called data point, is
denoted by a vector v = (x1,x2, . . . ,xd) ∈ F , where the components
xi represent some attributes of the data point, called features, see
Figure 2.2(a) for an illustration. These features may vary from applica-
tion to application. For instance, in a computer vision application v
may correspond to a pixel in an image and the xis represent the
responses of a chosen filter bank at that particular location.

The number of features naturally depends on the type of the data
point as well as the application. In theory, the dimensionality of the
feature space F , d, can be very large, even infinite. In practice, it is often
not possible, and further not necessary, to extract all d dimensions of
v ahead of time. Instead we extract only a small portion of d on an as-
needed basis. Based on this let us formulate the features of interest that
are computed at any single time to be a subset selected from the set

Fig. 2.2 Basic notation. (a) Input data is represented as a collection of points in the d-
dimensional space defined by their feature responses (2D in this example). (b) A decision
tree is a hierarchical structure of connected nodes. During testing, a split (internal) node
applies a test to the input data v and sends it to the appropriate child. The process is
repeated until a leaf (terminal) node is reached (beige path). (c) Training a decision tree
involves sending all training data S0 into the tree and optimizing the parameters of the
split nodes so as to optimize a previously energy function. See text for details.
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of all possible features as φ(v) = (xφ1 ,xφ2 , . . . ,xφd′ ) ∈ Fd′ ⊂ F , where
d′ denotes the dimensionality of the subspace and φi ∈ [1,d] denote
the selected dimensions. In most applications, d can be very large but
the dimension of the subspace Fd′

is much smaller d′ � d.

Test functions, split functions and weak learners. As explained
above a decision tree is a set of tests that are hierarchically organized.
In this review we use the terms “split function,” “test function,” and
“weak learner” interchangeably. Each node has associated a different
test function. We formulate a test function at a split node j as a function
with binary outputs

h(v,θj) : F × T → {0,1}, (2.1)

where 0 and 1 can be interpreted as “false” and “true” respectively,
θj ∈ T denote the parameters of the test function at the jth split node.
The data point v arriving at the split node is sent to its left or right child
node according to the result of the test function (see Figure 2.3(a)).

Training points and training sets. The last definitions we intro-
duce are the training point and the training set. A training point is a
data point for which the attributes that we are seeking for are actually
known. In the example of the previous section a training set would be
a set of photos with associated “indoor” or “outdoor” labels. Based on

Fig. 2.3 Split and leaf nodes. (a) Split node (testing). A split node is associated with a
weak learner (or split function, or test function). (b) Split node (training). Training the
parameters θj of node j involves optimizing a chosen objective function (maximizing the
information gain Ij in this example). (c) A leaf node is associated with a predictor model.
For example, in classification we may wish to estimate the conditional p(c|v) with c ∈ {ck}
indicating a class index.
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this definition, a training set, denoted by S0, is a collection of different
training points (Figure 2.2(c)).

In a supervised task a training point is a pair (v,y) where v is the
input feature vector and y here represents a generic, known label. In
an unsupervised task the training points are represented only by their
feature response and there is no associated label.

When discussing trees it is convenient to think of subsets of training
points as being associated with different tree branches. For instance S1

denotes the subset of training points reaching node 1 (nodes are num-
bered in breadth-first order starting from 0 for the root Figure 2.2(c)),
and SL

1 , SR
1 denote the subsets going to the left and to the right

children of node 1, respectively. In binary trees the following properties
apply:

• Sj = SL
j ∪ SR

j ,
• SL

j ∩ SR
j = ∅,

• SL
j = S2j+1, and

• SR
j = S2j+2

for each split node j.

2.3 Randomly Trained Decision Trees

As mentioned already the functioning of decision trees can be sepa-
rated into an off-line phase (training) and an on-line one (testing).
Here we describe these two phases as well as the other components of
the random decision trees that are used in these phases. We take a
general approach and keep definitions and explanations at an abstract
level.

2.3.1 Tree Testing (on-line)

The basic principle of tree testing is simple. Given a previously unseen
data point v a decision tree hierarchically applies a number of prede-
fined tests (see Figure 2.2(b)). Starting at the root, each split node
applies its associated test function h(·, ·) to v. Depending on the result
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of this binary test the data is sent to the right or left child.1 This pro-
cess is repeated until the data point reaches a leaf node. The leaf nodes
contain a predictor/estimator (e.g., a classifier or a regressor) which
associates an output (e.g., a class label or a continuous value) with the
input v.

2.3.2 Tree Training (off-line)

The split functions stored at the internal nodes are key for the
functioning of the tree. One may think of designing these functions
manually. However, this approach would only be possible for very sim-
ple problems. For more realistic problems the test functions need to be
learned automatically, from exemplar data. Thus, the training phase
takes care of selecting the type and parameters of the test function
h(v,θj) associated with each split node (indexed by j) by optimizing
a chosen objective function defined on an available training set.

The optimization of the split functions proceeds in a greedy manner.
At each node j, depending on the subset of the incoming training set
Sj we learn the function that “best” splits Sj into SR

j and SL
j . This

problem is formulated as the maximization of an objective function at
that node

θ∗
j = arg max

θj∈T
Ij (2.2)

with

Ij = I(Sj ,SL
j ,SR

j ,θj) (2.3)

SL
j = {(v,y) ∈ Sj |h(v,θj) = 0}

SR
j = {(v,y) ∈ Sj |h(v,θj) = 1}

As before, the symbols Sj ,SL
j ,SR

j denote the sets of training points
before and after the split (see Figures 2.2(b) and 2.3(b)). The objective
function (2.3) is of an abstract form here. Its precise definition and the
meaning of “best” depends on the task at hand (e.g., supervised or not,

1 In this review we focus only on binary decision trees because they are simpler than n-ary
ones. In our experiments we have not found big accuracy differences when using non binary
trees.



94 The Random Decision Forest Model

continuous or discrete output). For instance, for binary classification,
the term “best” can be defined as splitting the training subset Sj such
that the resulting child nodes are as pure as possible, that is, containing
only training points of a single class. In this case the objective function
can, for instance, be defined as the information gain. Precise definitions
and more task-specific details will be given in later sections.

During training we also need to optimize the tree structure (shape).
Training starts at the root node, j = 0, where the optimum split param-
eters are found as described earlier. Thus, we construct two child nodes,
each receiving a different disjoint subset of the training set. This proce-
dure is then applied to all the newly constructed nodes and the training
phase continues. The structure of the tree depends on how and when we
decide to stop growing various branches of the tree. Diverse stopping
criteria can be applied. For example it is common to stop the tree when
a maximum number of levels D has been reached. Alternatively, one
can impose a minimum value of the maximum maxθj

Ij , in other words
we stop when the seeked-for attributes of the training points within the
leaf node are similar to one another. Tree growing may also be stopped
when a node contains too few training points. Avoiding growing full
trees2 has been demonstrated to have positive effects in terms of gen-
eralization. In this survey we avoid further post-hoc operations such as
tree pruning [44] to keep the training process as simple as possible.

At the end of the training phase we obtain: (i) the (greedily)
optimum weak learners associated with each node, (ii) a learned tree
structure, and (iii) a different set of training points at each leaf.

2.3.3 Weak Learner Models

The split functions play a crucial role both in training and testing. Up-
to-now we have refrained from defining a specific form for these models.
In this section, we provide a simple geometric parametrization and a
few derived formulations, which will be used throughout this review.
We formulate the parametrization of the weak learner model as θ =
(φ,ψ,τ ), where ψ defines the geometric primitive used to separate the
data (e.g., an axis-aligned hyperplane, an oblique hyperplane [45, 65],

2 The term full tree here means a tree where each leaf contains only one training point.
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a general surface etc.). The parameter vector τ captures thresholds for
the inequalities used in the binary test. The filter function φ selects
some features of choice out of the entire vector v. The optimization
given in (2.2) is then defined over all these three parameters. Figure 2.4
illustrates a few possible weak learner models, for example:

Linear data separation. The first parametrization we define is the
linear model

h(v,θj) = [τ1 > φ(v) · ψ > τ2], (2.4)

where [·] is the indicator function.3 For instance, in the 2D example in
Figure 2.4(b) φ(v) = (x1 x2 1)�, and ψ ∈ R

3 denotes a generic line in
homogeneous coordinates. In (2.4) setting τ1 = ∞ or τ2 = −∞ corre-
sponds to using a single-inequality test function. Another special case
of this weak learner model is one where the line ψ is aligned with one
of the axes of the feature space (e.g., ψ = (1 0 ψ3) or ψ = (0 1 ψ3), as
in Figure 2.4(a)). Such axis-aligned weak learners are often used in the
boosting literature and they are referred to as stumps [107].

Please note that the axis aligned case is over-parametrized in (2.4).
Here we choose this parametrization because it highlights the role of
the geometric model ψ and it generalizes to more complex cases.

Fig. 2.4 Example weak learners. (a) Axis-aligned hyperplane. (b) General oriented hyper-
plane. (c) Quadratic (conic in 2D). For ease of visualization here we have v = (x1 x2) ∈ R

2

and φ(v) = (x1 x2 1) in homogeneous coordinates. In general data points v may have a
much higher dimensionality and φ still a dimensionality of ≤ 2.

3 Returns 1 if the argument is true and 0 if it is false.
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Nonlinear data separation. More complex weak learners are
obtained by replacing hyperplanes with higher degree of freedom sur-
faces. For instance, in 2D one could use conic sections as

h(v,θj) = [τ1 > φ�(v) ψ φ(v) > τ2] (2.5)

with ψ ∈ R
3×3 a matrix representing the conic section in homogeneous

coordinates.
Note that low-dimensional weak learners of this type can be used

even for data that originally resides in a very high dimensional space
(d >> 2). In fact, the selector function φj can select a different, small
set of features (e.g., just one or two) and they can be different for
different nodes.

Here we discuss simple weak learner models. But one may use more
complex node test functions such as SVM, boosting etc. [104, 110].
However, care must be taken in selecting the complexity of the node test
function. In fact, as shown later, the number of degrees of freedom of
the weak learner influences heavily the forest generalization properties.

2.3.4 Energy Models

The objective function used during training is essential in construct-
ing decision trees that will perform the desired task. In fact, the result
of the optimization problem in (2.2) determines the parameters of the
weak learners, which, in turn, determines the path followed by a data
and thus its prediction. In summary, through its influence on the choice
of weak learners the energy model determines the prediction and esti-
mation behavior of a decision tree.

Developing task specific energy models is an active research area.
In this section we discuss the components which are in common to
the most widely used objective functions. Later sections will show how
small modifications of the training objective lead to different tasks.

The tree training phase is driven by the statistics of the training
set. The basic building blocks of the training objective function are the
concepts of entropy and information gain. These concepts are usually
discussed in information theory or probability courses. Here we briefly
explain them from the point of view of the decision trees and illustrate
them with toy examples in Figures 2.5 and 2.6.
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Fig. 2.5 Information gain for discrete, non-parametric distributions. (a) Dataset S before
a split. (b) After a horizontal split. (c) After a vertical split. In this example the vertical
split produces purer class distributions in the child nodes. Classes are colour coded.

Fig. 2.6 Information gain for continuous, parametric densities. (a) Dataset S before a split.
(b) After a horizontal split. (c) After a vertical split. A vertical split produces better sepa-
ration and a correspondingly higher information gain.

Figure 2.5 illustrates a toy classification example. The graph in Fig-
ure 2.5(a) shows a number of training points on a 2D space, where each
coordinate denotes a feature value and the colors indicate the known
classes. As mentioned previously, during training our aim is to learn the
parameters that best split the training data. In this example our objec-
tive is to separate different classes as much as possible. For instance,
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if we split the training data horizontally (as shown in Figure 2.5(b))
this produces two sets of data. Each set now contains points from three
classes while before the split the dataset had all four classes. Thus, if
we use the children (rather than the parent node) we would have more
chances of correct prediction; we have reduced the uncertainty of pre-
diction. This intuitive explanation can be formulated using quantitative
measures for entropy and information gain.

The empirical distribution over classes in Figure 2.5(a) is uniform
since we have exactly the same number of points for each color/class.
This also means that the entropy of the training set is rather high.
For discrete probability distributions we use the Shannon entropy,
defined as

H(S) = −
∑
c∈C

p(c) log(p(c)), (2.6)

where S is the set of training points and the letter c indicates the class
label. The set of all classes is denoted C and p(c) indicates the empirical
distribution extracted from the training points within the set S. When
applying an horizontal split such as the one in Figure 2.5(b) we see
that the empirical distributions of the resulting two sets are no longer
uniform. The children distributions are more pure, their entropy has
decreased and their information content increased. This improvement
can be quantified by measuring the information gain

I = H(S) −
∑

i∈{L,R}

|Si|
|S| H(Si). (2.7)

In this example, the split has produced an information gain I = 0.4.
However, the vertical split shown in Figure 2.5(c) separates the training
set even better, that is, the resulting children each contain only two
colors. This corresponds to even lower child entropies and a higher
information gain (I = 0.69). This simple example shows how we can
use the information gain as a training objective function. Maximizing
the information gain helps select the split parameters which produce
the highest confidence in the final distributions. This concept is at the
basis of decision tree training.
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The previous example has focused on discrete, categorical distri-
butions. But entropy and information gain can also be defined for
continuous-valued labels and continuous distributions. In fact, the def-
inition of the information gain remains the same but this time, instead
of using the Shannon entropy, the differential entropy is used

H(S) = −
∫

y∈Y
p(y) log(p(y))dy. (2.8)

Here y is a continuous label of interest and p is the probability den-
sity function estimated from the training points in the set S. From a
practical point of view, in the discrete case, the distribution p(c) was
defined as the empirical distribution computed from the training set.
Similarly in the continuous distribution p(y) can be defined either using
parametric distributions or non-parametric methods.

One of the most popular choice in various applications is to use
Gaussian-based models to approximate the density p(y) due to their
simplicity. The differential entropy of a d-variate Gaussian is defined
analytically as

H(S) =
1
2

log((2πe)d|Λ(S)|). (2.9)

Figure 2.6 illustrates the role of the continuous information gain in
training, with another toy example. This time we wish to cluster simi-
lar points according to their features (again, depicted as the coordinates
of a 2D space). Given an arbitrary input data point we wish the tree
to predict its associated cluster. In Figure 2.6(a) we have a set S of
training data points represented in a continuous 2D space. Fitting a
Gaussian to the entire initial set S produces the density shown in blue,
which has a high differential entropy. Splitting the data horizontally
(Figure 2.6(b)) produces two largely overlapping and slightly smaller
Gaussians (in red and green). The large overlap indicates a subopti-
mal separation and is associated with a relatively low information gain
(I = 1.08). Splitting the data points vertically (Figure 2.6(c)) yields
better separation, with peakier Gaussians and a correspondingly higher
value of information gain (I = 2.43). The fact that the information gain
measure can be defined flexibly, for discrete or continuous distributions
is a useful property which is at the basis of our unified forest model.
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2.3.5 Leaf Prediction Models

During training, besides the tree structure and the weak learners, we
also need to learn how to make predictions.

After training, each leaf node remains associated with a subset of
(labeled) training data. During testing, a previously unseen point tra-
verses the tree until it reaches a leaf. Since the split nodes act on
features, the input test point is likely to end up in a leaf associated
with training points which are all similar to itself. Thus, it is reason-
able to assume that the associated label must also be similar to that of
the training points in that leaf. This justifies using the label statistics
gathered in that leaf to predict the label associated with the input test
point.

In the most general sense the leaf statistics can be captured using
the posterior distributions

p(c|v) and p(y|v), (2.10)

where c and y represent the discrete or continuous labels, respectively.
v is the data point that is being tested in the tree and the conditioning
denotes the fact that the distributions depend on the specific leaf node
reached by the test point (see Figure 2.3(c)). Different leaf predictors
can be used. For instance, a Maximum A-Posteriori (MAP) estimate
may be obtained as c∗ = argmaxc p(c|v), in the discrete case, as used
in [12]. In general, we prefer to keep the entire distribution around so
as to be able to reason about uncertainties.

2.3.6 The Randomness Model

Randomness is injected into the trees during the training phase. Two
of the most popular ways of doing so are:

• random training set sampling [11] (e.g., bagging), and
• randomized node optimization [48].

These two techniques are not mutually exclusive and could be used
together. However, in this survey we focus on the second alternative
which: (i) enables us to train trees on the entire training data, and
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(ii) yields margin-maximization properties for the ensemble models
(details in Section 3). On the other hand, bagging yields greater train-
ing efficiency.

Randomized node optimization. In (2.2) we show that at each
node the optimization is done with respect to the entire parameter
space T . However, this has a major drawback associated with it: effi-
ciency. For large dimensional problems, the size of T can be extremely
large considering that the feature/attribute dimension of each data
point can be large. Optimizing over T is therefore not feasible, nor
desirable (for reasons that will become clearer later). Instead, when
training at the jth node we only make available a small random subset
Tj ⊂ T of parameter values. Thus under the randomness model training
a tree is achieved by optimizing each split node j by

θ∗
j = arg max

θj∈Tj

Ij . (2.11)

The amount of randomness is controlled by the ratio |Tj |/|T |. Note that
in some cases we may have |T | = ∞. At this point it is convenient to
introduce a parameter ρ = |Tj |. The parameter ρ = 1, . . . , |T | controls
the degree of randomness in a tree and (usually) its value is fixed for all
nodes. For ρ = |T | all the split nodes use all the information available
and therefore there is no randomness in the system. Vice-versa, when
ρ = 1 each split node take only a single randomly chosen set of values
for its parameter θj . Thus, there is no real optimization and we get
maximum randomness.

2.4 Ensembles of Trees (Decision Forest)

A random decision forest is an ensemble of randomly trained decision
trees. The key aspect of the forest model is the fact that its component
trees are all randomly different from one another. This leads to de-
correlation between the individual tree predictions and, in turn, results
in improved generalization and robustness. The forest model is char-
acterized by the same components as the decision trees. The family of
weak learners (test functions), energy model, the leaf predictors and
the type of randomness influence the prediction/estimation properties
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Fig. 2.7 Controlling the amount of randomness and tree correlation. (a) Large values of ρ
correspond to little randomness and thus large tree correlation. In this case the forest
behaves very much as if it was made of a single tree. (b) Small values of ρ correspond
to large randomness in the training process. Thus the forest component trees are all very
different from one another.

of the forests. Furthermore, the randomness parameter ρ = |Tj | con-
trols not only the amount of randomness within each tree but also the
amount of correlation between different trees in the forest. In fact, as
illustrated in Figure 2.7, when ρ = |T | all the trees will be identical and
as ρ decreases the trees become more decorrelated (different from one
another).

In a forest with T trees we use the variable t ∈ {1, . . . ,T} to index
each component tree. All trees are trained independently (and pos-
sibly in parallel). During testing, each test point v is simultaneously
pushed through all trees (starting at the root) until it reaches the cor-
responding leaves. Tree testing can also often be done in parallel, thus
achieving high computational efficiency on modern parallel CPU or
GPU hardware (see [89] for GPU-based classification). Combining all
tree predictions into a single forest prediction may be done by a simple
averaging operation [11]. For instance, in classification

p(c|v) =
1
T

T∑
t=1

pt(c|v), (2.12)

where pt(c|v) denotes the posterior distribution obtained by the tth
tree. Alternatively one could also multiply the tree outputs together
(though the trees are not statistically independent)

p(c|v) =
1
Z

T∏
t=1

pt(c|v) (2.13)

with the partition function Z ensuring probabilistic normalization.
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Fig. 2.8 Ensemble model. (a) The posteriors of four different regression trees (shown with
different colors). Some correspond to higher confidence than others. (b) An ensemble pos-
terior p(y|v) obtained by averaging all tree posteriors. (c) The ensemble posterior p(y|v)
obtained as product of all tree posteriors. Both in (b) and (c) the ensemble output is
influenced more by the more informative trees.

Figure 2.8 illustrates tree output fusion for a simple example where
the attribute we want to predict is the continuous variable y. Imagine
that we have trained a forest with T = 4 trees. For a test data point v
we get the corresponding tree posteriors pt(y|v), with t = {1, . . . ,4}.
As illustrated, some trees produce peakier (more confident) predictions
than others. Both the averaging and the product operations produce
combined distributions (shown in black) which are heavily influenced
by the most confident, most informative trees. Therefore, such sim-
ple operations have the effect of selecting (softly) the more confident
trees out of the forest. This selection is carried out at a leaf-by-leaf
level and the more confident trees may be different for different leaves.
Averaging many tree posteriors also has the advantage of reducing the
effect of possibly noisy tree contributions. In general, the product based
ensemble model may be less robust to noise. Alternative ensemble mod-
els are possible, where for instance one may choose to select individual
trees in a hard way.

2.4.1 Key Model Parameters

The decision forests, their construction and prediction abilities depend
on the model parameters. The parameters that most influence the
behavior of a decision forest are:

• The maximum allowed tree depth D;
• The amount of randomness (controlled by ρ) and its type;
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• The forest size (number of trees) T ;
• The choice of weak learner model;
• The training objective function;
• The choice of features in practical applications.

Those choices directly affect the forest predictive accuracy, the accuracy
of its confidence, its generalization and its computational efficiency.

For instance, several papers have pointed out how the testing accu-
racy increases monotonically with the forest size T [25, 92, 110], how
learning very deep trees can lead to overfitting, as well as the impor-
tance of using very large amounts of training data [91]. In his seminal
work Breiman [11] has also shown the importance of randomness and
its effect on tree correlation. Additionally, Section 3 will show how the
choice of randomness model directly influences a classification forest’s
generalization.

