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Abstract—This paper presents an automatic segmentation algorithm for video frames captured by a (monocular) webcam that closely

approximates depth segmentation from a stereo camera. The frames are segmented into foreground and background layers that

comprise a subject (participant) and other objects and individuals. The algorithm produces correct segmentations even in the presence

of large background motion with a nearly stationary foreground. This research makes three key contributions: First, we introduce a

novel motion representation, referred to as “motons,” inspired by research in object recognition. Second, we propose estimating the

segmentation likelihood from the spatial context of motion. The estimation is efficiently learned by random forests. Third, we introduce

a general taxonomy of tree-based classifiers that facilitates both theoretical and experimental comparisons of several known

classification algorithms and generates new ones. In our bilayer segmentation algorithm, diverse visual cues such as motion, motion

context, color, contrast, and spatial priors are fused by means of a conditional random field (CRF) model. Segmentation is then

achieved by binary min-cut. Experiments on many sequences of our videochat application demonstrate that our algorithm, which

requires no initialization, is effective in a variety of scenes, and the segmentation results are comparable to those obtained by stereo

systems.

Index Terms—Computer vision, image understanding, machine learning, decision tree, random forests, boosting, motion analysis.

Ç

1 INTRODUCTION AND RELATED WORK

THIS paper addresses the problem of extracting a fore-
ground layer from videochat captured by a (monocular)

webcam that closely approximates depth segmentation
from a stereo camera. The foreground is intuitively defined
as a subject of videochat, not necessarily frontal, while the
background is literally anything else. Applications for the
proposed technique include background substitution, com-
pression, adaptive bit rate video transmission, and tracking.
These applications have at least two requirements: 1) robust
segmentation against strong distracting events, such as
people moving in the background, camera shake, or
illumination change, and 2) efficient separation for attaining
live streaming speed. This paper focuses on the common
scenario of the videochat application.

Image layer extraction has been an active research area
[2], [3], [12], [29], [34]. Recent work in this area has
produced compelling, real-time algorithms, based on either
stereo [13] or motion [8]. Some previously used algorithms
require initialization in the form of a “clean” image of the
background [28].

Stereo-based segmentation [13] seems to achieve the most
robust results, as background objects are correctly separated

from the foreground independently from their motion-
versus-stasis characteristics. This paper aims at achieving a
similar behavior monocularly (cf. Fig. 1).

In some monocular systems [28], the static background
assumption causes inaccurate segmentation in the presence
of camera shake (e.g., for a webcam mounted on a laptop
screen), illumination change, and large objects moving in
the background. Although the algorithm in [8] precludes
the need for a clean background image, the segmentation
still suffers in the presence of large background motion.
Moreover, initialization is sometimes necessary in the form
of global color models.

The work in [35] has started an important line of research
in using geometric models (e.g., planar motion) for the
segmentation of optical flow fields. However, in the
videochat application, such rigid models are not capable
of accurately describing the foreground motion. Further-
more, we wish to avoid the complexities associated with
optical flow computation.

The algorithm proposed in this paper exploits motion and
its spatial context as a powerful cue for layer separation, and
the correct level of geometric rigidity is automatically learned
from training data (see the discussion in Section 7.1). The
algorithm benefits from a novel, quantized motion repre-
sentation (cluster centroids of the spatiotemporal derivatives
of video frames), referred to as motons. Motons (related to
textons), inspired by recent research in motion modeling [8]
and object/material recognition [18], [22], [27], [32], [36], are
combined with shape filters [27] to model long-range spatial
correlations (shape). These new features prove useful at
capturing the visual context and filling in missing, texture-
less, or motionless regions.

Fused motion-shape cues are discriminatively selected
by supervised learning. Key to our technique is a classifier
trained on depth-defined layer labels, such as those used in a
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stereo setting [13], as opposed to motion-defined layer
labels, such as in [8] (compare Figs. 2b and 2c). Thus, to
induce depth in the absence of stereo while maintaining
generalization, the classifier is forced to combine other
available cues accordingly.