The choice of stopping criteria has a direct influence on the shape of
the trees, e.g., whether they are well balanced or not. In general, very
unbalanced trees should be avoided. At the limit they may become just
chains of weak learners, with little feature sharing and thus little gen-
eralization. A less studied issue is how the weak learners influence the
forest’s accuracy and its estimated uncertainty. To this end, the next
sections will show the effect of ρ on the forest behavior with some simple
toy examples and compare the results with existing alternatives. When
training a forest it is important to visualize its trees as well as other
intermediate variables (e.g., the features and parameters chosen at each
node), to make sure the forest has the expected behavior.

Now we have defined our generic decision forest model. Next we
discuss its specializations for the different tasks of interest. The expla-
nations will be accompanied by a number of synthetic examples in
the hope of increasing clarity and helping understand the forests’ gen-
eral properties. Real-world applications will also be discussed briefly to
confirm the power of forests in practice.



3
Classification Forests

This section discusses the most common use of decision forests, that
is, classification. The goal here is to automatically associate an input
data point v with a discrete class c ∈ {ck}. Classification forests enjoy
a number of useful properties:

• they naturally handle problems with more than two classes;
• they provide a probabilistic output;
• they generalize well to previously unseen data;
• they are efficient thanks to their parallelism and reduced set

of tests per data point.

In addition to these known properties this section also shows that:

• under certain conditions classification forests exhibit margin-
maximizing behavior, and

• the quality of the posterior can be controlled via the choice
of the specific weak learner.

We begin with an overview of general classification methods and then
show how to specialize the generic forest model presented in the previ-
ous section for the classification task.

105
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3.1 Classification Algorithms in the Literature

Classification (of pixels or images) is at the heart of modern computer
vision and image understanding, as demonstrated by the large interest
in the PASCAL Visual Object Class (VOC) recognition challenge [30].

One of the most widely used classification algorithms is the support
vector machine (SVM) [106] whose popularity is due to the fact that
in binary classification problems (only two target classes) it guaran-
tees maximum-margin separation. In turn, this property yields good
generalization with relatively little training data.

Another popular technique is boosting [34] which builds strong clas-
sifiers as linear combination of many weak classifiers. A boosted classi-
fier is trained iteratively, where at each iteration the training examples
for which the classifier works less well are “boosted” by increasing their
associated training weight. Cascaded boosting was used in [107] for effi-
cient face detection and localization in images, a task nowadays handled
even by entry-level digital cameras and webcams.

Despite the success of SVMs and boosting, these techniques do not
extend naturally to multiple class problems [21, 103]. In principle, clas-
sification trees and forests work, unmodified with any number of classes.
For instance, they have been tested on ∼ 20 classes in [92] and ∼ 30
classes in [91].

Abundant literature has shown the advantage of fusing together
multiple simple learners of different types [62, 96, 104, 110, 113].
Classification forests represent a simple, yet effective way of combining
randomly trained classification trees. A thorough comparison of forests
with respect to other binary classification algorithms has been pre-
sented in [15]. In average, classification forests have shown good gen-
eralization, even in problems with high dimensionality. Classification
forests have also been employed successfully in a number of practical
applications [4, 19, 24, 60, 83, 92, 66].

3.2 Specializing the Decision Forest Model for Classification

This section specializes the generic model introduced in Section 2 for
use in classification.
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Problem statement. The classification task may be summarized as
follows:

Given a labeled training set learn a general mapping which asso-
ciates previously unseen test data with their correct classes.

The need for a general rule that can be applied to “not-yet-
available” test data is typical of inductive tasks.1 In classification the
desired output is of discrete, categorical, unordered type. Consequently,
so is the nature of the training labels. Each training point is denoted
as a pair (v, c). In Figure 3.1(a) data points are denoted with circles,
with different colors indicating different training labels. Testing points
(not available during training) are indicated in gray (their class label
is not known in advance).

More formally, during testing we are given an input test data v and
we wish to infer a class label c such that c ∈ C, with C = {ck}. More gen-
erally we wish to compute the whole distribution p(c|v). As usual the
input is represented as a multi-dimensional vector of feature responses

Fig. 3.1 Classification: training data and tree training. (a) Input data points. The ground-
truth label of training points is denoted with different colors. Gray circles indicate unlabeled,
previously unseen test data. (b) A binary classification tree. During training a set of labeled
training points {v} is used to optimize the parameters of the tree. In a classification tree the
entropy of the class distributions associated with different nodes decreases (the confidence
increases) when going from the root toward the leaves.

1 As opposed to transductive tasks. The distinction will become clearer later.



108 Classification Forests

v = (x1, . . . ,xd) ∈ R
d. Training happens by optimizing an energy over

a training set S0 of data and associated ground-truth labels. Next we
specify the precise nature of this energy.

The training objective function. Forest training happens by opti-
mizing the parameters of the weak learner at each split node j via:

θ∗
j = arg max

θj∈Tj

Ij . (3.1)

For classification the objective function Ij takes the form of a classical
information gain defined for discrete distributions:

Ij = H(Sj) −
∑

i∈{L,R}

|Si
j |

|Sj |
H(Si

j)

with i indexing the two child nodes. The entropy for a generic set S of
training points is defined as:

H(S) = −
∑
c∈C

p(c) logp(c)

where p(c) is calculated as normalized empirical histogram of labels cor-
responding to the training points in S. As illustrated in Figure 3.1(b)
training a classification tree by maximizing the information gain has
the tendency to produce trees where the entropy of the class distri-
butions associated with the nodes decreases (the prediction confidence
increases) when going from the root toward the leaves. In turn, this
yields increasing confidence of prediction.

Although the information gain is a very popular choice of objective
function it is not the only one. However, as shown in later sections, using
an information-gain-like objective function aids unification of diverse
tasks under the same forest framework.

Class re-balancing. Note that in some applications one has a very
unbalanced distribution of classes in the training set S0. For instance,
when performing semantic image segmentation the number of “back-
ground” pixels may dominate all other “object” pixels. This may have
a detrimental effect on forest training. This problem may be mitigated
simply by resampling the training data so as to have roughly uniform
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training distributions. An alternative is to use the known “prior” class
distribution to weigh the contribution of each class when computing
the information gain at each node.

Randomness. In (3.1) randomness is injected via randomized node
optimization, with as before ρ = |Tj | indicating the amount of random-
ness. For instance, before starting training node j we can randomly
sample ρ = 1,000 parameter values out of possibly billions or even infi-
nite possibilities. It is important to point out that it is not necessary to
have the entire set T pre-computed and stored. We can generate each
random subset Tj as needed before starting training the corresponding
node.

The leaf and ensemble prediction models. Classification forests
produce probabilistic output as they return not just a single class point
prediction but an entire class distribution. In fact, during testing, each
tree leaf yields the posterior pt(c|v) and the forest output is simply:

p(c|v) =
1
T

T∑
t

pt(c|v).

This is illustrated with a small, three-tree forest in Figure 3.2.
The choices made above in terms of the form of the objective func-

tion and that of the prediction model characterize a classification forest.

Fig. 3.2 Classification forest testing. During testing the same unlabeled test input data v is
pushed through each component tree. At each internal node a test is applied and the data
point sent to the appropriate child. The process is repeated until a leaf is reached. At the
leaf the stored posterior pt(c|v) is read off. The forest class posterior p(c|v) is simply the
average of all tree posteriors.
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In later section we will discuss how different choices lead to different
models. Next, we discuss the effect of model parameters and important
properties of classification forests.

3.3 Effect of Model Parameters

We use many illustrative, synthetic examples designed to bring to life
different properties. Finally, Section 3.6 demonstrates such properties
on a real-world, commercial application.

3.3.1 The Effect of the Forest Size on Generalization

Figure 3.3 shows a first synthetic example. Training points belonging
to two different classes (shown in yellow and red) are randomly drawn
from two well separated Gaussian distributions (Figure 3.3(a)). The
points are represented as 2-vectors, where each dimension represents a
different feature.

A forest of shallow trees (D = 2) and varying size T is trained on
those points. In this example simple axis-aligned weak learners are
used. In such degenerate trees there is only one split node, the root
itself (Figure 3.3(b)). The trees are all randomly different from one
another and each defines a slightly different partition of the data. In
this simple (linearly separable) example each tree defines a “perfect”
partition since the training data is separated perfectly. However, the
partitions themselves are still randomly different from one another.

Figure 3.3c shows the testing classification posteriors evaluated for
all non-training points across a square portion of the feature space (the
white testing pixels in Figure 3.3(a)). In this visualization the color
associated with each test point is a linear combination of the colors (red
and yellow) corresponding to the two classes; where the mixing weights
are proportional to the posterior itself. Thus, intermediate, mixed colors
(orange in this case) correspond to regions of high uncertainty and low
predictive confidence.

We observe that each single tree produces over-confident predic-
tions (sharp probabilities in Figure 3.3c1). This is undesirable. In fact,
intuitively one would expect the confidence of classification to be
reduced for test data which is “different” than the training data. The
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Fig. 3.3 A first classification forest and the effect of forest size T . (a) Training points
belonging to two classes. (b) Different training trees produce different partitions and thus
different leaf predictors. The color of tree nodes and edges indicates the class probability
of training points going through them. (c) In testing, increasing the forest size T produces
smoother class posteriors. All experiments were run with D = 2 and axis-aligned weak
learners. See text for details.

larger the difference, the larger the uncertainty. Thanks to all trees
being different from one another, increasing the forest size from T = 1
to T = 200 produces much smoother posteriors (Figure 3.3c3). Now we
observe higher confidence near the training points and lower confidence
away from training regions of space; an indication of good generaliza-
tion behavior.

For few trees (e.g., T = 8) the forest posterior shows clear box-like
artifacts. This is due to the use of an axis-aligned weak learner model.
Such artifacts yield low quality confidence estimates (especially when
extrapolating away from training regions) and ultimately imperfect
generalization. Therefore, in the remainder of this survey we will always
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keep an eye on the accuracy of the uncertainty as this is key for inductive
generalization away from (possibly little) training data. The relation-
ship between quality of uncertainty and maximum-margin classification
will be studied in Section 3.4.

3.3.2 Multiple Classes and Training Noise

One major advantage of decision forests over, for example, support
vector machines and boosting is that the same classification model
can handle both binary and multi-class problems. This is illustrated in
Figure 3.4 with both two- and four-class examples, and different levels
of noise in the training data.

The top row of the figure shows the input training points (two
classes in Figure 3.4(a) and four classes in Figures 3.4(b) and 3.4(c)).
The middle row shows corresponding testing class posteriors. The bot-
tom row shows entropies associated to each pixel. Note how points in
between spiral arms or farther away from training points are (correctly)
associated with larger uncertainty (orange pixels in Figure 3.4(a′) and
grayish ones in Figures 3.4(b′) and 3.4(c′)).

In this case we have employed a richer conic section weak learner
model which removes the blocky artifacts observed in the previ-
ous example and yields smoother posteriors. Notice for instance in
Figure 3.4(b′) how the curve separating the red and the green spi-
ral arms is nicely continued away from training points (with increasing
uncertainty).

As expected, if the noise in the position of training points increases
(cf Figures 3.4(b) and 3.4(c)) then training points for different classes
are more intermingled with one another. This yields a larger overall
uncertainty in the testing posterior (captured by less saturated colors
in Figure 3.4(c′)). Next we delve further into the issue of training noise
and mixed or “sloppy” training data.

3.3.3 “Sloppy” Labels and the Effect of the Tree Depth

The experiment in Figure 3.5 illustrates the behavior of classification
forests on a four-class training set where there is both mixing of labels
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Fig. 3.4 The effect of multiple classes and noise in training data. (a,b,c) Training points for
three different experiments: 2-class spiral, 4-class spiral and another 4-class spiral with nois-
ier point positions, respectively. (a′,b′,c′) Corresponding testing posteriors. (a,′′b,′′c′′) Cor-
responding entropy images (brighter for larger entropy). The classification forest can handle
both binary as well as multi-class problems. With larger training noise the classification
uncertainty increases (less saturated colors in c′ and less sharp entropy in c′′). All experi-
ments in this figure were run with T = 200, D = 6, and a conic-section weak-learner model.

(in feature space) and large gaps. Here three different forests have been
trained with the same number of trees T = 200 and varying maximum
depth D. We observe that as the tree depth increases the overall predic-
tion confidence also increases. Furthermore, in large gaps (e.g., between
red and blue regions), the optimal separating surface tends to be placed
roughly in the middle of the gap.2

2 This effect will be analyzed further in the next section.
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Fig. 3.5 The effect of tree depth. A four-class problem with both mixing of training labels
and large gaps. (a) Training points. (b,c,d) Testing posteriors for different tree depths. All
experiments were run with T = 200 and a conic weak-learner model. The tree depth is a
crucial parameter in avoiding under- or over-fitting.

Finally, we notice that a large value of D (D = 15 in the example)
tends to produce overfitting, that is, the posterior tends to split off
isolated clusters of noisy training data (denoted with white circles in
the figure). In fact, the maximum tree depth parameter D controls the
amount of overfitting. By the same token, too shallow trees produce
washed-out, low-confidence posteriors. Thus, while using multiple trees
alleviates the overfitting problem of individual trees, it does not cure
it completely. In practice one has to be very careful to select the most
appropriate value of D as its optimal value is a function of the problem
complexity.
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3.3.4 The Effect of the Weak Learner

Another important issue that has perhaps been overlooked in the lit-
erature is the effect of a particular choice of weak learner model on the
forest behavior.

Figure 3.6 illustrates this point. We are given four sets of well sep-
arated point clusters, one cluster per class. We train three forests on
those points with different choices of weak learner. The goal is to study
the effect of the weak learner on the confidence in regions far from
the training data. By comparing Figures 3.6(b), 3.6(c) and 3.6(d) we

Fig. 3.6 The effect of the weak learner model. (a) A four-class training set. (b) The testing
posterior for a forest with axis-aligned weak learners. In regions far from the training points
the posterior is overconfident. (c) The testing posterior for a forest with oriented line weak
learners. (d) The testing posterior for a forest with conic section weak learners. In (c) and
(d) the uncertainty of class prediction increases with distance from the training data points.
Here we use D = 3 and T = 200 for all examples.
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observe that an axis-aligned weak-learner produces overconfident pre-
dictions in the corners of the space. In this case the confidence value is
independent of distance from training points. In contrast, the curved
nature of the conic sections yield a more convincing increase of uncer-
tainty with distance from training data.

Another experiment is shown in Figure 3.7 where we are given a
set of training points arranged in four spirals, one for each of the four
classes. Six different forests have been trained on the same training
data, for 2 different values of tree depth and 3 different weak learners.
The 2 × 3 arrangement of images shows the output test posterior for
varying D (in different rows) and varying weak learner model (in differ-
ent columns). All experiments are conducted with a very large number

Fig. 3.7 The effect of the weak learner model. The same set of 4-class training data is used
to train 6 different forests, for 2 different values of D and 3 different weak learners. For
fixed weak learner deeper trees produce larger confidence. For constant D nonlinear weak
learners produce the best results. In fact, an axis-aligned weak learner model produces
blocky artifacts while the curvilinear model tends to extrapolate the shape of the spiral
arms in a more natural way. Training has been achieved with ρ = 500 for all split nodes.
The forest size is kept fixed at T = 400.
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of trees (T = 400) to remove the effect of forest size and reach close to
the maximum possible smoothness under the model.

This experiment confirms again that increasing D increases the con-
fidence of the output (for fixed weak learner). This is illustrated by the
more intense colors going from top row to the bottom row. Furthermore
we observe that the choice of weak learner model has a large impact
on the test posterior and the quality of its confidence. The axis-aligned
model may still separate the training data well, but produces large
blocky artifacts in the test regions. This tends to indicate bad gener-
alization. The oriented line model [45, 65] is a clear improvement, and
better still is the nonlinear model as it extrapolates the shape of the
spiral arms in a more naturally curved manner.

On the flip side, of course, we should also consider the fact that axis-
aligned tests are extremely efficient to compute. So the choice of the
specific weak learner has to be based on considerations of both accuracy
and efficiency and depends on the specific application at hand. Next we
study the effect of randomness by running exactly the same experiment
but with a much larger amount of training randomness.

3.3.5 The Effect of Randomness

Figure 3.8 shows the same experiment as in Figure 3.7 with the only
difference that now ρ = 5 as opposed to ρ = 500. Thus, much fewer
parameter values were made available to each node during train-
ing. This increases the randomness of each tree and reduces their
correlation.

Larger randomness helps reduce a little the blocky artifacts of the
axis-aligned weak-learner as it produces more rounded decision bound-
aries (first column in Figure 3.8). Furthermore, larger randomness
yields a much lower overall confidence, especially noticeable in shallower
trees (washed out colors in the top row).

A disadvantage of the more complex weak learners is that they are
associated with a larger parameters space. Thus finding discriminative
sets of parameter values may be time consuming. However, in this toy
example the more complex conic section learner model works well for
deeper trees (D = 13) even for small values of ρ (large randomness).
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Fig. 3.8 The effect of randomness. The same set of 4-class training data is used to train 6
different forests, for 2 different values of D and 3 different weak learners. This experiment
is identical to that in Figure 3.7 except that we have used much more training randomness.
In fact ρ = 5 for all split nodes. The forest size is kept fixed at T = 400. More randomness
reduces the artifacts of the axis-aligned weak learner a little, as well as reducing overall
prediction confidence too. See text for details.

The results reported here are only indicative. In fact, which specific
weak learner to use depends on considerations of efficiency as well as
accuracy and it is application dependent. Many more examples, ani-
mations and demo videos are available at [49].

Next, we move on to show further properties of classification forests.
Specifically, we demonstrate how under certain conditions forests
exhibit margin-maximizing capabilities.

3.4 Maximum-margin Properties

The hallmark of support vector machines is their ability to separate
data belonging to different classes via a margin-maximizing surface.
This, in turn, yields good generalization even with relatively little train-
ing data. This section shows how this important property is replicated
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in random classification forests and under which conditions. Margin
maximizing properties of random forests were discussed in [58]. Here
we show a different, simpler formulation, analyze the conditions that
lead to margin maximization, and discuss how this property is affected
by different choices of model parameters.

Imagine we are given a linearly separable 2-class training data set
such as that shown in Figure 3.9(a). For simplicity here we assume
d = 2 (only two features describe each data point), an axis-aligned
weak learner model and D = 2 (trees are simple binary stumps).
As usual randomness is injected via randomized node optimization
(Section 2.3.6).

When training the root node of the first tree, if we use
enough candidate features/parameters (i.e., |T0| is large) the selected

Fig. 3.9 Forest’s maximum-margin properties. (a) Input 2-class training points. They are
separated by a gap of dimension ∆. (b) Forest posterior. Note that all of the uncertainty
band resides within the gap. (c) Cross-sections of class posteriors along the horizontal, white
dashed line in (b). Within the gap the class posteriors are linear functions of x1. Since they
have to sum to 1 they meet right in the middle of the gap. In these experiments we use
ρ = 500,D = 2,T = 500 and axis aligned weak learners.
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separating line tends to be placed somewhere within the gap (see
Figure 3.9(a)) so as to separate the training data perfectly (maximum
information gain). Any position within the gap is associated with
exactly the same, maximum information gain. Thus, a collection of
randomly trained trees produces a set of separating lines randomly
placed within the gap (an effect already observed in Figure 3.3(b)).

If the candidate separating lines are sampled from a uniform distri-
bution (as is usually the case) then this would yield forest class posteri-
ors that vary within the gap as a linear ramp, as shown in Figures 3.9(b)
and 3.9(c). If we are interested in a hard separation then the optimal
separating surface (assuming equal loss) is such that the posteriors for
the two classes are identical. This corresponds to a line placed right in
the middle of the gap, that is, the maximum-margin solution. Next, we
describe the same concepts more formally.

We are given the two-class training points in Figure 3.9(a). In this
simple example the training data is not only linearly separable, but it
is perfectly separable via vertical stumps on x1. So we constrain our
weak learners to be vertical lines only, that is,

h(v,θj) = [φ(v) > τ ] with φ(v) = x1.

Under these conditions we can define the gap ∆ as ∆ = x′′
1 − x′

1, with
x′

1 and x′′
1 corresponding to the first feature of the two “support vec-

tors,”3 that is, the yellow point with largest x1 and the red point with
smallest x1. For a fixed x2 the classification forest produces the poste-
rior p(c|x1) for the two classes c1 and c2. The optimal separating line
(vertical) is at position τ∗ such that

τ∗ = argmin
τ

|p(c = c1|x1 = τ) − p(c = c2|x1 = τ)|.

We make the additional assumption that when training a node its
available test parameters (in this case just τ) are sampled from a uni-
form distribution, then the forest posteriors behave linearly within the
gap region, that is,

lim
ρ→|T |,T→∞

p(c = c1|x1) =
x1 − x′

1
∆

∀x1 ∈ [x′
1,x

′′
1].

3 Analogous to support vectors in SVM.
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(see Figures 3.9(b) and 3.9(c)). Consequently, since
∑

c∈{c1,c2}p(c|x1)=1
we have

lim
ρ→|T |,T→∞

τ∗ = x′
1 + ∆/2.

which shows that the optimal separation is placed right in the middle
of the gap. This demonstrates the forest’s margin-maximization prop-
erties for this simple example.

Note that each individual tree isnotguaranteed toproducemaximum-
margin separation; it is instead the combination of multiple trees that
at the limit T → ∞ produces the desired max-margin behavior. In prac-
tice it suffices to have T and ρ “large enough.” Furthermore, as observed
earlier, for perfectly separable data each tree produces over-confident
posteriors. Once again, their combination in a forest yields fully proba-
bilistic and smooth posteriors (in contrast to SVM).