Combining multiple cues addresses one of the two
aforementioned requirements, robustness, for the bilayer
segmentation. To meet the other requirement, efficiency, a
straightforward way is to trade accuracy for speed if only one
type of classifier is used. However, we may be able to achieve
efficiency without sacrificing much accuracy if multiple
types of classifiers, such as AdaBoost [10], decision trees [23],
random forests [7], random ferns [21], and attention cascade
[33], are available. That is, if we view these “strong”
classifiers as a composition of “weak” learners (decision
stumps), we may be able to control how the strong classifiers
are constructed to fit the limitations in evaluation time. In
this paper, we describe a general taxonomy of classifiers
which interprets these common algorithms as variants of a
single tree-based classifier. This taxonomy allows us to
compare the different algorithms fairly in terms of evaluation
complexity (time) and select the most efficient or accurate
one for the application at hand.

By fusing motion shape, color, and contrast with local
smoothness prior in a conditional random field model [15],
[16], we achieve pixelwise binary segmentation through
min-cut [5]. The result is a segmentation algorithm that is
efficient and robust to distracting events and that requires
no initialization.

2 MOTONS AND SHAPE FILTERS

This section describes the motion-shape features used in our
segmentation algorithm. We build upon the motion-versus-
stasis model of [8] and combine it with concepts borrowed
from recent studies in object recognition [27]. This work has
resulted in a powerful set of features that simultaneously
capture motion and its long-range spatial context.

2.1 Notation

Given an input sequence of images, a frame is represented as
an array z ¼ ðz1; z2; . . . ; zn; . . . ; zNÞ of pixels in the YUV color
space, indexed by the pixel position n. A frame at time t is
denoted zt. Temporal derivatives are denoted _z ¼ ð _z1;
_z2; . . . ; _zn; . . . ; _zNÞ and computed as _ztn ¼j GðztnÞ �Gðzt�1

n Þj
at each time t with a Gaussian kernel Gð�Þ at a scale of
�t pixels. Spatial gradients g ¼ ðg1; g2; . . . ; gn; . . . ; gNÞ, in
which gn ¼j rzn j , are computed by convolving the images
with the derivatives of Gaussian (DoG) kernels of width �s.
Here, we use �s ¼ �t ¼ 0:8, approximating a Nyquist
sampling filter. Spatiotemporal derivatives are computed
on the Y channel only. Given Om ¼ ðg; _zÞ, the segmentation
task is to infer a binary label xn 2 fFg;Bgg.1

2.2 Motons

Here, we follow a procedure similar to that for constructing
textons [18]. First, we compute the two-dimensional Om for
all training pixels and then cluster the two-dimensional Om

into M clusters using expectation maximization (EM). The
M resulting cluster centroids are called motons. An example
with M ¼ 10 motons is shown in Fig. 3. This operation may
be interpreted as building a vocabulary of motion-based
visual words. Our visual words capture information about
the motion and the “edgeness” of image pixels, rather than
their texture content as in textons.

Clustering 1) enables efficient indexing of the joint ðg; _zÞ
space while maintaining a useful correlation between g and
_z and 2) reduces sensitivity to noise. We have empirically
tested 6, 10, and 15 clusters with multiple random starts. A
dictionary size of just 10 motons has proven sufficient, and
the clusters are generally stable in multiple runs. Our moton
representation also yields fewer segmentation errors than
the use of Om directly (see the discussion in Section 7.2).

The observation in [8] is that strong edges with low
temporal derivatives usually correspond to background
regions, while strong edges with high temporal derivatives
are likely to be in the foreground. Textureless regions tend
to have their Fg/Bg log-likelihood ratio (LLR) close to zero
due to uncertainty. Such motion-versus-stasis discrimina-
tion properties are retained by our quantized representa-
tion; however, they cannot sufficiently separate the moving
background from the moving foreground.
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Fig. 2. Ground truth layer labeling in video frames. (a) A frame from a
monocular training sequence. In this video, both the closer and farther
persons are moving. (b) Depth-based layer labeling (white for the
foreground, black for the background, and gray for an uncertain region),
as used in [13]. Here, only the closest person is labeled as being in the
foreground. (c) Motion-based layer labeling, as used in [8]. Both moving
objects are labeled as being in the foreground. In this paper, we use only
depth-based labeling, which encourages our monocular system to learn
to “imitate” stereo.Fig. 1. Achieving robust layer extraction monocularly. (a) and (b) Original

frames from the “IU” and “JM” sequences from [13], respectively.
(a’) and (b’) Temporal derivatives (dark indicates large values). The
foreground person is nearly stationary, while the background one is
moving. In this case, background subtraction techniques or conventional
motion-based algorithms would tend to classify the background person
erroneously as foreground. Furthermore, inaccurate classification may
be produced in the textureless and motionless areas of the foreground.
(a’’) and (b’’) Segmentation obtained by the proposed algorithm. Correct
foreground/background separation has been achieved (the extracted
foreground is shown in the original colors).

1. In this paper, we use Fg and Bg to denote the foreground and the
background.



Given a dictionary of motons, each pixel in a new image
can be assigned to its closest moton by maximum likelihood
(ML). Therefore, each pixel can now be replaced by an index
into our small visual dictionary [36]. An example of the
resulting moton map is color coded in Fig. 4b. Then, a moton
map can be decomposed into its M component bands,
namely “moton bands.” Thus, we have M moton bands Ik,
k ¼ 1; . . . ;M, for each video frame z. Each Ik is a binary
image, with IkðnÞ indicating whether the nth pixel has been
assigned to the kth moton or not. Figs. 4c, 4d, and 4f show

some example moton bands. The clusters used in this paper,
similar to the textons [27] in vision or a codebook in speech
processing [24], will provide efficient indexing and reduce
noise as a preprocessing step. However, note that not all
moton bands bear an intuitive meaning.

2.3 Shape Filters

In our videochat application, the foreground object (usually
a person) moves nonrigidly yet in a structured fashion. This
section first briefly explains the shape filters and then shows
how to capture the spatial context of motion adaptively.

To detect faces using the spatial context of an image
patch (detection window), [33] builds a overcomplete set of
Harr-like shape filters, shown in Fig. 5. The sum of the pixel
value in the white rectangles is subtracted by the sum of the
pixel value in the black rectangles. The result value of the
subtraction is the feature response used for classification. In
[33], the shape filter is applied only to a gray-scale image,
that is, the “pixel value” in that paper corresponds to image
intensity. In speaker detection [39], similar shape filters are
applied to a gray-scale image, a frame difference, and a
frame running average. In object categorization, texton
layout filters [27] generalize the shape filters by randomly
generating the coordinates of the white and black rectangles
and apply the filters to randomly selected texton channels
(bands). Experiments in multiple applications [27], [33], [39]
have shown that the shape filters produce simple but
effective features for classification. In order to efficiently
compute the feature value of the shape filters, integral
image processing [33] can be used. An integral image
iiðx; y; kÞ is the sum of the pixel value in the rectangle from
the top left corner ð0; 0Þ to the pixel ðx; yÞ in image band k
(k ¼ 1 in [33]). Therefore, computing the sum of the pixel
value for an arbitrary rectangle with the top left at ðx1; y1Þ
and the bottom right at ðx2; y2Þ in image band k requires
only three operations iiðx2; y2; kÞ � iiðx1; y2; kÞ � iiðx2;
y1; kÞ þ iiðx1; y1; kÞ, that is, constant time complexity for
each rectangle regardless of its size in the shape filter and
band index k.