The simple mathematical derivation above provides us with some
intuition on how model choices such as the amount of randomness or
the type of weak learner affect the placement of the forest’s separating
surface. The next sections should clarify these concepts further.

3.4.1 The Effect of Randomness on Optimal Separation

The experiment in Figure 3.9 has used a large value of ρ (ρ → |T |,
little randomness, large tree correlation) to make sure that each tree
decision boundary fell within the gap. When using more randomness
(smaller ρ) then the individual trees are not guaranteed to split the data
perfectly and thus they may yield a sub-optimal information gain. In
turn, this yields a lower confidence in the posterior. Now, the locus
of points where p(c = c1|x1) = p(c = c2|x1) is no longer placed right in
the middle of the gap. This is shown in the experiment in Figure 3.10
where we can observe that by increasing the randomness (decreasing ρ)
we obtain smoother and more spread-out posteriors. The optimal sep-
arating surface is less sharply defined. The effect of individual training
points is weaker as compared to the entire mass of training data; and
in fact, it is no longer possible to identify individual support vectors.
This may be advantageous in the presence of “sloppy” or inaccurate
training data.
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Fig. 3.10 The effect of randomness on the forest margin. (a) Forest posterior for ρ = 50
(small randomness). (b) Forest posterior for ρ = 5. (c) Forest posterior for ρ = 2 (highest
randomness). These experiments have used D = 2,T = 400 and axis-aligned weak learners.
The bottom row shows 1D posteriors computed along the white dashed line. Increasing
randomness produces less well defined separating surfaces. The optimal separating surface,
that is, the loci of points where the class posteriors are equal (shown in black) moves
toward the left of the margin-maximizing line (shown in green in all three experiments).
As randomness increases individual training points have less influence on the separating
surface.

The role of the parameter ρ is very similar to that of “slack” vari-
ables in SVM [106]. In SVM the slack variables control the influence of
individual support vectors versus the rest of training data. Appropriate
values of slack variables yield higher robustness with respect to training
noise.

3.4.2 Influence of the Weak Learner Model

Figure 3.11 shows how more complex weak learners affects the shape
and orientation of the optimal, hard classification surface (as well as
the uncertain region, in orange). Once again, the position and orienta-
tion of the separation boundary is more or less sensitive to individual
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Fig. 3.11 The effect of the weak learner on forest margin. (a) Forest posterior for axis aligned
weak learners. (b) Forest posterior for oriented line weak learners. (c) Forest posterior for
conic section weak learners. In these experiments we have used ρ = 50,D = 2,T = 500. The
choice of weak learner affects the optimal, hard separating curve (in black). Individual
training points influence the surface differently depending on the amount of randomness in
the forest.

training points depending on the value of ρ. Little randomness produces
a behavior closer to that of support vector machines.

In classification forests, using linear weak-learners still produces
(in general) globally nonlinear classification (see the black curves in
Figures 3.10(c) and 3.11(b)). This is due to the fact that multiple simple
linear split nodes are organized in a hierarchical fashion.

3.4.3 Max-margin in Multiple Classes

Since classification forests can naturally apply to more than 2 classes
how does this affect their maximum-margin properties? We illustrate
this point with a multi-class synthetic example. In Figure 3.12a we
have a linearly separable four-class training set. On it we have trained
two forests with ρ = 50,D = 3,T = 400. The only difference between
the two forests is the fact that the first one uses an oriented line weak
learner and the second a conic weak learner. Figures 3.12(b) and 3.12(c)
show the corresponding testing posteriors. As usual gray pixels indicate
regions of higher posterior entropy and lower confidence. They roughly
delineate the four optimal hard classification regions. Note that in both
cases their boundaries are roughly placed half-way between neighboring
classes. As in the 2-class case the influence of individual training points
is dictated by the randomness parameter ρ.
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Fig. 3.12 Forest’s max-margin properties for multiple classes. (a) Input four-class training
points. (b) Forest posterior for oriented line weak learners. (c) Forest posterior for conic
section weak learners. Regions of high entropy are shown as gray bands and correspond
to loci of optimal separation. In these experiments we have used the following parameter
settings ρ = 50,D = 3,T = 400.

Finally, when comparing Figures 3.12(b) and 3.12(c) we notice that
for conic learners the shape of the uncertainty region evolves in a curved
fashion when moving away from training data.

3.4.4 The Effect of the Randomness Model

This section shows a direct comparison between the randomized node
optimization and the bagging model.

In bagging randomness is injected by randomly sampling different
subsets of training data. So, each tree sees a different training subset.
Its node parameters are then fully optimized on this set. This means
that specific “support vectors” may not be available in some of the
trees. The posterior associated with those trees will then tend to move
the optimal separating surface away from the maximum-margin one.

This is illustrated in Figure 3.13 where we have trained two forests
with ρ = 500,D = 2,T = 400 and two different randomness models.
The forest tested in Figure 3.13(a) uses randomized node optimiza-
tion (RNO). The one in Figure 3.13(b) uses bagging (randomly select-
ing 50% training data with replacement) on exactly the same training
data. In bagging, when training a node, there may be a whole range of
values of a certain parameter which yield maximum information gain
(e.g., the range [τ ′

1, τ
′′
1 ] for the threshold τ1). In such a case we could

decide to always select one value out of the range (e.g., τ ′
1). But this

would probably be an unfair comparison. Thus we chose to randomly
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Fig. 3.13 Max-margin: bagging versus randomized node optimization. (a) Posterior for
forest trained with randomized node optimization. (b) Posterior for forest trained with
bagging. In bagging, for each tree we use 50% random selection of training data with
replacement. Loci of optimal separation are shown as black lines. In these experiments
we use ρ = 500, D = 2, T = 400 and axis-aligned weak learners. Areas of high entropy are
shown in gray to highlight the separating surfaces.

select a parameter value uniformly within that range. In effect here we
are combining bagging and random node optimization together. The
effect is shown in Figure 3.13(b). In both cases we have used a large
value of ρ to make sure that each tree achieves decent optimality in
parameter selection. We observe that the introduction of training set
randomization leads to smoother posteriors whose optimal boundary
(shown as a vertical black line) does not coincide with the maximum
margin (green, solid line). Of course this behavior is controlled by how
much (training set) randomness we inject in the system. If we were to
take all training data then we would reproduce a max-margin behavior
(but it would not be bagging). One advantage of bagging is increased
training speed (due to reduced training set size). More experiments
and comparisons are available in [49]. In the rest of the survey we use
the RNO randomness model because it allows us to use all available
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training data and enables us to control the maximum-margin behavior
simply, by means of changing ρ.

3.5 Comparisons with Alternative Algorithms

This section compares classification forests to existing state-of-the-art
algorithms.

3.5.1 Comparison with Boosting

Figure 3.14 shows a comparison between classification forests and
ModestBoost on two synthetic experiments.4 Here, for both algorithm

Fig. 3.14 Comparison between classification forests and boosting on two examples. Forests
produce a smooth, probabilistic output. High uncertainty is associated with regions between
different classes or away from training data. Capitalized produces a hard output. Interpret-
ing the output of a boosted strong classifier as real valued does not seem to produce mean-
ingful confidence. The forest parameters are: D = 2, T = 200, and we use axis-aligned weak
learners. Boosting was also run with 200 axis-aligned stumps and the remaining parameters
optimized to achieve best results.

4 Boosting results are obtained via the publically available Matlab toolbox in
http://graphics.cs.msu.ru/ru/science/research/machinelearning/adaboosttoolbox.
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we use shallow tree stumps (D = 2) with axis-aligned split functions as
this is what is conventionally used in boosting [108].

The first column presents the soft testing posteriors of the classi-
fication forest. The third column presents a visualization of the real-
valued output of the boosted strong classifier, while the second column
shows the more conventional, thresholded boosting output. The fig-
ure illustrates the superiority of the forest in terms of the additional
uncertainty encoded in its probabilistic output. Although both algo-
rithms separate the training data perfectly, the boosting binary output
is overly confident, thus potentially causing incorrect classification of
previously unseen testing points. Using the real valued boosted output
(third column) as a proxy for uncertainty does not seem to produce
intuitively meaningful confidence results in these experiments. In fact,
in some cases (experiment 1) there is not much difference between the
thresholded and real-valued boosting outputs. This is due to the fact
that all boosting’s weak learners are identical to one another, in this
case. The training procedure of the boosting algorithm tested here does
not encourage diversity of weak learners in cases where the data can be
easily separated by a single stump. Alternative boosting variants may
produce better behavior.

3.5.2 Comparison with Support Vector Machines

Figure 3.15 illustrates a comparison between classification forests and
conventional support vector machines5 on three different four-class
training sets. In all examples the four classes are nicely separable
and both forests and SVMs achieve good separation results. How-
ever, forests also produce uncertainty information. Probabilistic SVM
counterparts such as the relevance vector machine [102] do produce
confidence output but at the expense of further computation.

The role of good confidence estimation is particularly evident in
Figure 3.15(b) where we can see how the uncertainty increases as we
move away from the training data. The exact shape of the confidence

5 SVM experiments are obtained via the publically available code in http://asi.insa-
rouen.fr/enseignants/ arakotom/toolbox/index.html. For multi-class experiments we run
one-v-all SVM.
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Fig. 3.15 Comparison between classification forests and support vector machines. All forest
experiments were run with D = 3, T = 200 and conic weak learner. The SVM parameters
were optimized to achieve best results.

region is dictated strongly by the choice of the weak learner model
(conic section in this case), and a simple axis-aligned weak learner
would produce inferior results. In contrast, the SVM classifier assigns
a hard output class value to each pixel, with equal confidence.

Unlike forests, SVMs were born as two-class classifiers, although
recently they have been adapted to work with multiple classes.
Figure 3.15(c) shows how the sequentiality of the one-v-all SVM
approach may lead to asymmetries which are not really justified by
the training data.

3.6 Human Body Tracking in Microsoft Kinect
for XBox 360

This section describes the application of classification forests for the
real-time tracking of humans, as employed in the Microsoft Kinect gam-
ing system [66]. Here we present a summary of the algorithm in [91]
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Fig. 3.16 Classification forests in Microsoft Kinect for XBox 360. (a) An input frame as
acquired by the Kinect depth camera. (b) Synthetically generated ground-truth labeling of
31 different body parts [91]. (c) One of the many features of a “reference” point p. Given
p computing the feature amounts to looking up the depth at a “probe” position p + r and
comparing it with the depth of p.

and show how the forest employed within is readily interpreted as an
instantiation of our generic decision forest model.

Given a depth image such as the one shown in Figure 3.16(a) we
wish to say which body part each pixel belongs to. This is a typical
job for a classification forest. In this application there are 31 differ-
ent body part classes: c ∈ {left hand,right hand,head,l. shoulder,
r. shoulder, . . .}. The unit of computation is a single pixel in position
p ∈ R

2 and with associated feature vector v(p) ∈ R
d.

During testing, given a pixel p in a previously unseen test image
we wish to estimate the posterior p(c|v). Visual features are simple
depth comparisons between pairs of pixel locations. So, for pixel p
its feature vector v = (x1, . . . ,xi, . . . ,xd) ∈ R

d is a collection of depth
differences:

xi = J(p) − J

(
p +

ri

J(p)

)
, (3.2)

where J(·) denotes a pixel depth in mm (distance from camera plane).
The 2D vector ri denotes a displacement from the reference point p (see
Figure 3.16(c)). Since for each pixel we can look around at an infinite
number of possible displacements (∀r ∈ R

2) we have d = ∞.
During training we are given a large number of pixel-wise labeled

training image pairs as in Figure 3.16(b). Training happens by maxi-
mizing the information gain for discrete distributions (3.1). For a split
node j its parameters are

θj = (rj , τj)
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Fig. 3.17 Classification forests in Kinect for XBox 360. (a) An input depth frame with back-
ground removed. (b) The body part classification posterior. Different colors corresponding
to different body parts, out of 31 different classes.

with rj a randomly chosen displacement. The quantity τj is a learned
scalar threshold. If d = ∞ then also the whole set of possible split
parameters has infinite cardinality, i.e., |T | = ∞.

An axis-aligned weak learner model is used here with the node split
function as follows

h(v,θj) = [φ(v,rj) > τj ].

As usual, the selector function φ takes the entire feature vector v and
returns the single feature response (3.2) corresponding to the chosen
displacement rj . In practice, when training a split node j we first ran-
domly generate a set of parameters Tj and then maximize the infor-
mation gain by exhaustive search. Therefore we never need to compute
the entire infinite set T .

Now we have defined all model parameters for the specific appli-
cation at hand. Some example results are shown in Figure 3.17; with
many more shown in the original paper [91]. Now that we know how
this application relates to the more abstract description of the clas-
sification forest model it would be interesting to see how the results
change, for example, when changing the weak learner model, or the
amount of randomness etc. However, this investigation is beyond the
scope of this review.

Moving on from classification, the next section addresses a closely
related problem, that of probabilistic, nonlinear regression. Interest-
ingly, regression forests have very recently been used also for skeletal
joint prediction in Kinect images [39].
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Regression Forests

This section discusses the use of random decision forests for the prob-
abilistic estimation of continuous variables.

Regression forests are used for the nonlinear regression of depen-
dent variables given independent input. Both input and output may
be multi-dimensional. The output can be a point estimate or a full
probability density function.

Regression forests are less popular than their classification coun-
terpart. The main difference is that the output label to be associated
with an input data is continuous. Therefore, the training labels are
continuous. Consequently the objective function has to be adapted
appropriately. Regression forests share many of the advantages of clas-
sification forests such as efficiency and flexibility.

As with the other sections we start with a brief literature survey
of linear and nonlinear regression techniques, then we describe the
regression forest model and finally we demonstrate its properties with
examples and comparisons.

4.1 Nonlinear Regression in the Literature

Given a set of noisy input data and associated continuous
measurements, least squares techniques [7] (closely related to principal

131
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component analysis [52]) can be used to fit a linear regressor which
minimizes some error computed over all training points. Under this
model, given a new test input the corresponding output can be effi-
ciently estimated. The limitation of this model is in its linear nature,
when we know that most natural phenomena have nonlinear behav-
ior [88]. Another well known issue with linear regression techniques is
their sensitivity to input noise.

In geometric computer vision, a popular technique for achieving
robust regression via randomization is RANSAC [32, 43]. For instance
the estimation of multi-view epipolar geometry and image registration
transformations can be achieved in this way [43]. One disadvantage of
conventional RANSAC is that its output is non probabilistic. As will
be clearer later, regression forests may be thought of as an extension
of RANSAC, with little RANSAC regressors for each leaf node.

In machine learning, the success of support vector classifica-
tion has encouraged the development of support vector regression
(SVR [57, 95]). Similar to RANSAC, SVR can deal successfully with
large amounts of noise. In Bayesian machine learning Gaussian pro-
cesses [5, 82] have enjoyed much success due to their simplicity, elegance
and their rigorous uncertainty modeling.

Although (non-probabilistic) regression forests were described
in [11] they have only recently started to be used in computer vision
and medical image analysis [25, 31, 39, 53, 67]. Next, we discuss how to
specialize the generic forest model described in Section 2 to do prob-
abilistic, nonlinear regression efficiently. Many synthetic experiments,
commercial applications and comparisons with existing algorithms will
validate the regression forest model.

4.2 Specializing the Decision Forest Model for Regression

The regression task can be summarized as follows:

Given a labeled training set learn a general mapping which asso-
ciates previously unseen independent test data with their correct
continuous prediction.
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Fig. 4.1 Regression: training data and tree training. (a) Training data points are shown
as dark circles. The associated ground truth label is denoted by their position along the
y coordinate. The input feature space is one-dimensional in this example (v = (x)). x is
the independent input and y is the dependent variable. A previously unseen test input
is indicated with a light gray circle on the x axis. (b) A binary regression tree. During
training a set of labeled training points S0 is used to optimize the parameters of the tree.
In a regression tree the entropy of the continuous densities associated with different nodes
decreases (their confidence increases) when going from the root toward the leaves.

Like classification the regression task is inductive, with the main
difference being the continuous nature of the output. Figure 4.1(a)
provides an illustrative example of training data and associated con-
tinuous ground-truth labels. In general, a training point is denoted as a
labelled pair (v,y). A previously unseen test input (unavailable during
training) is shown as a light gray circle on the x axis.

Formally, given a multi-variate input v we wish to associate a
continuous multi-variate label y ∈ Y ⊆ R

n. More generally, we wish
to estimate the probability density function p(y|v). As usual the
input is represented as a multi-dimensional feature response vector
v = (x1, . . . ,xd) ∈ R

d.

Why regression forests? A regression forest is a collection of ran-
domly trained regression trees (Figure 4.3). Just like in classification it
can be shown that a forest generalizes better than a single over-trained
tree.

A regression tree (Figure 4.1(b)) splits a complex nonlinear regres-
sion problem into a set of smaller problems which can be more easily
handled by simpler models (e.g., linear ones; see also Figure 4.2). Next
we specify the precise nature of each model component.
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Fig. 4.2 Example predictor models. Different possible predictor models. (a) Constant.
(b) Polynomial and linear. (c) Probabilistic-linear. The conditional distribution p(y|x) is
returned in the latter.

The prediction model. The first job of a decision tree is to decide
which branch to direct the incoming data to. But when the data reaches
a terminal node then that leaf needs to make a prediction.

The actual form of the prediction depends on the prediction model.
In classification we have used the pre-stored empirical class posterior
as model. In regression forests we have a few alternatives, as illustrated
in Figure 4.2. For instance we could use a polynomial function of a
subspace of the input v. In the low dimensional example in the figure a
generic polynomial model corresponds to y(x) =

∑n
i=0wix

i. This simple
model captures both the linear and constant models (see Figures 4.2(a)
and 4.2(b)).

In this survey we are interested in output confidence as well as
its actual value. Thus for prediction we can use a probability density
function over the continuous variable y. So, given the tth tree in a
forest and an input point v, the associated leaf output takes the form
pt(y|v). In the low-dimensional example in Figure 4.2(c) we assume an
underlying linear model of type y = w0 + w1x and each leaf yields the
conditional p(y|x).

The ensemble model. Just like in classification, the forest output
is the average of all tree outputs (Figure 4.3):

p(y|v) =
1
T

T∑
t

pt(y|v)

A practical justification for this model was presented in Section 2.4.



4.2 Specializing the Decision Forest Model for Regression 135

Fig. 4.3 Regression forest: the ensemble model. The regression forest posterior is simply
the average of all individual tree posteriors p(y|v) = 1

T

∑T
t=1 pt(y|v).

Randomness model. Like in classification here we use a random-
ized node optimization model. Therefore, the amount of randomness is
controlled during training by the parameter ρ = |Tj |. The random sub-
sets of split parameters Tj can be generated on the fly when training
the jth node.

The training objective function. Forest training happens by opti-
mizing an energy over a training set S0 of data and associated contin-
uous labels. Training a split node j happens by optimizing the param-
eters of its weak learner:

θ∗
j = arg max

θj∈Tj

Ij . (4.1)

Now, the main difference between classification and regression forest is
in the form of the objective function Ij .

In [12] regression trees are trained by minimizing a least-squares
or least-absolute error function. Here, for consistency with our general
forest model we employ a continuous formulation of information gain.
Appendix A illustrates how information theoretical derivations lead to
the following definition of information gain:

Ij =
∑
v∈Sj

log(|Λy(v)|) −
∑

i∈{L,R}


∑

v∈Si
j

log(|Λy(v)|)


 (4.2)
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Fig. 4.4 Probabilistic line fitting. Given a set of training points we can fit a line l to them,
for example, by least squares or RANSAC. In this example l ∈ R

2. Matrix perturbation
theory (see Appendix A) enables us to estimate a probabilistic model of l from where
we can derive p(y|x) (modeled here as a Gaussian). Training a regression tree involves
minimizing the uncertainty of the prediction p(y|x) over the training set. Therefore, the
training objective is a function of σ2

y evaluated at the training points.

with Λy the conditional covariance matrix computed from probabilis-
tic linear fitting (see also Figure 4.4). Sj indicates the set of training
data arriving at node j, and SL

j , SR
j the left and right split sets. Note

that (4.2) is valid only for the case of a probabilistic-linear prediction
model (Figure 4.2).

By comparison, the error or fit objective function used in [12] (for
single-variate output y) is:

∑
v∈Sj

(y − yj)
2 −

∑
i∈{L,R}


∑

v∈Si
j

(y − yj)
2


 , (4.3)

with yj indicating the mean value of y for all training points reaching
the jth node. Note that (4.3) is closely related to (4.2) but limited
to constant predictors. Also, in [12] the author is only interested in a
point estimate of y rather than a fully probabilistic output. Further-
more, using an information theoretic formulation allows us to unify
different tasks within the same, general probabilistic forest model. To
fully characterize our regression forest model we still need to decide
how to split the data arriving at an internal node.

The weak learner model. As usual, the data arriving at a split
node j is separated into its left or right children (see Figure 4.1b)
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Fig. 4.5 Example weak learners. The (x1,x2) plane represents the d-dimensional input
domain (independent). The y space represents the n-dimensional continuous output
(dependent). The example types of weak learner are like in classification (a) Axis-aligned
hyperplane. (b) General oriented hyperplane. (c) Quadratic (corresponding to a conic
section in 2D). Further weak learners may be considered.

according to a binary weak learner stored in an internal node, of the
following general form:

h(v,θj) ∈ {0,1}, (4.4)

with 0 indicating “false” (go left) and 1 indicating “true” (go right).
Like in classification here we consider three types of weak learners: (i)
axis-aligned, (ii) oriented hyperplane, (iii) quadratic (see Figure 4.5 for
an illustration on 2D→1D regression). Many additional weak learner
models may be considered.