To infer Fg/Bg for a pixel n in this paper, we also use the
contextual information within a (sliding) detection window
centered at n.2 The size of the detection window is about the
size of the video frame and fixed for all the pixels. Within a
detection window, similar to [27], a shape filter is defined as
a moton-rectangle pair ðk; rÞ, with k indexing in the
dictionary of motons and r indexing a rectangular mask,
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Fig. 3. Motons. Training spatiotemporal derivatives clustered into
10 cluster centroids (motons). Different colors for different clusters.

Fig. 4. Motons maps and moton bands. (a) The original frame from the
“IU” sequence. (b) The corresponding moton map with M ¼ 10 motons.
The same color corresponds to the same moton. (c) A moton band
showing all of the pixels associated with a “moving-edge” moton.
(d) Pixels associated with a moving, “weak-texture” moton. (e) Pixels
associated with a “stationary-edge” moton. (f) Pixels associated with a
stationary, “weak-texture” moton. 2. Regions outside the actual video frame are padded with zero.

Fig. 5. Some shape filters used in [33], [39], and/or [27]. (a) A shape filter
composed of two rectangles (shown in a detection window centered at a
particular pixel). (b) and (c) Shape filters composed of more rectangles.



shown in Fig. 6. First, we denote all of the possible shape
filters within a detection window as S� and then define a
whole set of d shape filters S ¼ fðki; riÞg, i ¼ 1; . . . ; d, by
randomly selecting moton-rectangle pairs from S�. For each
pixel position n, we compute the associated feature  n as
follows: Given the moton k, we center the detection window
at n and count the number of pixels in Ik that fall in the
offset rectangle mask r. This count is denoted vnðk; rÞ. The
feature value  nði; jÞ is obtained by simply subtracting the
moton counts collected for the two shape filters ðki; riÞ and
ðkj; rjÞ, i .e.,  nði; jÞ ¼ vnðki; riÞ � vnðkj; rjÞ. The moton
counts vn can be computed efficiently by one integral
image for every moton band Ik. Therefore, given S, by
randomly selecting i, j, and k (1 � i; j � d, 1 � k �M), a
total of d2 �M2 features can be computed at every pixel n.

Next, our features are discriminatively selected and
combined by a classifier for the estimation of our motion-
shape unary potentials (UMS in Section 5). The following
section presents a taxonomy of tree-based classifiers and
shows how common tree-based classifiers may be inter-
preted as instances of the same general algorithm. Such a
taxonomy then helps us to select classifiers that perform
best in our application.

3 THE TREE-CUBE TAXONOMY

As described in Section 1, common classification algo-
rithms, such as decision trees [23], boosting [11], and
random forests [7], share the fact that they build “strong”
classifiers from a combination of “weak” learners, often just
decision stumps. The main difference among these algo-
rithms is the way the weak learners are combined, and
exploring the difference may lead to an accurate classifier
that is also efficient enough to fit the limitations of the
evaluation time. This section presents a useful framework
for constructing strong classifiers by combining weak
learners in different ways to facilitate the analysis of
accuracy and efficiency.

The three most common ways to combine weak learners
are 1) hierarchically (H), 2) by averaging (A), and 3) by
boosting (B), or more generally adaptive reweighting and
combining (ARCing) [6]. In Fig. 7, the origin represents the
weak learner (e.g., a decision stump), and axes H, A, and B

represent those three basic combination “moves.”

1. The H-move hierarchically combines weak learners
into decision trees. During training, a new weak

learner is iteratively created and attached to a leaf
node, if needed, based on information gain.
Evaluation of one instance includes only the weak
learners along the corresponding decision path in
the tree. It can be shown that the H-move reduces
classification bias [4].

2. The B-move, instead, linearly combines weak lear-
ners. After the insertion of each weak learner, the
training data are reweighted or resampled [23] such
that the last weak learner has 50 percent accuracy in
the new data distribution. Evaluation of one instance
includes the weighted sum of the outputs of all of the
weak learners in the booster. Examples of the
B-move include AdaBoost and gentle boost. Boost-
ing reduces the empirical error bound by perturbing
the training data [11].