Next, a number of experiments will illustrate how regression forests
work in practice and the effect of different model choices on their
output.

4.3 Effect of Model Parameters

This section discusses the effect of model choices such as: tree depth,
forest size, and weak learner model on the forest behavior.

4.3.1 The Effect of the Forest Size

Figure 4.6 shows a first, simple example. We are given the training
points shown in Figure 4.6(a). We can think of those as being randomly
drawn from two segments with different orientations. Each point has a
1-dimensional input feature x and a corresponding scalar, continuous
output label y.
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Fig. 4.6 A first regression forest example and the effect of its size T . (a) Training points.
(b) Two different shallow trained trees (D = 2) split the data into two portions and produce
different piece-wise probabilistic-linear predictions. (c) Testing posteriors evaluated for all
values of x and increasing number of trees. The green curve denotes the conditional mean
E[y|x] =

∫
y · p(y|x) dy. The mean curve corresponding to a single tree (T = 1) shows a

sharp change of direction in the gap. Increasing the forest size produces smoother class
posteriors p(y|x) and smoother mean curves in the interpolated region. All examples have
been run with D = 2, axis-aligned weak learners and probabilistic-linear prediction models.

A forest of shallow trees (D = 2) and varying size T is trained
on those points. We use axis-aligned weak learners, and probabilistic-
linear predictor models. The trained trees (Figure 4.6(b)) are all
slightly different from each other as they produce different leaf models
(Figure 4.6(b)). During training, as expected each leaf model produces
smaller uncertainty near the training points and larger away from them.
In the gap the actual split happens in different places along the x axis
for different trees.

The bottom row (Figure 4.6(c)) shows the regression posteriors eval-
uated for all positions along the x axis. For each x position we plot the
entire distribution p(y|x), where darker red indicates larger values of
the posterior. Thus, very compact, dark pixels correspond to high pre-
diction confidence.

Note how a single tree produces a sharp change in direction of
the mean prediction y(x) = E [y|x] =

∫
y · p(y|x) dy (shown in green)
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in the large gap between the training clusters. But as the number of
trees increases both the prediction mean and its uncertainty become
smoother. Thus smoothness of the interpolation is controlled here sim-
ply by the parameter T . We can also observe how the uncertainty
increases as we move away from the training data (both in the inter-
polated gap and in the extrapolated regions).

4.3.2 The Effect of the Tree Depth

Figure 4.7 shows the effect of varying the maximum allowed tree depth
D on the same training set as in Figure 4.6. A regression forest with
D = 1 (top row in figure) corresponds to conventional linear regres-
sion (with additional confidence estimation). In this case the training
data is more complex than a single line and thus such a degenerate
forest under-fits. In contrast, a forest of depth D = 5 (bottom row in

Fig. 4.7 The effect of tree depth. (Top row) Regression forest trained with D = 1. Trees are
degenerate (each tree corresponds only to their root node). This corresponds to conventional
linear regression. In this case the data is more complex than a single linear model and thus
this forest under-fits. (Bottom row) Regression forest trained with D = 5. Much deeper
trees produce the opposite effect, that is, over-fitting. This is evident in the high-frequency,
spiky nature of the testing posterior. In both experiments we use T = 400, axis-aligned weak
learners and probabilistic-linear prediction models.
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Fig. 4.8 Spatial smoothness, multi-modal posteriors and testing uncertainty. Four more
regression experiments. The squares indicate labeled training data. The green curve is the
estimated conditional mean y(x) = E[y|x] =

∫
y · p(y|x) dy and the gray curve the estimated

mode ŷ(x) = argmaxy p(y|x). Note the smooth interpolating behavior of the mean over large
gaps and increased uncertainty away from training data. The forest is capable of capturing
multi-modal behavior in the gaps. See text for details.

figure) yields over-fitting. This is highlighted in the figure by the high-
frequency variations in the prediction confidence and the mean y(x).

4.3.3 Spatial Smoothness and Testing Uncertainty

Figure 4.8 shows four more experiments. The mean prediction curve
y(x) is plotted in green and the mode ŷ(x) = argmaxy p(y|x) is shown
in gray. These experiments highlight the smooth interpolating behavior
of the mean prediction in contrast to the more jagged nature of the
mode.1 The uncertainty increases away from training data. Finally,
notice how in the gaps the regression forest can correctly capture multi-
modal posteriors. This is highlighted by the difference between mode
and mean predictions. In all experiments we used a probabilistic-linear
predictor with axis-aligned weak learner, T = 400 and D = 7. Many
more examples, animations and videos are available at [49].

1 The smoothness of the mean curve is a function of T . The larger the forest size the
smoother the mean prediction curve.
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4.4 Comparison with Alternative Algorithms

The previous sections have introduced the probabilistic regression
forest model and discussed some of its properties. This section shows
a comparison between forests and allegedly the most common proba-
bilistic regression technique, Gaussian processes [82].

4.4.1 Comparison with Gaussian Processes

The hallmark of Gaussian processes is their ability to model uncer-
tainty in regression problems. Here we compare regression forests with
Gaussian lower case for consistency on a few representative examples.2

In Figure 4.9 we compare the two regression models on three differ-
ent training sets. In the first experiment the training data points are
simply organized along a line segment. In the other two experiments
the training data is a little more complex with large gaps. We wish to

Fig. 4.9 Comparing regression forests with Gaussian processes. (a,b,c) Three training
datasets and the corresponding testing posteriors overlaid on top. In both the forest and
the GP model uncertainties increase as we move away from training data. However, the
actual shape of the posterior is different. (b,c) Large gaps in the training data are filled in
both models with similarly smooth mean predictions (green curves). However, the regres-
sion forest manages to capture the bi-modal nature of the distributions, while the GP model
produces intrinsically uni-modal Gaussian predictions.

2 The Gaussian process results in this section were obtained with the “Gaussian
Process Regression and Classification Toolbox version 3.1,” publically available at
http://www.gaussianprocess.org/gpml/code/matlab/doc.
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investigate the nature of the interpolation and its confidence in those
gaps. The 2 × 3 table of images show posteriors corresponding to the
3 different training sets (columns) and 2 models (rows).

Gaussian processes are well known for how they model increas-
ing uncertainty with increasing distance from training points. The
bottom row illustrates this point clearly. Both in extrapolated and
interpolated regions the associated uncertainty increases smoothly. The
Gaussian process mean prediction (green curve) is also smooth and well
behaved.

Similar behavior can be observed for the regression forest too
(top row). As observed also in previous examples the confidence of the
prediction decreases with distance from training points. The specific
shape in which the uncertainty region evolves is a direct consequence
of the particular prediction model used (probabilistic-linear here). One
striking difference between the forest and the GP model though is illus-
trated in Figures 4.9(b) and 4.9(c). There, we can observe how the for-
est can capture bi-modal distributions in the gaps (see orange arrows).
Due to their piece-wise nature the regression forest seems more apt at
capturing multi-modal behavior in testing regions and thus modeling
intrinsic ambiguity (different y values may be associated with the same
x input). In contrast, the posterior of a Gaussian process is by con-
struction a (uni-modal) Gaussian, which may be a limitation in some
applications. The same uni-modal limitation also applies to the recent
“relevance voxel machine” technique in [85].

This difference between the two models in the presence of ambi-
guities is tested further in Figure 4.10. Here the training data itself
is arranged in an ambiguous way, as a “non-function” relation (see
also [71] for computer vision examples). For the same value of x there
may be multiple training points with different values of y.

The corresponding testing posteriors are shown for the two mod-
els in Figures 4.10(b) and 4.10(c), respectively. In this case neither
technique can model the central, ambiguous region correctly. However,
notice how although the mean curves are very similar to one another,
the uncertainty is completely different. The Gaussian process yields
a largely over-confident prediction in the ambiguous region; while the
forest correctly yields a very large uncertainty. It may be possible to
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Fig. 4.10 Comparing forests and GP on ambiguous training data. (a) Input labeled train-
ing points. The data is ambiguous because a given input x may correspond to multiple
values of y. (b) The posterior p(y|x) computed via random regression forest. The middle
(ambiguous) region remains associated with high uncertainty (in pink). (c) The posterior
computed via Gaussian Processes. Conventional GP models do not seem flexible enough to
capture spatially varying noise in training points. This yields an over-confident prediction
in the central region. In all these experiments the GP parameters have been automatically
optimized for optimal results, using the provided Matlab code.

think of improving the forest output, for example, by using a mixture of
probabilistic-linear predictors at each leaf (as opposed to a single line).
Later sections will show how a tighter, more informative prediction can
be obtained in this case, using density forests.

4.5 Semantic Parsing of 3D Computed Tomography Scans

This section describes a practical application of regression forest which
is now part of the commercial product Microsoft Amalga Unified Intel-
ligence System.3

Given a 3D Computed Tomography (CT) image we wish to
automatically detect the presence/absence of a certain anatomical
structure, and localize it in the image (see Figure 4.11). This is useful
for example, (i) the efficient retrieval of selected portions of patients
scans through low bandwidth networks, (ii) tracking patients’ radiation
dose over time, (iii) the efficient, semantic navigation and browsing of
n-dimensional medical images, (iv) hyper-linking regions of text in radi-
ological reports with the corresponding regions in medical images, and
(v) assisting the image registration in longitudinal studies [55]. Details

3 http://en.wikipedia.org/wiki/Microsoft Amalga.
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Fig. 4.11 Automatic localization of anatomy in 3D Computed Tomography images. (a) A
coronal slice (frontal view) from a test 3D CT patient’s scan. (b) Volumetric rendering
of the scan to aid interpretation. (c) Automatically localized left kidney using regression
forest. Simultaneous localization of 25 different anatomical structures takes ∼4s on a single
core of a standard desktop machine, with a localization accuracy of ∼1.5 cm. See [25] for
algorithmic details.

of the algorithm can be found in [25]. Here we give a very brief sum-
mary of this algorithm to show how it stems naturally from the general
model of regression forests presented here.

In a given volumetric image the position of each voxel is denoted
with a 3-vector p = (x y z). For each organ of interest we wish to esti-
mate the position of a 3D axis-aligned bounding box tightly placed
to contain the organ. The box is represented as a 6-vector contain-
ing the absolute coordinates (in mm) of the corresponding walls:
b = (bL, bR, bH, bF, bA, bP) ∈ R

6 (see Figure 4.12(a)). For simplicity here
we focus on a single organ of interest.4

The continuous nature of the output suggests casting this task as
a regression problem. Inspired by the work in [35] here we allow each
voxel to vote (probabilistically) for the positions of all six walls. So,
during testing, each voxel p in a CT image votes for where it thinks for
example, the left kidney should be. The votes take the form of relative
displacement vectors

d(p) = (dL(p),dR(p),dA(p),dP(p),dH(p),dF(p)) ∈ R
6

(see Figure 4.12(b)). The L,R,A,P,H,F symbols are conventional radi-
ological notation and indicate the left, right, anterior, posterior, head

4 A more general parametrization is given in [25].
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Fig. 4.12 Automatic localization of anatomy in 3D CT images. (a) A coronal view of the
abdomen of a patient in a CT scan. The bounding box of the right kidney is shown in
orange. (b) Each voxel p in the volume votes for the position of the six walls of the box via
the relative displacements dR(p), dL(p), and so on.

and foot directions of the 3D volumetric scan. Some voxels have more
influence (because associated with more confident localization predic-
tions) and some less influence on the final prediction. The voxels relative
weights are estimated probabilistically via a regression forest.

For a voxel p its feature vector v(p) = (x1, . . . ,xi, . . . ,xd) ∈ R
d is a

collection of values:

xi =
1

|Bi|
∑
q∈Bi

J(q), (4.5)

where J(p) denotes the density of the tissue in an element of volume
at position p as measured by the CT scanner (in calibrated Hounsfield
Units). The 3D feature box B (not to be confused with the output
organ bounding box) is displaced from the reference point p (see
Figure 4.13(a)). Since for each reference pixel p we can look at an
infinite number of possible feature boxes (∀B ∈ R

6) we have d = ∞.
During training we are given a database of CT scans which have

been manually labeled with 3D boxes around organs of interest. A
regression forest is trained to learn the association of voxel features
and bounding box location. Training is achieved by maximizing a con-
tinuous information gain as in (4.1). Assuming multivariate Gaussian
distributions at the nodes yields the already known form of continuous
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Fig. 4.13 Features and results. (a) Feature responses are defined via integral images in
displaced 3D boxes, denoted with B. (b,c,d,e) Some results on four different test patients.
The right kidney (red box) is correctly localized in all scans. The corresponding ground-
truth is shown with a blue box. Note the variability in position, shape and appearance
of the kidney, as well as larger scale variations in patient’s body, size, shape and possible
anomalies such as the missing left lung, in (e).

information gain:

Ij = log |Λ(Sj)| −
∑

i∈{L,R}

|Si
j |

|Sj |
log |Λ(Si

j)| (4.6)

with Λ(Sj) the 6 × 6 covariance matrix of the relative displacement
vector d(p) computed for all points p ∈ Sj . Note that here as a pre-
diction model we are using a multivariate, probabilistic-constant model
rather than the more general probabilistic-linear one used in the earlier
examples. Using the objective function (4.6) encourages the forest to
cluster voxels together so as to ensure small determinant of prediction
covariances, that is, highly peaked and confident location predictions.
In this application, the parameters of a split node j are

θj = (Bj , τj) ∈ R
7,
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with Bj the “probe” feature box, and τj a scalar parameter. Here we
use an axis-aligned weak learner model

h(v,θj) = [φ(v,Bj) > τj ],

with φ(v,Bj) = xj . The leaf nodes are associated with multivariate-
Gaussians as their predictor model. The parameters of such Gaussians
are learned during training from all the relative displacements arriving
at the leaf.

During testing all voxels of a previously unseen test volume are
pushed through all trees in the regression forest until they reach their
leaves, and the corresponding Gaussian predictions for the relative dis-
placements are read off. Finally, posteriors over relative displacements
are mapped to posteriors over absolute positions [25].

Figure 4.13 shows some illustrative results on the localization of
the right kidney in 2D coronal slices. In Figure 4.13(e) the results are
relatively robust to the large anomaly (missing left lung). Results on
3D detections are shown in Figure 4.11(b) with many more available
in the original paper.

An important advantage of decision forests (compared to for
example, neural networks) is their interpretability. In fact, in a for-
est it is possible to look at individual nodes and make sense of what
has been learned and why. When using a regression forest for anatomy
localization the various tree nodes represent clusters of points. Each
cluster predicts the location of a certain organ with more or less confi-
dence. So, we can think of the nodes associated with higher prediction
confidence as automatically discovered salient anatomical landmarks.
Figure 4.14 shows some such landmark regions when localizing kidneys
in a 3D CT scan. More specifically, given a trained regression tree and
an input volume, we select one or two leaf nodes with high predic-
tion confidence for a chosen organ class (e.g., l. kidney). Then, for
each sample arriving at the selected leaf nodes, we shade in green the
cuboidal regions of the input volume that were used during evaluation
of the parent nodes’ feature tests. Thus, the green regions represent
some of the anatomical locations that were used to estimate the loca-
tion of the chosen organ. In this example, the bottom of the left lung
and the top of the left pelvis are used to predict the position of the left
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Fig. 4.14 Automatic discovery of salient anatomical landmarks. (a) Leaves associated with
the most peaked densities correspond to clusters of points which predict organ locations with
high confidence. (b) A 3D rendering of a CT scan and (in green) landmarks automatically
selected as salient predictors of the position of the left kidneys. (c) Same as in (b) but for
the right kidney.

kidney. Similarly, the bottom of the right lung is used to localize the
right kidney. Such regions correspond to meaningful, visually distinct,
anatomical landmarks that have been computed without any manual
tagging.

Recently, regression forests were used for anatomy localization in
the more challenging full-body, magnetic resonance images [77]. See
also [40, 85] for alternative techniques for regressing regions of interest
in brain MR images with localization of anatomically salient voxels. The
interested reader is invited to browse the InnerEye project page [50]
for further examples and applications of regression forests to medical
image analysis.



5
Density Forests

Sections 3 and 4 have discussed the use of decision forests in supervised
tasks, that is, when labeled training data is available. In contrast, this
section discusses the use of forests in unlabeled scenarios.

For instance, one important task is that of discovering the intrinsic
nature and structure of large sets of unlabeled data. This task can be
tackled via another probabilistic model, density forest. Density forests
are explained here as an instantiation of our more abstract decision
forest model (described in Section 2). Given some observed unlabeled
data which we assume has been generated from a probabilistic den-
sity function we wish to estimate the unobserved underlying generative
model itself. More formally, one wishes to learn the density p(v) which
has generated the data.

The problem of density estimation is closely related to that of data
clustering. Although much research has gone in tree-based clustering
algorithms, to our knowledge this is the first time that ensembles of
randomized trees are used for density estimation.

We begin with a very brief literature survey, then we show how to
adapt the generic forest model to the density estimation task and then

149
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discuss advantages and disadvantages of density forests in comparison
with alternative techniques.

5.1 Literature on Density Estimation

The literature on density estimation is vast. Here we discuss only a few
representative papers.

Density estimation is closely related to the problem of data cluster-
ing, for which an ubiquitous algorithm is k-means [61]. A very success-
ful probabilistic density model is the Gaussian mixture model (GMM),
where complex distributions can be approximated via a linear combi-
nation of simple (multivariate) Gaussian components [5, 56]. Typically,
the parameters of a Gaussian mixture are estimated via the well known
Expectation Maximization algorithm [5]. EM can be thought of as a
probabilistic variant of k-means.

Popular, non-parametric density estimation techniques are kernel-
based algorithms such as the Parzen–Rosenblatt windows estima-
tor [76]. The advantage of kernel-based estimation over, for example,
more crude histogram-based techniques is in the added smoothness
of the reconstruction which can be controlled by the kernel param-
eters. Closely related is the k-nearest neighbor density estimation
algorithm [5].

In Breiman’s work on forests the author mentions using forests for
clustering unsupervised data [11]. However, he does it via classification,
by introducing dummy additional classes. In contrast, here we use a
well defined unsupervised information gain-based optimization, which
fits well within our unified forest model. Forest-based data clustering
has been discussed in [69, 92] for computer vision applications.

For further reading on general density estimation techniques the
reader is invited to explore the following material [5, 93].

5.2 Specializing the Forest Model for Density Estimation

This section specializes the generic forest model introduced in Section 2
for use in density estimation.
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Problem statement. The density estimation task can be summa-
rized as follows:

Given a set of unlabeled observations we wish to estimate the
latent probability density function from which such data has been
generated.

Each input data point v is represented as usual as a
multi-dimensional feature response vector v = (x1, . . . ,xd) ∈ R

d. The
desired output is the entire probability density function p(v) ≥ 0
s.t.
∫
p(v)dv = 1, for any generic input v. An explanatory illustration

is shown in Figure 5.1(a). Unlabeled training data points are denoted
with dark circles, while white circles indicate previously unseen test
data.

What are density forests? A density forest is a collection of ran-
domly trained clustering trees (Figure 5.1b). The tree leaves contain
simple prediction models such as Gaussians. So, loosely speaking a den-
sity forest can be thought of as a generalization of Gaussian mixture
models (GMM) with two differences: (i) multiple hard clustered data

Fig. 5.1 Input data and density forest training. (a) Unlabeled data points using for training
a density forest are shown as dark circles. White circles indicate previously unseen test data.
(b) Density forests are ensembles of clustering trees.
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partitions are created, one by each tree. This is in contrast to the single
“soft” clustering generated by the EM algorithm. Furthermore, (ii) the
forest-based probability is a combination of tree-based probabilities.
So, each input data point is explained by multiple clusters (one per
tree). This is in contrast to the single linear combination of Gaussians
in a GMM.

These concepts will become clearer later. Next, we delve into a
detailed description of the model components, starting with the objec-
tive function.

The training objective function. Given a collection of points
S0 = {v} (note the absence of training labels here) we train each indi-
vidual tree in the forest independently and if possible in parallel. As
usual we employ randomized node optimization. Thus, optimizing the
jth split node is done as the following maximization:

θ∗
j = arg max

θj∈Tj

Ij

with the generic information gain Ij defined as:

Ij = H(Sj) −
∑
i=L,R

|Si
j |

|Sj |
H(Si

j). (5.1)

In order to fully specify the energy model we still need to define the
exact form of the entropy H(S) of a set of training points S. Unlike
classification and regression, here the are no ground-truth labels. Thus,
we need to define an unsupervised entropy, that is, one which applies
to unlabeled data. As with a GMM, we use the working assumption of
multi-variate Gaussian distributions at the nodes. Then, the differential
(continuous) entropy of an d-variate Gaussian can be shown to be

H(S) =
1
2

log((2πe)d|Λ(S)|)

(with Λ the associated d × d covariance matrix). Consequently, the
information gain in (5.1) reduces to

Ij = log(|Λ(Sj)|) −
∑

i∈{L,R}

|Si
j |

|Sj |
log
(
|Λ(Si

j)|
)

(5.2)
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with |·| indicating a determinant for matrix arguments, or cardinality
for set arguments.
Motivation. For a set of data points in feature space, the determinant
of the covariance matrix is a function of the volume of the ellipsoid
corresponding to that cluster. Therefore, by maximizing (5.2) the tree
training procedure tends to split the original dataset S0 into a number
of compact clusters. The centers of those clusters tends to be placed
in areas of high data density, while the separating surfaces are placed
along regions of low density. In (5.2), weighting by the cardinality of
children sets avoids splitting off degenerate, single-point clusters.