3. The A-move creates strong classifiers by averaging
the results of many weak learners. Note that all of
the weak learners added by the A-move solve the
same problem while those sequentially added by the
H and B-moves solve problems with a different data
distribution. Thus, the main computational advan-
tage in training is that each weak learner can be
learned independently and in parallel. When the
weak learner is a random tree, A-move gives rise to
random forests. The A-move also reduces classifica-
tion variance [4].

Paths, not vertices, along the edges of the cube in Fig. 7
correspond to different combinations of weak learners and
thus (unlimited) different strong classifiers. If we restrict
each of the three basic moves to being used once at most, the
tree taxonomy produces three order-1 algorithms (excluding
the base learner itself), six order-2, and six order-3 algo-
rithms, as listed in Table 1. Many known algorithms, such as
boosting (B), decision trees (H), booster of trees (HB), and
random forests (HA), are conveniently mapped into paths
through the tree cube. Also note that the widely used
attention cascade [33] can be interpreted as a one-sided tree
of boosters (BH). The tree-cube taxonomy also enables us to
explore new algorithms (e.g., HAB) and compare them to
other algorithms of the same order (e.g., BHA).

Next, we explore which classifier performs best for our
video segmentation application. Following the tree-cube
taxonomy, we focus on comparing three common order-2
models: HA, HB, and BA, that is, we compare random
forests (RFs) of trees, booster of trees (BT), and ensemble
of boosters (EB) to evaluate the behavior of different
moves.3 As a sanity check, we also evaluate the perfor-
mance of a common order-1 model B, namely, the booster
of stumps (using gentle boost, denoted as GB). From this
elaborate comparison, we gained a number of insights into
the design of tree-based classifiers presented in Section 7.
These insights, such as bias/variance reduction, accuracy/
efficiency trade-off, the complexity of the problem, and the
labeling quality of the data, have motivated the design of
an order-3 classifier, HBA, in Section 7.4.
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Fig. 6. Shape filters applied to moton bands. (a) and (b) Two moton
bands with rectangular masks r1 and r2 (centered at the same
pixel n) superimposed. Given n and the shape filter ðk; rÞ, vnðk; rÞ
counts the number of pixels associated with the texton k within
rectangle r (see text).

3. Projecting the bias-variance analysis in Section 7.3.1 onto the tree-cube
taxonomy suggests that AB and AH may not be favorable in building a
classifier with a low-test error. Evidence in Section 6.1.1 also shows that the
attention cascade [33] version of BH is unlikely to achieve both accuracy and
efficiency in this application at the same time.



4 RANDOM FORESTS VERSUS BOOSTER OF TREES

VERSUS ENSEMBLE OF BOOSTERS

The base weak learner used in this paper is the widely used
decision stump. A decision stump applied to the nth pixel
takes the form hðnÞ ¼ a � 1ð nði; jÞ > �Þ þ b, in which 1ð�Þ is
a 0-1 indicator function and  nði; jÞ is the shape filter
response for the ith and jth shape filters (as described in
Section 2). A positive value of the real-valued hðnÞ output
indicates that pixel n belongs to Fg and vice versa. Now, we
look at different ways of combining stumps into strong
classifiers. We begin with the H-move.

4.1 Decision Tree

When training a tree, we compute �, a, and b of a new decision
stump at each iteration for either the least-square error [27] or
the maximum entropy gain, as described later. During
testing, the output F ðnÞ of a tree classifier is the output of
the leaf node.4 Next, we analyze the details of the B-move.

4.2 Gentle Boost

Out of the many variants of boosting, here we focus on the
Gentle Boost algorithm [11] because of its robustness
properties [19], [30]. For the nth pixel, a strong classifier
F ðnÞ is a linear combination of stumps F ðnÞ ¼

PL
‘¼1 h‘ðnÞ.