Finally, our derivation of density-based information gain in (5.2)
builds upon an assumption of Gaussian distribution at the nodes. Of
course, this is not realistic as real data may be distributed in much more
complex ways. However, this assumption is useful in practice as it yields
a simple and efficient objective function. Furthermore, the hierarchical
nature of the trees allows us to construct very complex distributions by
mixing the individual Gaussians associated at the leaves. Alternative
measures of “cluster compactness” may also be employed.

The prediction model. The set of leaves in the tth tree in a forest
defines a partition of the data such that

l(v) : R
d → L ⊂ N,

where l(v) denotes the leaf reached (deterministically) by the input
point v, and L the set of all leaves in a given tree (the tree index t is
not shown here to avoid cluttering the notation). The statistics of all
training points arriving at each leaf node are summarized by a single
multi-variate Gaussian distribution N (v;µl(v),Λl(v)). Then, the output
of the tth tree is:

pt(v) =
πl(v)

Zt
N (v;µl(v),Λl(v)). (5.3)

The vector µl denotes the mean of all points reaching the leaf l and Λl

the associated covariance matrix. The scalar πl is the proportion of all
training points that reach the leaf l, i.e., πl = |Sl|

S0
. Thus (5.3) defines a

piece-wise Gaussian density (see Figure 5.2 for an illustration).
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Fig. 5.2 A tree density is piece-wise Gaussian. (a,b,c,d) Different views of a tree density
pt(v) defined over an illustrative 2D feature space. Each individual Gaussian component is
defined over a bounded domain. See text for details.

Partition function. Note that in (5.3) each Gaussian is truncated by the
boundaries of the partition cell associated with the corresponding leaf
(see Figure 5.2). Thus, in order to ensure probabilistic normalization
we need to incorporate the partition function Zt, which is defined as
follows:

Zt =
∫
v

(∑
l

πl N (v;µl,Λl) p(l|v)

)
dv. (5.4)

However, in a density forest each data point reaches exactly one termi-
nal node. Thus, the conditional p(l|v) is a delta function p(l|v) = [v ∈
l(v)] and consequently (5.4) becomes

Zt =
∫
v
πl(v)N (v;µl(v),Λl(v))dv. (5.5)

As it is often the case when dealing with generative models, comput-
ing Zt in high dimensions may be challenging.

In the case of axis-aligned weak learners it is possible to compute the
partition function via the cumulative multivariate normal distribution
function. In fact, the partition function Zt is the sum of all the vol-
umes subtended by each Gaussian cropped by its associated partition
cell (cuboidal in shape, see Figure 5.2). Unfortunately, the cumula-
tive multivariate normal does not have a close form solution. However,
approximating its functional form is a well researched problem and a
number of good numerical approximations exist [41, 80].

For more complex weak-learners it may be easier to approximate Zt

by numerical integration, i.e.,

Zt ≈ ∆ ·
∑

i

πl(vi) N (vi;µl(vi),Λl(vi)),
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with the points vi generated on a finite regular grid with spacing ∆
(where ∆ represents a length, area, volume, etc. depending on the
dimensionality of the domain). Smaller grid cells yield more accurate
approximations of the partition function at a greater computational
cost. Recent, Monte Carlo-based techniques for approximating the par-
tition function are also a possibility [72, 94]. Note that estimating the
partition function is necessary only at training time. One may also think
of using density forests with a predictor model other than Gaussian.

The ensemble model. The forest density is given by the average of
all tree densities

p(v) =
1
T

T∑
t=1

pt(v), (5.6)

as illustrated in Figure 5.3.

Discussion. There are similarities and differences between the
probabilistic density model defined above and a conventional Gaussian
mixture model. For instance, both models are built upon Gaussian com-
ponents. However, given a single tree an input point v belongs deter-
ministically to only one of its leaves, and thus only one domain-bounded

Fig. 5.3 Density forest: the ensemble model. A density forest is a collection of clustering
trees trained on unlabeled data. The tree density is the Gaussian associated with the leaf
reached by the input test point: pt(v) =

πl(v)
Zt

N (v;µl(v),Λl(v)). The forest density is the

average of all tree densities: p(v) = 1
T

∑T
t=1 pt(v).
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Gaussian component. In a forest with T trees a point v belongs to T
components, one per tree. The ensemble model (5.6) induces a uniform
“mixing” across the different trees. The benefits of such forest-based
mixture model will become clearer in the next section. The parameters
of a GMM are typically learned via Expectation Maximization (EM).
In contrast, the parameters of a density forest are learned via a hierar-
chical information gain maximization criterion. Both algorithms may
suffer from local minima.

5.3 Effect of Model Parameters

This section studies the effect of the forest model parameters on the
accuracy of density estimation. We use many illustrative, synthetic
examples, designed to bring to life different properties, advantages, and
disadvantages of density forests compared to alternative techniques. We
begin by investigating the effect of two of the most important param-
eters: the tree depth D and the forest size T .

5.3.1 The Effect of Tree Depth

Figure 5.4 presents first density forest results. Figure 5.4(a) shows some
unlabeled points used to train the forest. The points are randomly
drawn from two 2D Gaussian distributions.

Three different density forests have been trained on the same input
set with T = 200 and varying tree depthD. In all cases the weak learner
model was of the axis-aligned type. Trees of depth 2 (stumps) produce
a binary partition of the training data which, in this simple example,
produce perfect separation. As usual the trees are all slightly different
from one another, corresponding to different decision boundaries (not
shown in the figure). In all cases each leaf is associated with a bounded
Gaussian distribution learned from the training points arriving at the
leaf itself. We can observe that deeper trees (e.g., for D = 5) tend to
create further splits and smaller Gaussians, leading to over-fitting on
this simple dataset. Deeper trees tend to “fit to the noise” of the train-
ing data, rather than capture the underlying nature of the data. In this
simple example D = 2 (top row) produces the best results.
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Fig. 5.4 The effect of tree depth on density. (a) Input unlabeled data points in a 2D feature
space. (b,c,d) Individual trees out of three density forests trained on the same dataset, for
different tree depths D. A forest with unnecessarily deep trees tends to fit to the training
noise, thus producing very small, high-frequency bumps in the density.

5.3.2 The Effect of Forest Size

Figure 5.5 shows the output of six density forests trained on the input
data in Figure 5.4(a) for two different values of T and three values of D.
The images visualize the output density p(v) computed for all points
in a square subset of the feature space. Dark pixels indicate low values
and bright pixels high values of density.

We observe that even if individual trees heavily over-fit (e.g.,
for D = 6), the addition of further trees tends to produce smoother
densities. This is thanks to the randomness of each tree density estima-
tion and reinforces once more the benefits of a forest ensemble model.
The tendency of larger forests to produce better generalization has
been observed also for classification and regression and it is an impor-
tant characteristic of forests. Since increasing T always produces better
results (at an increased computational cost) in practical applications
we can just set T to a “sufficiently large” value, without worrying too
much about optimizing its value.
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Fig. 5.5 The effect of forest size on density. Densities p(v) for six density forests trained
on the same unlabeled dataset for varying T and D. Increasing the forest size T always
improves the smoothness of the density and the forest generalization, even for deep trees.

Fig. 5.6 Density forest applied to a spiral data distribution. (a) Input unlabeled data points
in their 2D feature space. (b,c,d) Forest densities for different tree depths D. The original
training points are overlaid in green. The complex distribution of input data is captured
correctly by a deeper forest, e.g., D = 6, while shallower trees produce under-fitted, overly
smooth densities.

5.3.3 More Complex Examples

A more complex example is shown in Figure 5.6. The noisy input data
is organized in the shape of a four-arm spiral (Figure 5.6(a)). Three
density forests are trained on the same dataset with T = 200 and varying
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depth D. The corresponding densities are shown in Figures 5.6(b),
5.6(c) and 5.6(d). Here, due to the greater complexity of the input data
distribution shallower trees yield under-fitting, that is, overly smooth
and detail-lacking density estimates. In this example good results are
obtained forD = 6as theautomatically estimateddensitynicely captures
the individuality of the four spiral arms while avoiding fitting to high fre-
quency noise. Just like in classification and regression here too the param-
eterD canbeused to set a compromise between smoothness of output and
the ability to capture structural details.

So far we have described the density forest model and studied some
of its properties on synthetic examples. Next we study density forests
in comparison to alternative algorithms.

5.4 Comparison with Alternative Algorithms

This section discusses advantages and disadvantages of density forests
as compared to the most common parametric and non-parametric
density estimation techniques.

5.4.1 Comparison with Non-parametric Estimators

Figure 5.7 shows a comparison between forest density, Parzen window
estimation, and k-nearest neighbor density estimation. The comparison
is run on the same three datasets of input points. In the first experi-
ments points are randomly drawn from a five-Gaussian mixture. In the
second they are arranged along an “S” shape and in the third they are
arranged along four short spiral arms. Comparison between the forest
densities in Figure 5.7(b) and the corresponding non-parametric densi-
ties in Figure 5.7(c) and 5.7(d) clearly shows much smoother results for
the forest output. Both the Parzen and the nearest neighbor estimators
produce artifacts due to hard choices of, for example, the Parzen win-
dow bandwidth or the number k of neighbors. Using heavily optimized
single trees would also produce artifacts. However, the use of many
trees in the forest yields the observed smoothness.

A quantitative assessment of the density forest model is presented
at the end of this section. Next, we compare (qualitatively) density
forests with variants of the Gaussian mixture model.



160 Density Forests

Fig. 5.7 Comparison between density forests and non parametric estimators. (a) Input
unlabeled points for three different experiments. (b) Forest-based densities. Forests were
computed with T = 200 and varying depth D. (c) Parzen window densities (with Gaussian
kernel). (d) K-nearest neighbor densities. In all cases parameters were optimized to achieve
the best possible results. Notice the abundant artifacts in (c) and (d) as compared to the
smoother forest estimates in (b).

5.4.2 Comparison with GMM EM

Figure 5.8 shows density estimates produced by forests in compari-
son to various GMM-based densities for the same input datasets as in
Figure 5.7(a). Figure 5.7(b) shows the (visually) best results obtained
with a GMM, using EM for its parameter estimation [5]. We can observe
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Fig. 5.8 Comparison with GMM EM. (a) Forest-based densities. Forests were computed
with T = 200 and optimized depth D. (b) GMM density with a relatively small number of
Gaussian components. The model parameters are learned via EM. (c) GMM density with
a larger number of Gaussian components. Increasing the components does not remove the
blob-like artifacts. (d) GMM density with multiple (400) random re-initializations of EM.
Adding randomness to the EM algorithm improves the smoothness of the output density
considerably. The results in (a) are still visually smoother especially for the spiral example.

that on the simpler 5-component dataset (experiment 1) the two mod-
els work equally well. However, the “S” and spiral-shaped examples
show very distinct blob-like artifacts when using the GMM model. One
may argue that this is due to the use of too few components. So we
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increased their number k and the corresponding densities are shown in
Figure 5.7(c). Artifacts still persist. Some of them are due to the fact
that the greedy EM optimization gets stuck in local minima. So, a fur-
ther alternative to improve the GMM results is to add randomness. In
Figure 5.7(c), for each example we have trained 400 GMM-EM models
(trained with 400 random initializations, a common way of injecting
randomness in GMM training) and averaged together their output to
produce a single density (as shown in the figure). The added random-
ness produces benefits in terms of smoothness, but the forest densities
are still slightly superior, especially for the spiral dataset.

In summary, our synthetic experiments confirm that the use of ran-
domness (either in a forest model or in a Gaussian mixture model)
yields improved results. Possible issues with EM getting stuck in local
minima produce artifacts which appear to be mitigated in the forest
model. Let us now look at differences in terms of computational cost.

Comparing computational complexity. Given an input test
point v evaluating p(v) under a random-restart GMM model has cost

T × K × G, (5.7)

with T the number of random restarts (the number of trained GMM
models in the ensemble), K the number of Gaussian components, and
G the cost of evaluating v under each Gaussian.

Similarly, estimating p(v) under a density forest with T trees of
maximum depth D has (worst case) cost

T × (D × B + G) (5.8)

with B the cost of a binary test at a split node.
The cost in (5.8) is an upper bound because the average length

of a generic root-leaf path is less than D nodes. Depending on the
application, the binary tests can be very efficient to compute.1 Under
these circumstances we may be able to ignore the term D × B in (5.8)
and the cost of testing a density forest becomes comparable to that of
a conventional, single GMM with T components.

1 A split function is applied usually only to a small, selected subset of features φ(v) and
thus it can be computed efficiently, that is, B is very small.
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Comparing training costs between the two models is a little harder
because it involves the number of EM iterations (for the GMM model)
and the value of ρ (in the forest). In practical applications (especially
real-time ones) minimizing the testing time is more important than
reducing the training time. Finally, testing of both GMM as well as
density forests can be easily parallelized.

5.5 Sampling from the Generative Model

The density distribution p(v) we learn from the unlabeled input data
represents a probabilistic generative model. In this section, we describe
an algorithm for the efficient sampling of random data under the
learned model. The sampling algorithm uses the structure of the forest
itself (for efficiency) and proceeds as described in Algorithm 5.1. See
also Figure 5.9 for an accompanying illustration.

In this algorithm for each sample a random path from a tree root
to one of its leaves is randomly generated and then a feature vec-
tor randomly generated from the associated Gaussian. Thus, drawing
one random sample involves generating at most D random numbers
from uniform distributions plus sampling a d-dimensional vector from
a Gaussian.

Fig. 5.9 Drawing random samples from the generative density model. Given a trained den-
sity forest we can generate random samples by: (i) selecting one of the component trees,
(ii) randomly navigating down to a leaf and, (iii) drawing a sample from the associated
Gaussian. The precise algorithmic steps are listed in Algorithm 5.1.
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Given a density forest with T trees:
(1) Draw uniformly a random tree index t ∈ {1, . . . ,T} to select a single

tree in the forest.
(2) Descend the tree

(a) Starting at the root node, for each split node randomly gener-
ate the child index with probability proportional to the num-
ber of training points in edge (proportional to the edge thick-
ness in Figure 5.9);

(b) Repeat step 2 until a leaf is reached.

(3) At the leaf draw a random sample from the domain bounded Gaussian
stored at that leaf.

Algorithm 5.1 Sampling from the density forest model.

Given a set of T GMMs learned with random restarts:
(1) Draw uniformly a GMM index t ∈ {1, . . . ,T} to select a single GMM

in the set.
(2) Select one Gaussian component by randomly drawing in proportion to

the associated priors.
(3) Draw a random sample from the selected Gaussian component.

Algorithm 5.2 Sampling from a random-restart GMM.

An equivalent and slightly faster version of the sampling algorithm
is obtained by compounding all the probabilities associated with indi-
vidual edges at different levels together as probabilities associated with
the leaves only. Thus, the tree traversal step (step 2 in Algorithm 5.2)
is replaced by direct random selection of one of the leaves.

Efficiency. The cost of randomly drawingN samples under the forest
model is

N × (1 + 1) × J + N × G (5.9)

with J the cost (almost negligible) of randomly generating an integer
number and G the cost of drawing a d-dimensional vector from a multi-
variate Gaussian distribution.

For comparison, sampling from a random-restart GMM is illustrated
in Algorithm 5.2. It turns out that the cost of drawing N samples under
such a model is identical to 5.9. It is interesting to see how although the
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Fig. 5.10 Sampling results (Top row). Densities learned from hundreds of training points,
via density forests. (Bottom row) Random points generated from the learned forests. We
draw 10,000 random points per experiment (different experiments in different columns).

two algorithms are built upon different data structures, their steps are
very similar. In summary, despite the added richness in the hierarchical
structure of the density forest its sampling complexity is very much
comparable to that of a random-restart GMM.

Results. Figure 5.10 shows results of sampling 10,000 random points
from density forest trained on five different input datasets. The top row
of the figure shows the densities on a 2D feature space. The bottom row
shows (with small red dots) random points drawn from the correspond-
ing forests via the algorithm described in Algorithm 5.1. Such a simple
algorithm produces good results both for simpler, Gaussian-mixture
distributions (Figures 5.10(a) and 5.10(b)) as well as more complex den-
sities like spirals and other convolved shapes (Figures 5.10(c), 5.10(d)
and 5.10(e)).

5.6 Dealing with Non-function Relations

Section 4 concluded by showing shortcomings of regression forests
trained on inherently ambiguous training data, that is, data such that
for a given value of x there may be multiple corresponding values of
y (a relation as opposed to a function). This section shows how better
predictions may be achieved in ambiguous settings by means of density
forests.
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5.6.1 Regression from Density

In Figure 4.10b a regression forest was trained on ambiguous train-
ing data. The corresponding regression posterior p(y|x) yielded a very
large uncertainty in the ambiguous, central region. However, despite
its inherent ambiguity, the training data shows some interesting, multi-
modal structure that if modeled properly could increase the prediction
confidence (see also [71]).

We repeat a variant of this experiment in Figure 5.11. However,
this time a density forest is trained on the “S-shaped” training set.
In contrast to the regression approach in Section 4, here the data points
are represented as pairs (x,y), with both dimensions treated equally as
input features. Thus, now the data is thought of as unlabeled. Then,
the joint generative density function p(x,y) is estimated from the data.
The density forest for this 2D dataset remains defined as

p(x,y) =
1
T

T∑
t=1

pt(x,y)

with t indexing the trees. Individual tree densities are

pt(x,y) =
πl

Zt
N ((x,y);µl,Λl),

where l = l(x,y) denotes the leaf reached by the point (x,y). For each
leaf l in the tth tree we have πl = |Sl|/|S0|, the mean µl = (µx,µy) and

Fig. 5.11 Training density forest on a “non-function” dataset. (a) Input unlabeled training
points on a 2D feature space. (b,c,d) Three density forests are trained on such data, and
the corresponding densities shown in the figures. Dark pixels correspond to small density
and vice-versa. The original points are overlaid in green. Visually reasonable results are
obtained in this dataset for D = 4.
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the covariance

Λl =
(
σ2

xx σ2
xy

σ2
xy σ2

yy

)
.

In Figure 5.11 we observe that a forest with D = 4 produces a visually
smooth, artifact-free density. Shallower or deeper trees produce under-
fitting and over-fitting, respectively. Now, for a previously unseen, input
test point v = (x,y) we can compute its probability p(v). However, in
regression, at test time we only know the independent variable x, and its
associated y is unknown (y is the quantity we wish to regress/estimate).
Next we show how we can exploit the known generative density p(x,y)
to predict the regression conditional p(y|x).

Figure 5.12(a) shows the training points and an input (test) value for
the independent variable x = x∗. Given the trained density forest and
x∗ we wish to estimate the conditional p(y|x = x∗). For this problem
we make the further assumption that the forest has been trained with
axis-aligned weak learners. Therefore, some split nodes act only on the
x coordinate (namely x-nodes) and others only on the y coordinate
(namely y-nodes). Figure 5.12(b) illustrates this point. When testing
a tree on the input x = x∗ the y-nodes cannot apply the associated
split function (since the value of y is unknown). In those cases the data
point is sent to both children. In contrast, the split function associated
to the x-nodes is applied as usual and the data sent to the corresponding
single child. So, in general multiple leaf nodes will be reached by a single
input (see the bifurcating orange paths in Figure 5.12(b)). As shown in
Figure 5.12(c) this corresponds to selecting multiple, contiguous cells in
the partitioned space, so as to cover the entire y range (for a fixed x∗).

So, along the line x = x∗ several (domain bounded) Gaussians are
encountered, one per leaf (see Figures 5.12(d) and 5.13). Consequently,
the tree conditional is piece-wise Gaussian and defined as follows:

pt(y|x = x∗) =
1

Zt,x∗

∑
l∈Lt,x∗

[yBl ≤ y < yTl ]πl N (y;µy|x,l,σ
2
y|x,l) (5.10)

with the leaf conditional mean µy|x,l = µy + σ2
xy

σ2
yy

(x∗ − µx) and variance

σ2
y|x,l = σ2

yy − σ4
xy

σ2
xx

. In (5.10) Lt,x∗ denotes the subset of all leaves in the
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Fig. 5.12 Regression from density forests. (a) 2D training points are shown in black. The
green vertical line denotes the value x∗ of the independent variable. We wish to estimate
p(y|x = x∗). (b) When testing a tree on the input x∗ some split nodes cannot apply their
associated split function and the data is sent to both children (see orange paths). (c) The line
x = x∗ intersects multiple cells in the partitioned feature space. (d) The line x = x∗ inter-
sects multiple leaf Gaussians. The conditional output is a combination of those Gaussians.

tree t reached by the input point x∗ (three leaves out of four in the
example in the figure).

The conditional partition function Zt,x∗ ensures normalization, i.e.,∫
y pt(y|x = x∗) dy = 1, and can be computed as follows:

Zt,x∗ =
∑

l∈Lt,x∗

πl(φt,l(yTl |x = x∗) − φt,l(yBl |x = x∗))

with φ denoting the 1D cumulative normal distribution function

φt,l(y|x = x∗) =
1
2


1 + erf


y − µy|x,l√

2σ2
y|x,l




 .
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Fig. 5.13 The tree conditional is a piece-wise Gaussian. See text for details.

Finally, the forest conditional is:

p(y|x = x∗) =
1
T

T∑
t=1

pt(y|x = x∗).

Figure 5.14 shows the forest conditional distribution computed for
five fixed values of x. When comparing, for example, the conditional
p(y|x = x3) in Figure 5.14 with the regression distribution in 4.10b
we see that now the conditional shows three very distinct modes rather
than a large, uninformative mass. Although some ambiguity remains (it
is inherent in the training set) now we have a more precise description
of such ambiguity.

5.6.2 Sampling from Conditional Densities

We conclude this section by discussing the issue of efficiently drawing
random samples from the conditional model p(y|x).

Given a fixed and known x = x∗ we would like to sample different
random values of y distributed according to the conditional p(y|x = x∗).
Like in the previous version we assume available a density forest which
has been trained with axis-aligned weak learners (Figure 5.15). The
necessary steps are described in Algorithm 5.3.

Each iteration of Algorithm 5.3 produces a value y drawn ran-
domly from p(y|x = x∗). Results on our synthetic example are shown in
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Fig. 5.14 Regression from density forests. The conditionals p(y|x = xi) show multimodal
behavior. This is an improvement compared to regression forests.

Fig. 5.15 Sampling from conditional model. Since x is known and y unknown y-nodes cannot
apply the associated split function. When sampling from such a tree a child of a y-node is
chosen randomly. Instead, the child of an x-node is selected deterministically. See text for
details.

Figure 5.16, for five fixed values of the independent variable x. In Fig-
ure 5.16(b) darker regions indicate overlapping sampled points. Three
distinct clusters of points are clearly visible along the x = x3 line, two
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Given a density forest with T trees trained with axis-aligned weak learners and an
input value x = x∗:

(1) Sample uniformly t ∈ {1, . . . ,T} to select a tree in the forest.
(2) Starting at the root node descend the tree by:

• at x-nodes applying the split function and following the cor-
responding branch.

• at a y-node j random sample one of the two children accord-
ing to their respective probabilities: P2j+1 = |S2j+1|

|Sj | , P2j+2 =
|S2j+2|

|Sj | .

(3) Repeat step 2 until a (single) leaf is reached.
(4) At the leaf sample a value y from the domain bounded 1D conditional

p(y|x = x∗) of the 2D Gaussian stored at that leaf.

Algorithm 5.3 Sampling from conditionals via a forest.

Fig. 5.16 Results on conditional point sampling. Tens of thousands of random samples of
y are drawn for five fixed positions in x following Algorithm 5.3. In (b) the multimodal
nature of the underlying conditional becomes apparent from the empirical distribution of
the samples.

clusters along the x = x2 and along the x = x4 lines and so on. This
algorithm extends to more than two dimensions. As expected, the qual-
ity of the sampling depends on the usual parameters such as the tree
depth D, the forest size T , the amount of training randomness ρ, etc.

5.7 Quantitative Analysis

This section assesses the accuracy of the density estimation algo-
rithm with respect to ground-truth. Figure 5.17a shows a ground-truth
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probability density function. The density is represented non-
parametrically as a normalized histogram defined over the 2D (x1,x2)
domain.

Given the ground-truth density we randomly sample 5,000 points
numerically (Figure 5.17b), via the multivariate inverse probability
integral transform algorithm [27]. The goal now is as follows: Given the
sampled points only, reconstruct a probability density function which
is as close as possible to the ground-truth density.

Thus, a density forest is trained using the sampled points alone.
No use is made of the ground-truth density in this stage. Given the
trained forest we test it on all points in a predefined domain (not just
on the training points, Figure 5.17c). Finally, a quantitative comparison
between the estimated density (p(v)) and the ground-truth one (pgt(v))

Fig. 5.17 Quantitative evaluation of forest density estimation. (a) An input ground-truth
density (non-Gaussian in this experiment). (b) Thousands of random points drawn ran-
domly from the density. The points are used to train four density forests with different
depths. (c) During testing the forests are used to estimate density values for all points in
a square domain. (d) The reconstructed densities are compared with the ground-truth and
error curves plotted as a function of the forest size T . As expected, larger forests yield
higher accuracy. In these experiments we have used four forests with T = 100 trees and
D ∈ {3,4,5,6}.
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can be carried out. The density reconstruction error is computed here
as a sum of squared differences:

E =
∑
v

(p(v) − pgt(v))2. (5.11)

Alternatively one may consider the technique in [99]. Note that due to
probabilistic normalization the maximum value of the error in (5.11)
is 4. The curves in Figure 5.17d show how the reconstruction error
diminishes with increasing forest size and depth. Unsurprisingly, in our
experiments we have observed the overall error to start increasing again
after an optimal value of D (suggesting overfitting).

Figure 5.18 shows further quantitative results on more complex
examples. In the bottom two examples some difficulties arise in the
central part (where the spiral arms converge). This causes larger errors.
Using different weak learners (e.g., curved surfaces) may produce better

Fig. 5.18 Quantitative evaluation, further results. (a) Input ground-truth densities.
(b) Thousands of points sampled randomly from the ground-truth densities. (c) Densi-
ties estimated by the forest. Density values are computed for all points in the domain (not
just the training points). (d) Error curves as a function of the forest size T . As expected
a larger forest yields better accuracy. These results are obtained with T = 100 and D = 5.
Different parameter values and using richer weak learners may improve the accuracy in
troublesome regions (e.g., at the center of the spiral arms).
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results in those troublesome areas. In Figure 5.18 using larger and larger
sets of sampled training points would produce lower and lower recon-
struction errors. A more thorough analysis of the consistency of our
density estimator is deferred to future work.2 Density forests are the
backbone of manifold learning and semi-supervised learning, described
next.

2 See “consistent estimator” in wikipedia for a definition of consistency.
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Manifold Forests

The previous section has discussed the use of decision forests for
modeling the density of unlabeled data. This has led to an efficient
probabilistic generative model which captures the intrinsic structure of
the data itself.

This section delves further into the issue of learning the structure of
high-dimensional data as well as mapping it onto a much lower dimen-
sional space, while preserving relative distances between data points.
This task goes under the name of manifold learning and is closely
related to dimensionality reduction and embedding.

This task is important because real data is often characterized by
a very large number of dimensions. However, a careful inspection often
shows a much lower dimensional intrinsic distribution (e.g., on a hyper-
plane, or a curved surface, etc.). So, if we can automatically discover
the underlying manifold and “unfold” it, this may lead to easier data
interpretation as well as more efficient algorithms for handling such
data.

Here we show how decision forests can be used also for manifold
learning. Advantages with respect to other techniques include: (i) com-
putational efficiency (due to ease of parallelization of forest-based

175
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algorithms), (ii) automatic selection of discriminative features via
information-based energy optimization, (iii) being part of a more
general forest model and, in turn code re-usability, and (iv) automatic
estimation of the optimal dimensionality of the target space (this is in
common with other spectral techniques). After a brief literature survey
we discuss details of the manifold forest model and then show its prop-
erties with examples and experiments.

6.1 Literature on Manifold Learning

Discovering the intrinsic structure of a dataset (manifold learning) and
mapping it onto a lower dimensional representation (dimensionality
reduction or embedding) are related problems which have been inves-
tigated at length in the literature. The simplest algorithm is “princi-
pal component analysis” (PCA) [52]. PCA is based on the computa-
tion of directions of maximum data variability. This is obtained sim-
ply by eigen-decomposition of the data covariance matrix computed in
the original space. Therefore, PCA is a linear model and as such has
considerable limitations in real problems. A popular, nonlinear tech-
nique is “isometric feature mapping” (or IsoMap) [101] which estimates
low dimensional embeddings that tend to preserve geodesic distances
between point pairs.

Manifold forests build upon “Laplacian eigenmaps” [3] which is
a technique derived from spectral graph theory. Laplacian eigenmaps
try to preserve local pairwise point distances only, with a simple and
efficient algorithm. This technique has very close connections with
spectral clustering and the normalized cuts image segmentation algo-
rithm in [90]. Recent probabilistic interpretation of spectral dimension-
ality reduction may be found in [26, 70]. A generative, probabilistic
model for learning a latent manifold is discussed in [6].

Manifold learning has recently become popular in the medical image
analysis community, for example, for cardiac analysis [29, 111], registra-
tion [42], and brain image analysis [36]. A more thorough exploration of
the vast literature on manifold learning and dimensionality reduction
is beyond the scope of this review. The interested reader is referred to
some excellent surveys in [16, 18].
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6.2 Specializing the Forest Model for Manifold Learning

The idea of using tree-based random space projections for manifold
learning is not new [33, 46]. Here we show how a whole ensemble of
randomized trees can be used for this purpose, and its advantages. We
start by specializing the generic forest model (Section 2) for use in
manifold learning.

Problem statement. The manifold learning task is summarized
here as follows:

Given a set of k unlabeled observations {v1,v2, . . . ,vi, . . . ,vk}
with vi ∈ Rd we wish to find a smooth mapping f :Rd →
R

d′
, f(vi) = v′

i such that d′ � d and that preserves the obser-
vations’ relative geodesic distances.

As illustrated in Figure 6.1 each input observation v is represented
as a multi-dimensional feature response vector v = (x1, . . . ,xd) ∈ R

d.
The desired output is the mapping function f(·).

In Figure 6.1a input data points are denoted with circles. They
live in a 2D space. We wish to find a function f(·) which maps those
points to their corresponding locations in a lower dimensional space
(in the figure, d′ = 1) such that Euclidean distances in the new space

Fig. 6.1 Manifold learning and dimensionality reduction. (a) Input, unlabeled data points
are denoted with circles. They live in a high-dimensional space (here d = 2 for illustration
clarity). A red outline highlights some selected points of interest. (b) The target space is
much lower dimensionality (here d′ = 1 for illustration). Geodesic distances and ordering
are preserved.
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are as close as possible to the corresponding geodesic distances in the
original space.

What are manifold forests? As mentioned, the manifold learn-
ing problem and the density estimation one are closely related. This
section builds upon density forests, with much of the mathematical
modeling borrowed from Section 5. So, manifold forests are also collec-
tions of clustering trees. However, unlike density forests, the manifold
forest model requires extra components such as an affinity model and
an efficient algorithm for estimating the optimal mapping f . Details are
described next.

The training objective function. Using randomized node opti-
mization, training happens by maximizing a continuous and unsuper-
vised information gain measure

θ∗
j = arg max

θj∈Tj

Ij

with Ij defined as for density forests:

Ij = log(|Λ(Sj)|) −
∑

i∈{L,R}

|Si
j |

|Sj |
log(|Λ(Si

j)|). (6.1)

The previous section has discussed properties and advantages of (6.1).

The predictor model. Like in the density model the statistics of all
training points arriving at each leaf node is summarized with a single
multi-variate domain bounded Gaussian:

pt(v) =
πl(v)

Zt
N (v;µl(v),Λl(v)).

The affinity model. In manifold learning we need to estimate some
measure of similarity or distance between data points so that we can
preserve those inter-point distances after the mapping. When working
with complex data in high dimensional spaces it is important for this
affinity model to be as efficient as possible. Here we introduce another
novel contribution. We use decision forests to define data affinity in a
simple and effective way.
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As seen in the previous section, at its leaves a clustering tree t

defines a partition of the input points

l(v) : R
d → L ⊂ N

with l a leaf index and L the set of all leaves in a given tree (the tree
index is not shown to avoid cluttering the notation). For a clustering
tree t we can compute the k × k points’ affinity matrix Wt with elements

Wt
ij = e−Dt(vi,vj). (6.2)

The matrix Wt can be thought of as un-normalized transition probabili-
ties in Markov random walks defined on a fully connected graph (where
each data point corresponds to a node). The distance D can be defined
in different ways. For example:
Mahalanobis affinity

Dt(vi,vj) =

{
d�

ij(Λ
t
l(vi)

)−1dij if l(vi) = l(vj)
∞ otherwise

(6.3)

Gaussian affinity

Dt(vi,vj) =

{
d�

ijdij

ε2
if l(vi) = l(vj)

∞ otherwise
(6.4)

Binary affinity

Dt(vi,vj) =
{

0 if l(vi) = l(vj)
∞ otherwise

, (6.5)

where dij = vi − vj , and Λl(vi) is the covariance matrix associated with
the leaf reached by the point vi. Note that in all cases it is not neces-
sary to compute the partition function Zt. More complex probabilistic
models of affinity may also be used.

The simplest and most interesting model of affinity in the list above
is the binary one. It can be thought of as a special case of the Gaussian
model with the length parameter ε → ∞. Thus the binary affinity model
is parameter-free. It says that given a tree t and two points vi and vj we
assign perfect affinity (affinity = 1, distance = 0) to those points if they
end up in the same cluster (leaf) and null affinity (infinite distance)
otherwise.
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The crucial aspect of manifold forests is that information-theoretical
objective function maximization leads to a natural definition of point
neighborhoods and similarities. In fact, defining appropriate data
neighborhoods is an important problem in many manifold learning algo-
rithms as it is crucial for defining good approximations to the pairwise
geodesic distances. In data intensive applications using an information-
gain objective is more natural than having to design pairwise distances
between complex data points.

The ensemble model. In Laplacian eigenmaps [3] constructing an
affinity matrix of the type in (6.2) is the first step. Then, spectral
analysis of the affinity matrix produces the desired mapping f . However,
for a single randomly trained tree its affinity matrix is not going to
be representative of the correct pairwise point affinities. This is true
especially if binary affinity is employed. However, having a collection of
random trees enables us to collect evidence from the entire ensemble.
This has the effect of producing a smooth forest affinity matrix even
in the presence of a parameter-free binary affinity model. Once again,
the use of randomness is key here.

More formally, in a forest of T trees its affinity matrix is defined as:

W =
1
T

T∑
t=1

Wt. (6.6)

In a given tree two points may not belong to the same cluster. In some
other tree they might do. The averaging operation in (6.6) has the effect
of propagating pairwise affinities across the graph of all points.

Having discussed how to use forests for computing the data affinity
matrix (i.e., building the graph), next we proceed with the actual esti-
mation of the mapping function f(·). This second part is based on the
well known Laplacian eigen-maps technique [3, 70] which we summarize
here for completeness.

Estimating the embedding function. A low dimensional embed-
ding is now found by simple linear algebra. Given a graph whose nodes
are the input points and its affinity matrix W we first construct the
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k × k normalized graph-Laplacian matrix as:

L = I − Υ− 1
2WΥ− 1

2 (6.7)

with the normalizing diagonal (“degree”) matrix Υ, such that Υii =∑
j Wij [18]. Now, the nonlinear mapping f is found via eigen-

decomposition of L. Let e0,e1, . . . ,ek−1 be the solutions of (6.7) in
increasing order of eigenvalues

Le0 = λ0e0 (6.8)

Le1 = λ1e1
...

...

Lek−1 = λk−1ek−1

with

0 = λ0 ≤ λ1 ≤ λ2 ≤ ·· · ≤ λk−1

We ignore the first eigenvector e0 as it corresponds to a degenerate
solution (global translation) and use the next d′ � d eigenvectors (from
e1 to ed′) to construct the k × d′ matrix E as

E =


 | | | | | |

e1 e2 · · · ej · · · ed′

| | | | | |




with j ∈ {1, . . . ,d′} indexing the eigenvectors (represented as column
vectors). Finally, mapping a point vi ∈ R

d onto its corresponding point
v′

i ∈ R
d′

is done simply by reading the ith row of E:

v′
i = f(vi) = (Ei1, . . . ,Eij , . . . ,Eid′)�, (6.9)

where i ∈ {1, . . . ,k} indexes the individual points. Note that d′ must
be < k which is easy to achieve as we normally wish to have a
small target dimensionality d′. In summary, the embedding function f
remains implicitly defined by its k corresponding point pairs, through
the eigenvector matrix E. In contrast to existing techniques, here, we
do not need to fine-tune a length parameter or a neighborhood size.
In fact, when using the binary affinity model the neighborhood system
remains defined automatically by the forest leaves.
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Mapping previously unseen points. There may be applications
where after having trained the forest on a given training set, further
data points become available. In order to map the new points to the
corresponding lower dimensional space one may think of retraining the
entire manifold forest from scratch. However, a more efficient, approx-
imate technique consists in interpolating the point position given the
already available embedding. More formally, given a previously unseen
point v and an already trained manifold forest we wish to find the cor-
responding point v′ in the low dimensional space. The point v′ may be
computed as follows:

v′ =
1
T

∑
t

1
ηt

∑
i

(e−Dt(v,vi)f(vi))

with ηt =
∑

i e
−Dt(v,vi) the normalizing constant and the distance

Dt(·, ·) computed by testing the existing tth tree on v. This interpola-
tion technique works well for points which are somewhat close to the
original training set. Other alternatives are possible.

6.2.1 Properties and Advantages

Let us discuss some properties of manifold forests.

Ensemble clustering for distance estimation. When dealing
with complex data (e.g., images) defining pairwise distances can be
challenging. Here we avoid that problem since we use directly the pair-
wise affinities defined by the tree structure itself. This is especially
true of the simpler binary affinity model. The trees and their tests are
automatically optimized from training data with minimal user input.

As an example, imagine that we have a collection of holiday photos
containing images of beaches, forests and cityscapes (see Figure 6.2).
Each image defines a data point in a high dimensional space. When
training a manifold forest we can imagine that, for example, some trees
group all beach photos in a cluster, all forest photos in a different leaf
and all cityscapes in yet another leaf. A different tree, by using different
features may be mixing some of the forest photos with some of the beach
ones (e.g., because of the many palm trees along the shore), but the
cityscape are visually very distinct and will tend to remain (mostly) in
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Fig. 6.2 Image similarity via ensemble clustering. Different trees (whose leaves are denoted
by different color curves) induce different image partitions. The red tree yields the partition
{{a,b,c,d},{e,f},{g,h}}. The green tree yields the partition {{a,b,c},{d,e,f},{g,h}}. The
overlap between clusters in different trees is captured mathematically by the forest affinity
matrix W. In W we will have that image e is closer to image c than to image g. Therefore,
ensemble-based clustering induces data affinity. See text for details.

a separate cluster. So, forests and beach scenes are more likely to end
up in the same leaf while building photos do not tend to mix with other
classes (just an example). Therefore, the matrix mean operation (6.6)
will assign higher affinity (smaller distance) to a forest-beach image
pair than to a beach-city pair. This shows how an ensemble of multiple
hard clusterings can yield a soft distance measure.

Choosing the feature space. An issue with manifold learning tech-
niques is that often one needs to decide ahead of time how to represent
each data point. For instance one has to decide its dimensionality and
what features to use. Thinking of the practical computer vision problem
of learning manifolds of images the complexity of this problem becomes
apparent.
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One potential advantage of manifold forests is that we do not need
to specify manually the features to use. We can define the generic family
of features (e.g., gradients, Haar wavelent, output of filter banks, etc.).
Then the tree training process will automatically select optimal features
and corresponding parameters for each node of the forest, so as to
optimize a well defined objective function (a clustering information gain
in this case). For instance, in the illustrative example in Figure 6.2 as
features we could use averages of pixel colors within rectangles placed
within the image frame. Position and size of the rectangles is selected
during training. This would allow the system to learn, for example, that
brown-colored regions are expected toward the bottom of the image for
beach scenes, long vertical edges are expected in cityscapes, etc.

Computational efficiency. In this algorithm the bottleneck is the
solution of the eigen-system (6.7) which could be slow for a large number
of input points k. However, in (6.9) only the d′ � k bottom eigenvec-
tors are necessary. This, in conjunction with the fact that the matrix L

is usually very sparse (especially for the binary affinity model) can yield
efficient implementations. Please note that only one eigen-system needs
be solved, independent from the forest size T . On the other hand all the
tree-based affinity matrices Wt may be computed in parallel.

Estimating the target intrinsic dimensionality. The algorithm
above can be applied for any dimensionality d′ of the target space. If we
do not know d′ in advance (e.g., from application-specific knowledge)
an optimal value can be chosen by looking at the profile of (ordered)
eigenvalues λj and choosing the minimum number of eigenvalues cor-
responding to a sharp elbow in such profile [3]. Here we need to make
clear that being able to estimate automatically the manifold dimen-
sionality is a property shared with other spectral techniques and is not
unique to manifold forests. This idea will be tested in some examples
at the end of the section.

6.3 Experiments and the Effect of Model Parameters

This section presents some experiments and studies the effect of the
manifold forest parameters on the accuracy of the estimated non-linear
mapping.
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6.3.1 The Effect of the Forest Size

We begin by discussing the effect of the forest size parameter T . In
a forest of size T each randomly trained clustering tree produces a
different, disjoint partition of the data.1 In the case of a binary affinity
model the elements of the affinity matrices Wt are binary (∈ {0,1}, either
two points belong to the same leaf/cluster or not). A given pair of points
will belong to the same cluster (leaf) in some trees and not in others
(see Figure 6.3). Via the ensemble model the forest affinity matrix W

is much smoother since multiple trees enable different point pairs to
exchange information about their relative position. Even if we use the
binary affinity case the forest affinity W is in general not binary. Large
forests (large values of T ) correspond to averaging many tree affinity
matrices together. In turn, this produces robust estimation of pairwise
affinities even between distant pairs of points.

Figure 6.4 shows two examples of nonlinear dimensionality reduc-
tion. In each experiment we are given some noisy, unlabeled 2D points
distributed according to some underlying nonlinear 1D manifold. We
wish to discover the manifold and map those points onto a 1D real axis
while preserving their relative geodesic distances. The figure shows that
when using a very small number of trees such mapping does not work
well. This is illustrated, for example, in Figure 6.4(b)-leftmost, by the
vertical banding artifacts; and in Figure 6.4(d)-leftmost by the single

Fig. 6.3 Different clusterings induced by different trees. (a) The input data in 2D.
(b,c,d) Different partitions corresponding to different trees in the same manifold forest.
A given pair of points will belong to the same cluster (leaf) in some trees and not in others.