The details of the algorithm can be found in [11]. In this
paper, we employ gentle boost as the B-move (in Fig. 7)
algorithm for GB, BT, and EB.

4.3 Random Forests

A forest is made of many trees, and its output F ðnÞ is the
average of the output of all the trees (the A-move). A

random forest is an ensemble of decision trees trained
with random features. In this case, each tree is trained by
adding new stumps in the leaf nodes in order to achieve
maximum information gain. However, unlike boosting,
the training data of RF are not reweighted for different
trees. In the more complicated order-3 classifier HBA, the
training data are only weighted within each BT, but the
BTs are constructed independently. RF has been applied
to the recognition problems, such as OCR [1] and keypoint
recognition [17] in vision.

4.4 Randomization

The tree-based classifiers are effectively trained by optimiz-
ing each stump on only a few (1,000 in our implementation)
randomly selected shape filter features. This reduces the
statistical dependence between weak learners [1] and
provides increased efficiency without significantly affecting
their accuracy [9], [27].
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Fig. 7. The tree-cube taxonomy of classifiers captures many classification algorithms in a single structure (see text, for details).

TABLE 1
Tree-Cube Classifiers

Fifteen algorithms encoded in the taxonomy of Fig. 7, if we restrict each
of the three basic moves to be used once at most.

4. Following the routine in [23] the output of the leaf node of a tree is the
expected value of the class, which is determined empirically. However,
gentle boost requires the output be a least-square fit of a weighted
distribution of the training labels. We follow this requirement instead,
which actually affects the results in a minor way, in our experiments in
which gentle boost is used.



In all three algorithms, the classification confidence is
computed by softmax transformation [11], [27] as follows:

eP ðxn ¼ FgjOmÞ ¼
expðF ðnÞÞ

1þ expðF ðnÞÞ : ð1Þ

Next, we describe how these motion-shape-based classifiers
are combined with color, contrast, and spatial smoothness
to obtain binary segmentation.

5 LAYER SEGMENTATION

Segmentation is cast as an energy minimization problem in
which the energy to be minimized is similar to that in [13],
the only difference being that the stereo-match unary
potential UM is replaced by our motion-shape unary
potential UMS :

UMSðOm; x; �Þ ¼
XN
n¼1

logð eP ðxnjOmÞÞ; ð2Þ

in which eP is from (1). The CRF energy is as follows:

EðOm; z; x; �Þ ¼ �MSU
MSðOm; x; �Þ

þ �CUCðz; x; �Þ þ V ðz; x; �Þ:
ð3Þ

Similarly to [13], UC is the color potential (a combination of
global and pixelwise contributions), and V is the widely
used contrast-sensitive spatial smoothness term [8], [13],
[25]. Model parameters are incorporated in �. Relative
weights �MS and �C are optimized discriminatively from
the training data. The final segmentation is inferred by a
binary min-cut as in [8], [13]. No complex temporal models
such as [8] are used here. Finally, because many segmenta-
tion errors are caused by strong background edges, back-
ground edge abating [28], which adaptively “attenuates”
background edges, could also be exploited here if a
pixelwise background model were learned on the fly.

6 EXPERIMENTAL RESULTS

Our new motion-shape likelihood in (2) is validated in
Section 6.1 while the accuracy of the segmentation computed
by the complete CRF model in (3) is assessed in Section 6.2.
We have collected a database of 28 monocular video
sequences,5 for which we have pixelwise labeled every fifth
or tenth frame into the foreground, the background, and the
uncertain regions (difficult, mixed-pixel regions) according
to their distance from the camera (Fig. 2b). In our
experiments, we chose seven clips randomly for training
and two clips for validation. Then, we select 46 labeled
frames from the training clips to train the tree-based
classifiers and 10 labeled frames for validation, and all of
the other 426 labeled frames in the remaining 19 testing clips
are used for testing.