1 If the input points were reordered correctly for each tree we would obtain an affinity matrix
Wt with block-diagonal structure.
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Fig. 6.4 Manifold forest and nonlinear dimensionality reduction. The effect of T . (a,c) Input
2D points for two different synthetic experiments. (b,d) Nonlinear mapping from the original
2D space to the 1D real line is color coded, from dark red to dark blue. In both examples
a small forest (small T ) does not capture correctly the intrinsic 1D manifold. For larger
values of T (e.g., T = 100) the accuracy of such a mapping increases. (e) The color legend.
Different colors, from red to blue, denote the position of the mapped points in their target
1D space.

red color for all points. However, as the number of trees increases the
affinity matrix W better approximates the true pairwise graph affinity.
Consequently the color coding (linearly going from dark blue to dark
red) starts to follow correctly the intrinsic 1D structure of the points.

6.3.2 The Effect of the Affinity Model

Here we discuss advantages and disadvantages of using different affin-
ity models. Binary affinities (6.5) are extremely fast to compute and
avoid the need to define explicit distances between (possibly complex)
data points. For example defining a sensible distance metric between
images is difficult. With our binary model pairwise affinities are defined
implicitly by the hierarchical structure of the trees.
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Fig. 6.5 The effect of the similarity model. In this experiment we map 3D points into their
intrinsic 2D manifold. (a) The input 3D data is a variant of the well known “Swiss Roll”
dataset. The noisy points are organized as a spiral in one plane with a sinusoidal component
in the orthogonal direction. (b) Different mappings into the 2D plane for increasing forest
size T . Here we use binary affinity. (c) As above but with a Gaussian affinity model. A suf-
ficiently large forest manages to capture the roughly rectangular shape of the embedded
manifold. For this experiment we used max forest size T = 100, D = 4 and weak learner =
oriented hyperplane (linear).

Figure 6.5 compares the binary and Gaussian affinity models in a
synthetic example. The input points are embedded within a 3D space
with their intrinsic manifold being a 2D rectangle. A small number of
trees in both cases produces a roughly triangular manifold, but as T
increases the output manifold becomes more rectangular shaped. Notice
that our model preserves local distances only. This is not sufficient to
reproduce sharp 90-degree angles (see rightmost column in Figure 6.5).
For a sufficiently large forest both models do a reasonable job at re-
organizing the data points on the target flat surface.

Figure 6.6 shows three views of the “Swiss Roll” example from dif-
ferent viewpoints. Its 3D points are color-coded by the automatically
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Fig. 6.6 Unfolding the “Swiss Roll” manifold. Different 3D views from various viewpoints.
Color-coding indicates the mapped 2D manifold. See color-legend in Figure 6.5.

Fig. 6.7 The “Christmas Tree” manifold. (a) The unlabeled input data points in their 3D
space. (b) The reconstructed 2D space. (c) The 2D color legend. (d,e,f) Different views of
the 3D points with color coding corresponding to the automatically discovered 2D mapping.

discovered underlying 2D manifold. The mapped colors confirm the
roughly correct 2D mapping of the original points. In our experiments
we have observed that the binary model converges (with T ) more slowly
than the Gaussian model, but with clear advantages in terms of speed.
Furthermore, the length parameter ε in (6.4) may be difficult to set
appropriately (because it has no immediate interpretation) for com-
plex data such as images (see Figure 6.2). Therefore, a model which
avoids this step is advantageous.

Figure 6.7 shows a final example of a 3D space being mapped onto
the underlying planar manifold. Once again binary affinities were used
here.
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6.3.3 Discovering the Manifold Intrinsic Dimensionality

We conclude this section by investigating how we can choose the opti-
mal dimensionality of the target space. In terms of accuracy it is easy
to see that a value of d′ identical to the dimensionality of the original
space would produce the best results because there would be no loss of
information. But one criterion for choosing d′ is to drastically reduce
the complexity of the target space. Thus we definitely wish to use small
values of d′. By plotting the (ordered) eigenvalues it is also clear that
there are specific dimensionalities at which the spectrum presents sharp
changes [3]. This indicates that there are values of d′ such that if we
used d′ + 1 we would not gain very much. These special loci can be
used to define “good” values for the target dimensionality.

Figure 6.8 plots the eigenvalue spectra for the “Swiss Roll” dataset
and the binary and Gaussian affinity models, respectively. As expected
from theory λ0 = 0 (corresponding to a translation component that
we ignore). The sharp elbow in the curves, corresponding to λ2 indi-
cates an intrinsic dimensionality d = 2 (correct) for this example. In
our experiments we have observed that higher values of T produce a
more prominent elbow in the spectrum and thus a clearer choice for the

Fig. 6.8 Discovering the manifold intrinsic dimensionality. (a) The sorted eigenvalues of
the normalized graph Laplacian for the “Swiss Roll” 3D example, with binary affinity
model. (b) As above but with Gaussian affinity. In both curves there is a clear elbow in
correspondence of λ2 thus indicating an intrinsic dimensionality d′ = 2. Here we used forest
size T = 100, D = 4 and weak learner = linear.
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value of d. Similarly, Gaussian affinities produce sharper elbows than
binary affinities.

6.4 Learning Manifold of Object Shapes

This section discusses the possible use of manifold forests for shape
analysis.

Specifically, we are given a set of manually generated object shapes
(represented as binary segmentation masks) and we wish to map them
onto a low-dimensional space so that visually similar shapes are mapped
to positions close to one another. We can think of this task as learning
a shape similarity function. This task is unsupervised in the sense that
we ignore associations of input masks with their object class name.

In this experiment the input images and corresponding object
segmentations come from the PASCAL VOC database [30]. For
simplicity, here we focus on images of three object classes only: bicycles,
aeroplanes, and cars. Figure 6.9 shows some of the input images and
their corresponding object segmentations (red silhouette).

Each segmentation mask is represented as a d-dimensional array
v = (x1, . . . ,xi, . . . ,xd) ∈ R

d of feature responses, with d = 150. The fea-
ture responses xi are computed as the value of the signed distance
(distance from the known object outline) at a given point position. In
Figure 6.9 the distance map is shown as a gray-level image, with darker
values indicating points inside the silhouette, and vice-versa. The posi-
tions of the randomly generated 150 points used to extract features
(shown as green circles) is fixed throughout.

We wish to map this 150-dimensional representation of shapes onto
a 2D space. We do so by training a manifold forest with maximum depth
D = 5 and size T = 100. Following the algorithm described earlier we
obtain the mapping shown in Figure 6.10. In the figure we observe
that despite the lack of supervision, images of aeroplanes are clustered
together and the same for the silhouettes of bicycles and cars. The
presence of occlusions and/or missing parts does not seem to affect the
results much.

Once again, here at each node the features that provide the best split
are chosen automatically out of a large pool of features. Notice that in
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Fig. 6.9 Learning manifolds of object shapes. (a) Some images of bicycles and corresponding
manual segmentations (red outline). The right panel also shows the distance map (as a
gray-level image) and the set of randomly selected points (in green) used to extract feature
responses. (b,c) Same as in (a) but for aeroplanes and cars, respectively. The object masks
have been pre-rotated, centered and scaled (via PCA analysis) to remove variations due to
similarity transformations and help capture only intrinsic shape differences.

Fig. 6.10 Learning manifolds of object shapes. (a) The target 2D space. Each point cor-
responds to a learned 2D representation of one of the input shapes. Larger circles denote
some selected shapes, for visualization. (b) The selected shapes visualized in a regular grid
arrangement. The overlaid colors aid visual clarity as they help match the silhouettes with
the corresponding circles in (a).
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this case the original dimensionality d must be finite since the entropy
has to be computed on the entire multi-variate Gaussian representation.

6.5 Learning Manifold of Text Documents

This section illustrates the possible use of manifold forests in a non-
vision application, that is, the automatic organization of news reports
and automatic discovery of correlations between text documents.

In this experiment we downloaded some news reports from the web
(a snapshot of news taken on the 23 November 2011) using different
search engines and search terms. The reports are then saved as unstruc-
tured text files with no associated labels. Everything here is completely
unsupervised. Each document v is represented as an array of d features.
Each feature xi is simply the count of occurrences of a given keyword
in the selected document v. In this case the vocabulary of keywords
is defined manually and it includes items like: “crisis,” “Berlusconi,”
“Europe,” “mortgage,” etc. Thus in this case v ∈ N

d. The size of the
vocabulary is d = 100.

We train a manifold forest with T = 200 trees and depth D = 4
and use it to map all documents from their original high-dimensional
space to a 2D space. Here we use a binary affinity model and axis-
aligned weak learners. The results are illustrated in Figure 6.11 where
we observe that documents talking about similar topics have been posi-
tioned in nearby locations. The topics themselves have been discovered
automatically and without supervision. For instance, there is a cluster
of documents in the center referring to the European financial crisis of
November 2011 (gray-purple squares). Within this central region there
are sub-clusters referring more specifically to the crisis in Italy (gray-
blue), Greece (gray), and Spain (purple), respectively. Then, there is a
region referring to the role of the German chancellor A. Merkel in the
crisis (in orange). Furthermore, the green squares (spatially contiguous
to the Italian news cluster) contain reports related to a different topic,
that is, the defeat of the Manchester City football team in Naples (in
Italy).

Note that here all these associations have been discovered com-
pletely automatically and in an unsupervised manner. The documents
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Fig. 6.11 Learning manifolds of news reports. (a) The target 2D space. Each point corre-
sponds to a learned 2D representation of one of the input news documents. Larger circles
denote some selected documents, for visualization. (b) The selected documents (just the
titles shown here) visualized as boxes in a regular grid. The overlaid colors aid visual clarity
as they help matching the document titles with the corresponding circles in (a). The black
boxes indicating the general topics have been overlaid manually for clarity.

have been mapped onto a space where Euclidean distances make
semantic sense, to some extent. Regarding the choice of features, in
this toy example we use simple histograms of words from a predefined
vocabulary. However which words to use and with what weight is auto-
matically determined by the training algorithm via the optimization of
the objective function. Thus, one may think of extending the size of
the chosen vocabulary to be the entire English dictionary. Alternative,
more sophisticated features may be used too.

6.6 Discussion

In this section we have discussed some of the advantages of manifold
forests and have studied the effects of its parameters. For example
we have seen that manifold forests can be efficient, avoid the need to
predefine the features to be used, and can provide guidance with respect
to the optimal dimensionality of the target space. On the flip side it
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is important to choose the forest depth D carefully, as this parameter
influences the number of clusters in which the data is partitioned and, in
turn, the smoothness of the recovered mapping. In contrast to existing
techniques here we also need to choose a weak-learner model to guide
the way in which different clusters are separated. The forest size T is
not a crucial parameter since the more trees the better the behavior.

Manifold forests solve the problem of finding appropriate data
neighborhoods adaptively and efficiently. The actual mapping from
the original space to a lower dimensional one has been achieved here
via Laplacian eigenmaps, however, alternative dimensionality-reduction
algorithms may be used.

A more rigorous validation of manifold forests with real data is
necessary to fully assess the validity of such model. Next, we dis-
cuss a natural continuation of the supervised and unsupervised models
discussed so far, and their use in semi-supervised learning.



7
Semi-supervised Forests

Previous sections have discussed the use of decision forests in super-
vised problems (for example, regression and classification) as well as
unsupervised ones (for example, density and manifold estimation). This
section puts the two things together to achieve semi-supervised learn-
ing. We focus here on semi-supervised classification but the results can
be extended to regression too.

In semi-supervised classification we have available a small set of
labeled training data and a large set on unlabeled data. This is a typical
situation in many scenarios. For instance, in medical image analysis get-
ting hold of numerous anonymized patients scans is relatively easy and
cheap. However, labeling them with ground-truth annotations requires
experts time and effort and thus is very expensive. A key question
then is if we can exploit the existence of unlabeled data to improve
classification.

Semi-supervised machine learning is interested in the problem of
transferring existing ground-truth labels to the unlabeled (and already
available) data. When in order to solve this problem we make use of
the underlying data distribution then we talk of transductive learn-
ing. This is in contrast with the inductive learning already encountered

195
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in previous sections (Sections 3 and 4), where the test data is not
available at training time. This section focuses on transductive classi-
fication and also revisits the inductive process in the light of its trans-
ductive counterpart. Decision forests can address both tasks accurately
and efficiently.

Intuitively, in transductive classification we wish to separate the
data so as to: (i) keep different known class labels in different regions
and, (ii) make sure that classification boundaries go through areas of
low data density. Thus, it is necessary to borrow concepts from both
supervised classification and density estimation.

After a brief literature survey, we show how to adapt the generic
forest model to do transductive semi-supervised classification. This sec-
tion also shows how, given a transductive forest we can easily upgrade
it to a general inductive classification function for previously unseen
test data. Numerous examples and comparative experiments illustrate
advantages and disadvantages of semi-supervised forests over alterna-
tive popular algorithms. The use of decision forests for the related active
learning task is also discussed.

7.1 Literature on Semi-supervised Learning

A popular technique for semi-supervised learning is transductive
support vector machines [51, 109]. Transductive SVM (TSVM) is an
extension of the popular support vector machine algorithm [106] which
maximizes the separation of both labeled and unlabeled data. The
experimental section of this section will present comparisons between
forests and TSVM.

Excellent, recent references for semi-supervised learning and active
learning are [18, 20, 100, 112] which provide a nice structure to the
vast amount of literature on these topics. A thorough literature survey
is beyond the scope of this paper and here we focus on forest-based
models.

In [58] the authors discuss the use of decision forests for semi-
supervised learning. They achieve this via an iterative, deterministic
annealing optimization. Tree-based semi-supervised techniques for
vision and medical applications are presented in [13, 17, 28]. Here we
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introduce a new, simple and efficient, one-shot semi-supervised forest
algorithm.

7.2 Specializing the Decision Forest Model
for Semi-supervised Classification

This section specializes the generic forest model introduced in Section 2
for use in semi-supervised classification. This model can also be
extended to semi-supervised regression though this is not discussed
here.

Problem statement. The transductive classification task is summa-
rized here as follows:

Given a set of both labeled and unlabeled data we wish to asso-
ciate a class label to all the unlabeled data.

Unlike inductive classification here all unlabeled “test” data is
already available during training.

The desired output (and consequently the training labels) are of
discrete, categorical type (unordered). More formally, given an input
point v we wish to associate a class label c such that c ∈ {ck}. As usual
the input is represented as a multi-dimensional feature response vector
v = (x1, . . . ,xd) ∈ R

d.
Here we consider two types of input data: labeled vl ∈ L and unla-

beled vu ∈ U . This is illustrated in Figure 7.1(a), where data points are
denoted with circles. Colored circles indicate labeled training points,
with different colors denoting different labels. Unlabeled data is shown
in gray. Figures 7.1(b) and 7.1(c) further illustrate the difference
between transductive and inductive classification.

What are semi-supervised forests? A transductive forest is a col-
lection of trees that have been trained on partially labeled data. Both
labeled and unlabeled data are used to optimize an objective func-
tion with two components: a supervised and an unsupervised one, as
described next.
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Fig. 7.1 Semi-supervised forest: input data and problem statement. (a) Partially labeled
input data points in their two-dimensional feature space. Different colors denote different
labels. Unlabeled data is shown in gray. (b) In transductive learning we wish to propa-
gate the existing ground-truth labels to the many, available unlabeled data points. (c) In
inductive learning we wish to learn a generic function that can be applied to previously
unavailable test points (gray circles). Training a conventional classifier on the labeled data
only would produce a sub-optimal classification surface, that is, a vertical line in this case.
Decision forests can effectively address both transduction and induction. See text for detail.

The training objective function. As usual, forest training hap-
pens by optimizing the parameters of each internal node j via

θ∗
j = arg max

θj∈Tj

Ij

Different trees are trained separately and independently. The main dif-
ference with respect to other forests is that here the objective func-
tion Ij must encourage both separation of the labeled training data as
well as separating different high density regions from one another. This
is achieved by maximizing the following mixed information gain:

Ij = Iuj + αIsj . (7.1)

In the equation above Isj is a supervised term and depends only on
the labeled training data. In contrast, Iuj is the unsupervised term and
depends on all data, both labeled and unlabeled. The scalar parameter
α is user defined and it specifies the relative weight between the two
terms.

As in conventional classification, the term Isj is an information gain
defined over discrete class distributions:

Isj = H(Sj) −
∑

i∈{L,R}

|Si
j |

|Sj |
H(Si

j) (7.2)
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with the entropy for a subset S ⊆ L of training points H(S) =
−
∑

c p(c) logp(c) with c the ground truth class labels of the points
in L.

Similarly, as in density estimation, the unsupervised gain term Iuj
is defined via differential entropies defined over continuous parameters
(that is, the parameters of the Gaussian associated with each cluster):

Iuj = log |Λ(Sj)| −
∑

i∈{L,R}

|Si
j |

|Sj |
log |Λ(Si

j)| (7.3)

for all points in Sj ⊆ (U ∪ L). Like in Section 5 we have made the
working assumption of Gaussian node densities.

The ensemble model. During testing, a semi-supervised classifica-
tion tree t yields as output the posterior pt(c|v). Here we think of the
input point v as already available during training (v ∈ U , for trans-
duction) or previously unseen (for induction). The forest output is the
usual posterior mean:

p(c|v) =
1
T

T∑
t

pt(c|v).

Having described the basic model components next we discuss details
of the corresponding label propagation algorithm.

7.3 Label Propagation in Transduction Forest

This section explains tree-based transductive label propagation.
Figure 7.2 shows an illustrative example. We are given a partially
labeled dataset (as in Figure 7.2(a)) which we use to train a trans-
ductive forest of size T and maximum depth D by maximizing the
mixed information gain (7.1).

Different trees produce randomly different partitions of the feature
space as shown in Figure 7.2(b), 7.2(c), and 7.2(d). The different col-
ored regions represent different clusters (leaves) in each of the three
partitions. If we use Gaussian models then each leaf stores a different
Gaussian distribution learned by maximum likelihood for the points



200 Semi-supervised Forests

Fig. 7.2 Label transduction in semi-supervised forests. (a) Input points, only four of which
are labeled as belonging to two classes (red and yellow). (b,c,d) Different transductive trees
produce different partitions of the feature space. Different regions of high data density tend
to be separated by cluster boundaries. Geodesic optimization enables assigning labels to the
originally unlabeled points. Points in the central region (away from original ground-truth
labels) tend to have less stable assignments. In the context of the entire forest this captures
uncertainty of transductive assignments. (e,f,g) Different tree-induced partitions correspond
to different Gaussian Mixture models. (h) Label propagation via geodesic path assignment.

within. Label transduction from annotated data to unannotated data
can be achieved directly via the following minimization:

c(vu) ⇐ c(arg min
vl∈L

D(vu,vl)) ∀vu ∈ U . (7.4)

The function c(·) indicates the class index associated with a point
(known in advance only for points in L). The generic geodesic distance
D(·, ·) is defined as

D(vu,vl) = min
Γ∈{Γ}

L(Γ)−1∑
i=0

d(si,si+1),

with Γ a geodesic path (here represented as a discrete collection of
points), L(Γ) its length, {Γ} the set of all possible geodesic paths and
the initial and end points s0 = vu,sL(Γ) = vl, respectively. The local
distances d(·, ·) are defined as symmetric Mahalanobis distances

d(si,sj) =
1
2
(dij

�Λ−1
l(vi)

dij + dij
�Λ−1

l(vj)
dij)
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with dij = si − sj and Λl(vi) the covariance associated with the leaf
reached by the point vi. Figure 7.2h shows an illustration. Using Maha-
lanobis local distances (as opposed to, for example, Euclidean ones)
discourages paths from cutting across regions of low data density, a
key requirement for correct transduction.1 In effect we have defined
geodesics on the latent probability density function.

Some example results of label propagation are shown in Fig-
ures 7.2(b), 7.2(c), and 7.2(d). Figures 7.2(e), 7.2(f), and 7.2(g)
illustrate the corresponding Gaussian clusters associated with the
leaves. Following label transduction (7.4) all unlabeled points remain
associated with one of the multiple, existing class labels (Figures 7.2(b),
7.2(c), and 7.2(d)). Note that such transducted labels are different for
each tree, and they are more stable for points closer to the original
labeled data. When looking at the entire forest this yields uncertainty
in the newly obtained labels. Thus, in contrast to some other transduc-
tive learning algorithms a semi-supervised forest produces a probabilis-
tic transductive output p(c|vu).

Usually, once transductive label propagation has been achieved one
may think of using the newly labeled data as ground-truth and train
a conventional classifier to come up with a general, inductive classifi-
cation function. Next we show how we can avoid this second step and
go directly from transduction to induction without further expensive
training steps.

7.4 Induction from Transduction

Previously we have described how to propagate class labels from labeled
training points to already available unlabeled ones. Here we describe
how to infer a general probabilistic classification rule p(c|v) that may
be applied to previously unavailable test input (v �∈ U ∪ L).

We have two alternatives. First, we could apply the geodesic-based
algorithm in (7.4) to every test input. But this involves T shortest-path

1 Since all leaves are associated with the same Gaussian the label propagation algorithm can
be implemented very efficiently by acting on each leaf cluster rather than on individual
points. Very efficient geodesic distance transform algorithms exist [23].
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searches for each v. A simpler alternative involves constructing an
inductive posterior from the existing trees, as shown next.

After transduction forest training we are left with T trained trees
and their corresponding partitions (Figures 7.2(b), 7.2(c), and 7.2(d)).
After label propagation we also have attached a class label to all avail-
able data (with, in general, different trees assigning different classes to
the points in U). Now, just like in classification, counting the examples
of each class arriving at each leaf defines the tree posteriors pt(c|v).
These act upon the entire feature space in which a point v lives and
not just the already available training points. Therefore, the inductive
forest class posterior is the familiar

p(c|v) =
1
T

T∑
t=1

pt(c|v).

Here we stress again that the tree posteriors are learned from all (exist-
ing and transducted) class labels ignoring possible instabilities in class
assignments. We also highlight that building the inductive posterior is
extremely efficient (it involves counting) and does not require training
a whole new classifier.

Figure 7.3 shows inductive classification results on the same exam-
ple as in Figure 7.2. Now the inductive classification posterior is tested

Fig. 7.3 Learning a generic, inductive classification rule. Output classification posteriors,
tested on all points in a rectangular section of the feature space. Labeled training points
are indicated by colored circles (only four of those per image). Available unlabeled data
are shown by small gray squares. Note that a purely inductive classification function would
separate the left and right sides of the feature space with a vertical line. In contrast here the
separating surface is “S”-shaped because affected by the density of the unlabeled points,
thus demonstrating the validity of the use of unlabeled data densities. From left to right
the number of trees in the forest increases from T = 1 to T = 100. See text for details.
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on all points within a rectangular section of the feature space. As
expected a larger T produces smoother posteriors. Note also how the
inferred separating surface is “S”-shaped because it takes into account
the unlabeled points (small gray squares). Finally we observe that
classification uncertainty is greater in the middle due to its increased
distance from the four ground-truth labeled points (yellow and red
circles).

Discussion. In summary, by using our mixed information gain and
some geodesic-based label transduction the generic decision forest
model can be readily adapted for use in semi-supervised tasks. Semi-
supervised forests can be used both for transduction as well as
(density-aware) induction with an efficient, single-step training pro-
cedure. Further efficiency is due to the parallel nature of forests. Both
for transduction and induction the output is fully probabilistic. We
should also highlight that semi-supervised forests are very different
from for example, self-training techniques [84]. Self-training techniques
work by: (i) training a supervised classifier, (ii) classifying the unla-
beled data, (iii) using the newly classified data (or perhaps only the
most confident subset) to train a new classifier, and so on. In contrast,
semi-supervised forests are not iterative. Additionally, they are driven
by a clear objective function, the maximization of which encourages
the separating surface to go through regions of low data density, while
respecting existing ground-truth annotations.

Next we present further properties of semi-supervised forests (such
as their ability to deal with any number of classes) with toy examples
and comparisons with alternative algorithms.

7.5 Examples, Comparisons and Effect
of Model Parameters

This section studies the effect of the forest model parameters on its
accuracy and generalization. The presented illustrative examples are
designed to bring to life different properties. Comparisons between
semi-supervised forests with alternatives such as transductive support
vector machines are also presented.
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Figure 7.3 has already illustrated the effect of the presence of unla-
beled data as well as the effect of increasing the forest size T on the
shape and smoothness of the posterior. Next we discuss the effect of
increasing the amount of ground-truth labelled data.

The effect of additional labeled data and active learning. As
observed already, the central region in Figure 7.4(a) shows higher clas-
sification uncertainty (dimmer, more orange pixels). Thus, as typical of
active learning [14] we might decide to collect and label additional data
precisely in those low-confidence regions. This should have the effect of
refining the classification posterior and increasing its confidence. This
effect is indeed illustrated in Figure 7.4(b).

As expected, a guided addition of further labeled data in regions of
high uncertainty increases the overall predictor confidence. The impor-
tance of having a probabilistic output is clear here as it is the confidence
of the prediction (and not the class prediction itself) which guides, in
an economical way, the collection of additional training data. Next we
compare semi-supervised forests with alternative algorithms.

Comparison with support vector machines. Figure 7.5 shows
a comparison between semi-supervised forests and conventional

Fig. 7.4 Active learning. (a) Test forest posterior trained with only four labeled points and
hundreds of unlabeled ones. The middle region shows lower confidence (pointed at by two
arrows). (b) As before, but with two additional labeled points placed in regions of high
uncertainty. The overall confidence of the classifier increases considerably and the overall
posterior is sharper. Figure best seen on screen
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Fig. 7.5 Comparing semi-supervised forests with SVM and transductive SVM. (a) Input
partially labeled data points. (b) Semi-supervised forest classification posterior. The prob-
abilistic output captures prediction uncertainty (mixed-color pixels in the central region).
(c) Unsurprisingly, conventional SVM produces a vertical separating surface and it is not
affected by the unlabeled set. (d) Transductive SVM follows regions of low density, but still
does not capture uncertainty. (a′) As in (a) but with larger noise in the point positions.
(b′) The increased input noise is reflected in lower overall confidence in the forest prediction.
(c′,d′) as (c) and (d), respectively, but run on the noisier training set (a′).

SVM [106] as well as transductive SVM [51, 109], on the same two
input datasets.2

In the figure we observe a number of effects. First, unlike SVM
the forest captures uncertainty. As expected, more noise in the input
data (either in the labeled or unlabeled sets, or both) is reflected in
lower prediction confidence. Second, while transductive SVM manages
to exploit the presence of available unlabeled data it still produces a
hard, binary classification. For instance, larger amounts of noise in the
training data is not reflected in the TSVM separating surface.

Handling multiple classes. Being tree-based models semi-
supervised forests can natively handle multiple (>2) classes. This is
demonstrated in Figure 7.6 with a four-class synthetic experiment. The
input points are randomly drawn from four bi-variate Gaussians. Out

2 In this example the SVM and transductive SVM results were generated using the “SVM-
light” Matlab toolbox in http://svmlight.joachims.org/.
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Fig. 7.6 Handling multiple classes. (a) Partially labeled input data. We have 4 labeled points
for the 4 classes (different colors for different classes). (b) Classification results for one-v-all
support vector machines. (c) Transduction results based on a single decision tree. Originally
unlabeled points are assigned a label based on tree-induced geodesic distances. (d) Final
semi-supervised classification posterior. Unlabeled points nicely contribute to the shape of
the posterior (for example, look at the elongated yellow blob). Furthermore, regions of low
confidence nicely overlap regions of low data density.

of hundreds of points only four are labeled with their respective classes
(shown in different colors). Conventional one-v-all SVM classification
results in hard class assignments (Figure 7.6(b)). Tree-based transduc-
tive label propagation (for a single tree) is shown in Figure 7.6(c). Note
that slightly different assignments are achieved for different trees. The
forest-based inductive posterior (computed for T = 100) is shown in
Figure 7.6(d) where the contribution of previously unlabeled points to
the shape of the final posterior is clear. Regions of low confidence in
the posterior correspond to regions of low density in the data.
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Fig. 7.7 Semi-supervised forest: effect of tree depth. (a) Input labeled and unlabeled points.
We have 4 labeled points and 4 classes (color coded). (a′) As in (a) but with double the
amount of labeled data. (b,b′) Semi-supervised forest inductive classification posterior for
D = 6 tree levels. (c,c′) Semi-supervised forest classification posterior for D = 10 tree levels.
The best results are obtained in (c′), with largest amount of labeled data and deepest trees.

The effect of tree depth. We conclude this section by studying the
effect of the depth parameter D in Figure 7.7. The figure shows two
four-class examples. The input data is distributed according to four-arm
spirals. In the top row we have only four ground-truth labeled points. In
the bottom row we have eight. Similar to classification forests, increas-
ing the depth D from 6 to 10 produces more accurate and confident
results. And so does increasing the amount of labeled data. In this rel-
atively complex example, accurate and sharp classification is achieved
with just 2 × 4 labeled data points (for D = 10 tree levels) and hun-
dreds of unlabeled ones.

The recent popularity of decision forests has meant an explosion of
different variants in the literature. Although collecting and categorizing
all of them is a nearly impossible task, in the next section we discuss a
few important ones.



8
Random Ferns and Other Forest Variants

This section describes some of the many variants on decision forests
that have emerged in the last few years. Many such variations can be
seen as special instances of the same general forest model. Specifically
here we focus on: random ferns, extremely randomized trees, entangled
forests, online training and the use of forests on random fields.

8.1 Extremely Randomized Trees

Extremely randomized trees (ERT) are ensembles of randomly trained
trees where the optimization of each node parameters has been greatly
reduced or even removed altogether [38, 69].

In our decision model the amount of randomness in the optimiza-
tion of split nodes is controlled by the parameter ρ = |Tj | (Section 2). In
our randomized node optimization model when training the jth inter-
nal node the set Tj is selected at random from the entire set of pos-
sible parameters T . Then optimal parameters are chosen only within
the Tj subset. Consequently, extremely randomized trees are a specific
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Fig. 8.1 Forests, extremely randomized trees and ferns. (a) Input training points for four
classes. (b) Posterior of a classification forest. (c) Posterior of an ensemble of extremely
randomized trees. (d) Posterior of a random fern. The randomness parameter is changed
as illustrated. All other parameters are kept fixed. Extremely randomized trees are faster
to train than forests but tend to produce a lower-confidence posterior. The additional con-
straints of random ferns yield further loss of posterior confidence.

instance of the general decision forest model with the additional con-
straint that ρ = 1∀j. In this case no node training is performed.

Figure 8.1 shows a comparison between classification forests and
extremely randomized trees for a toy example. Some training points
belonging to four different classes are randomly distributed along four
spiral arms. Two decision forests were trained on the data. One of them
with ρ = 1,000 and another with ρ = 1 (extremely randomized). All
other parameters are kept identical (T = 200,D = 13, weak learner =
conic section, predictor = probabilistic). The corresponding testing pos-
teriors are shown in Figures 8.1(b) and 8.1(c), respectively. It can be
observed that the increased randomness produces lower overall pre-
diction confidence. Algorithmically higher randomness yields slower
convergence of test error as a function of the forest size T . On the
flip side, extremely randomized trees are very efficient to train.

8.2 Random Ferns

Random ferns can also be thought of as a specific case of decision
forests. In this case the additional constraint is that the same test
parameters are used in all nodes of the same tree level [75, 77].

Figure 8.2 illustrates this point. As usual training points are indi-
cated with colored circles, with different colors indicating different
classes. In both a decision tree and a decision fern the first node (root)
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Fig. 8.2 Forests and ferns. A set of labeled training data is used to train a forest and a fern.
Here simple axis-aligned weak learners are employed. A fern has fewer parameters than the
forest and thus the fern typically requires deeper trees than a forest to split equally well
the input training data.

does an equally good job at splitting the training data into two subset.
Here we consider only axis-aligned weak learners. In this example going
to the next level starts to show the difference between the two models
(Figure 8.2(d)). The fact that all parameters θ of all nodes in the same
level are identical induces partitions of the feature space with complete
hyper-surfaces (as opposed to the “half-surfaces” used by the forest,
see Figures 8.2(d) and 8.2(e)). Consequently, in order to split exactly
the linearly separable input dataset in this example the fern requires
more levels than the forest. This explains why in Figure 8.1(c) we see
lower prediction confidence (very washed-out colors) as compared to
extremely randomized trees or full forests.

The fact that extremely randomized trees and random ferns are
lower-parametric versions of decision forests can be an advantage in
some situations. For instance, in the presence of limited training data
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ERT and ferns run less risk of overfitting than forests. Thus, as usual
the best optimal model to use depends on the application at hand.

8.3 Online Forest Training

One of the advantages of decision forests is that thanks to their paral-
lelism they are efficient both during training and testing. Most of the
time they are used in an off-line way, that is, they are trained on a train-
ing data and then tested on previously unseen test data. The entirety of
the training data is assumed given in advance. However, there are many
situations where the labeled training data may be arriving at different
points in time. In such cases it is convenient to be able to update the
learned forest quickly, without having to start training from scratch.
This second mode of training is often referred to as on-line training.

Given a forest trained on a starting training set, the simplest form
of on-line training is that of keeping the learned parameters and forest
structure fixed and only update the leaf distributions. As new training
data is available it can be simply “pushed through” all trees until it
reaches the corresponding leaves. Then, the corresponding distributions
(for example, unnormalized histograms) can be quickly updated (for
example, by simply adding the new counts in the appropriate bins).
The work in [86] presents further details.

8.4 Structured-output Forests

Often decision forests are used for the semantic segmentation of images.
This involves assigning a class to each pixel (voxel) in the image domain
(for example, as in Microsoft Kinect for XBox 360). However, such class
decisions are often made independently for each pixel. Classic Markov
random fields and conditional random fields [8] add generic spatial
priors to achieve more homogeneous outputs by smoothing noisy local
evidence (possibly conditioned on the image data).

Recent work on structured-output decision forests tries to overcome
the limitations of such generic models and learn a class-aware model of
spatial context [73]. Several different techniques have been proposed,
some of which are summarized below.
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8.4.1 Entangled Forests

Entangled forests [68] are decision forests where the feature vector used
as input to a split node is a function of: (i) the image data and (ii) the
class probabilities output of previous split nodes in the same tree.

The basic idea stems from the work on Probabilistic Boosting
Trees [104] and autocontext [105]. In the latter the author shows how
a sequence of trees, where each uses the output of the previous tree as
input, yields better results than using a single tree. In fact, each stage
moves us one step closer from the original image data to its “semantic”
meaning.

However, due to their hierarchical structure each tree is composed
of multiple subtrees. So, the idea of taking the output of a tree as input
for the next can also be applied within the same decision tree/forest, as
shown in [68]. In [68] the authors extend the feature pool by using
both image intensities and various combinations of class posteriors
extracted at different internal nodes in a classification forest. They show
much improved generalization with shallower (and thus more efficient)
forests. One of the reasons why entangled forests work well is because
of learned, class-specific context. For example, the system learns that
a voxel which is 5 cm below the right lung and 5 cm above the right
kidney is likely to be in the liver.
Biased randomization. The work in [68] also introduces a variant on
randomized node optimization where the available test parameters Tj

are no longer drawn uniformly from T , but according to a learned
proposal distribution. This increases both training efficiency and testing
accuracy as it reduces the enormous search space (possibly infinite) to
a more manageable subset which is still highly discriminative.

8.4.2 Structured Semantic Image Labeling

The work in [54] presents a different approach, where the authors train a
classification forest to predict “label patches,” as opposed to individual
labels for each pixels. Thus each leaf predicts the n × n structured
labels of an entire image patch. In this models difficulties arise when
defining an efficient energy for training, and the authors propose some
effective approximations. During testing a “patch reconciliation” step
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ensures the assignment of a good label for each pixel out of many label
patch proposals.

8.4.3 Decision Tree Fields

Nowozin et al. [74] proposed another technique for learning models of
context which go beyond conventional conditional random fields. In
fact, they combine random decision forests and random fields together
in a decision tree field model. The authors build on ideas from [79]
and propose a model where both the per-pixel likelihoods as well as
the graph pairwise potentials are conditioned on the underlying image
content. Different types of pair-wise weights are learned from images
using random forests. By using approximate likelihood functions the
training of the decision tree field model remains efficient, however, the
test-time inference requires the minimization of a random field energy
and therefore may prohibit its use in real-time applications, at present.

Exploring new forest-based models for structured-output prediction
is a recent research trend that promises to produce interesting algo-
rithms for the semantic segmentation of photographs as well as medical
images.

8.5 Further Forest Variants

The “STAR” model in [78] can also be interpreted as a forest of T ,
randomly trained non-binary trees of depth D = 1. The corresponding
training and testing algorithms are computational efficient. A related
model, made of multiple single nodes is “node harvest” [64]. Node har-
vest has the advantage of high interpretability, but seems to work best
in low signal-to-noise conditions.

This section has presented only a small subset of the most interest-
ing variants on tree-based machine learning techniques.



9
Conclusions

This review has proposed a unified model of decision forest and
shown its applicability to various different tasks including: classifica-
tion, regression, density estimation, manifold learning, semi-supervised
learning, and active learning.

We have presented both a tutorial on known forest-related concepts
as well as a series of novel contributions such as demonstrating margin-
maximizing properties, introducing forest-based density estimation and
manifold forests, and discussing a new algorithm for transductive learn-
ing. Finally, we have studied for the first time the effects of important
forest parameters such as the amount of randomness and the weak
learner model on accuracy.

A key advantage of decision forests is that the associated infer-
ence algorithms can be implemented and optimized once. Yet relatively
small changes to the model enable the user to solve many diverse tasks,
depending on the application at hand. Decision forests can be applied
to supervised, unsupervised and also semi-supervised tasks.

The feasibility of the decision forest model has been demonstrated
both theoretically and in practice, with synthetic experiments and in
some commercial applications. Whenever possible, forest results have
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been compared directly with popular alternatives such as support vec-
tor machines, boosting and Gaussian processes. Amongst other advan-
tages, the forest’s intrinsic parallelism and consequent efficiency are
very attractive for data-heavy practical applications.

Further research is necessary for example, to figure out optimal ways
of incorporating priors (for example, of shape) within the forest and to
increase their generalization further. An interesting avenue that some
researchers have started to pursue is the idea of combining classification
and regression within the same forest [39]. This can be interesting as
the two models can enrich one another. The more exploratory concepts
of density forest, semi-supervised forest and manifold forests presented
here need more testing in real applications to demonstrate their feasi-
bility. We hope that this survey can serve as a springboard for future
exciting research to advance the state of the art in automatic image
understanding for medical image analysis as well as general computer
vision.

For further details, animations and demo videos, the interested
reader is encouraged to view the additional material available at [49].



Appendix A — Deriving the Regression
Information Gain

This section shows the mathematical derivation leading to the continu-
ous regression information gain measure in (4.2). We start by describing
probabilistic linear regression.

Least squares line regression. For simplicity the following descrip-
tion focuses on fitting a line to a set of 2D points but it can be eas-
ily generalized to hyperplanes in a higher dimensional space. We are
given a set of points (as shown in Figure 1) and we wish to estimate
a probabilistic model of the line through those points. A 2D point x
is represented in homogeneous coordinates as x = (x y 1)�. A line in
homogeneous coordinates is written as the 3-vector l = (lx ly lw)�. If
a point is on the line then l · x = 0. Thus, for n points we can setup
the linear system

Al = 0

with the n × 3 matrix A

A =



x1 y1 1
x2 y2 1
...

...
...

xn yn 1


 .
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Fig. 1 Probabilistic line fitting. Given a set of training points we can fit a line model
to them. For instance, in this example l ∈ R

2. Matrix perturbation theory enables us to
compute the entire conditional density p(l|x) from where we can derive p(y|x). Training a
regression tree involves minimizing the uncertainty of the prediction p(y|x). Therefore, the
training objective is a function of σ2

y .

The input points are in general noisy and thus it is not possible to find
the line exactly. As usual in these cases we use the well known least
squares technique where we define a cost function C = l�A�Al to be
minimized while satisfying the constraint ||l|| = 1. The corresponding
Lagrangian is

L = l�A�Al − λ(l�l − 1).

Taking the derivative of L and setting it to 0 as follows:
∂L
∂l

= 2A�Al − 2λl = 0

leads to the following eigen-system:

A�Al = λl.

Therefore, the optimal line solution l is the eigenvector of the 3 × 3
matrix M = A�A corresponding to its minimum eigenvalue.

Estimating the distribution of line parameters. By assuming
noisy training points and employing matrix perturbation theory [22, 98]
we can estimate a Gaussian density of the line parameters: l ∼ N (l,Λl),
as follows.

The generic ith row in the “design” matrix A is ai = (xi yi 1) = x�
i .

Thus the corresponding covariance is

E [a�
i ai] = Λi
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with E denoting expectation and where the point covariance Λi takes
the form:

Λi =


 σ2

xi
σxiyi 0

σxiyi σ2
yi

0
0 0 0




Finally the 3 × 3 line covariance matrix is

Λl = J S J (A.1)

with the 3 × 3 Jacobian matrix

J = −
3∑

k=2

uku�
k

λk
,

where λk denotes the kth eigenvalues of the matrix M and uk its corre-
sponding eigenvector. The 3 × 3 matrix S in (A.1) is

S =
n∑

i=1

(a�
i ail�Λil).

Therefore the distribution over l remains completely defined. Now,
given a set of (x,y) pairs we have found the maximum-likelihood line
model N (l,Λl). However, what we want is the conditional distribution
p(y|x) (see Figure 1) this is discussed next.

Estimating the conditional p(y|x). In regression forests we are
given an input point x and the mean and covariance of the line param-
eters l for the leaf reached by the input point. The task now is to
estimate of the conditional probability p(y|x). At the end of this section
we will see how this is used in the regression information gain.

In its explicit form a line equation is y = ax + b with a = −lx/ly
and b = −lw/ly. Thus we can define l′ = (ab)� with

l′ = f(l) =
(

−lx/ly
−lw/ly

)
.

Its 2 × 2 covariance is then Λl′ = ∇f Λl ∇f� with

∇f =

(
− 1

ly
lx
l2y

0

0 lw
l2y

− 1
ly

)
.
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Now we can rewrite the line equation as y = g(x) = l′ · x with x =
(x 1)� and the variance of y becomes

σ2
y(x) = ∇gΛl′∇g�

with ∇g = x�. So, finally the conditional density p(y|x) remains
defined as

p(y|x) = N(y;y,σ2
y(x)). (A.2)

See also Figure 1.

Regression information gain. In a regression forest the objective
function of the jth split node is

Ij = H(Sj) −
∑

i∈{L,R}

|Si
j |

|Sj |
H(Si

j ) (A.3)

with the entropy for a generic training subset S defined as

H(S) = − 1
|S|
∑
x∈S

∫
y
p(y|x) logp(y|x)dy (A.4)

by substituting (A.2) in (A.4) we obtain

H(S) =
1

|S|
∑
x∈S

1
2

log
(
(2πe)2σ2

y(x)
)

which when plugged into (A.3) yields the information gain

Ij ∝
∑

xj∈Sj

log(σy(xj)) −
∑

i∈{L,R}


 ∑

xj∈Si
j

log(σy(xj))




up to a constant scale factor which has no influence over the node
optimization procedure and thus can be ignored.

In this appendix we have derived the regression information gain for
the simple case of 1D input x and 1D output y. It is easy to upgrade the
derivation to multivariate variables, yielding the more general regres-
sion information gain in (4.2).
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