6.1 Comparing Unary Classifiers

GB, EB, and BT were trained by minimizing the empirical
loss as required by boosting while RF was trained by

maximizing the information gain as required by C4.5 [23]. All
three algorithms share the same set of motons. Their testing
errors are then measured and compared with one another.
The ensemble size for GB, EB, BT, and RF is set to 195 stumps,
47 boosters, 19 trees, and 47 trees, respectively, to maximize
the accuracy of the validation set. The trees in BT and RF have
50 nodes, optimal for BT on the validation set.

We then evaluate the unary classification accuracy with
the 426 testing frames, classify the pixels6 into the foreground
and the background by thresholding atF ðnÞ ¼ 0, average the
error rate over 426 � 160 � 120 ¼ 8:18 � 106 pixels, and
measure the evaluation efficiency (frame per second) with
our nonoptimized MATLAB code without parallelization.

6.1.1 Accuracy of Unary Potentials

Fig. 8 compares the classification accuracy of GB, BT, and
RF when changing the number of base learners. Assuming
balanced trees, evaluating one binary decision tree with
50 nodes roughly equals evaluating log2 50 � 6 stumps
(depending on the balance of the tree). Thus, we have scaled
down the curve of GB along the x-axis by a factor 6 so that
the expected number of stumps evaluated is the same for
GB, BT, and RF. Of the three, random forests consistently
yield the lowest testing errors.

From the GB curve in Fig. 8, we can also see that not
many pixels can be correctly classified with a few stumps.
Therefore, we would not expect an attention cascade [33] to
significantly speed up our application.

Table 2 compares the accuracy of our motion-shape
unary potentials UMS with the stereo potentials in [13] and
the motion potentials of the monocular system in [8]. Our
motion-shape unary potentials lead to accuracy comparable
to those of stereo7 and superior to the motion-based
potentials. Fig. 9d also visualizes the classification accuracy
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Fig. 8. Comparing accuracy of classifiers. Testing unary accuracy with
respect to the complexity of the ensembles in one trial. Five trials have
been taken and RF has consistently outperformed the GB, EB, and BT
algorithms.

5. The data are available at http://research.microsoft.com/vision/
cambridge/i2i/DSWeb.htm. For the six sequences that are captured in
stereo setting, only the left-camera videos are used here, and only for
testing.

6. The final segmentation results are significantly improved by
integrating color, contrast, and spatial priors using the CRF model, shown
in Section 6.2 and Fig. 1. Note that all of the other results are based on the
motion-shape unary UMS only.

7. Here, the accuracy of the stereo likelihood has been improved with
respect to [13] by setting the LLR to zero in low texture areas (uncertain for
stereo). The pixelwise stereo error rate would increase to 17.51 percent
without such postprocessing. This further illustrates the importance of
shape information in our bilayer segmentation application.



of one of the frames in testing video sequences (shown as
the foreground).

6.1.2 Accuracy versus Efficiency

Table 3 compares the four classifiers in terms of both
accuracy and speed. The upper chart reports the lowest
classification error achieved and the corresponding frame
rate for each of the three algorithms at their “optimal”
parameter setting according to validation. Having con-
firmed that RF produces the lowest errors, we then evaluate
the improved speed of RF when it is allowed to produce the
same error level as GB, BT, and EB in the first two columns
of the lower chart. In the last two columns of the lower
chart, we reduce the size of the RF ensemble and observe its
suboptimal classification error when RF evaluates at the
same speed as GB, EB, and BT. In all cases, RF outperforms
the other classifiers.

6.2 Assessing Segmentation Accuracy

This section analyzes the segmentation results obtained by
the full CRF model with UMS estimated by RF.

6.2.1 Qualitative Evaluation

Fig. 9 compares the segmentation of the “IU” test sequence
obtained by our algorithm with those in [8] and [13]. In this
sequence, two people walk behind the person in the
foreground. Varying the scene illumination constitutes a
further source of difficulty. The motion-based method in [8]
classifies the people in the background as being in the
foreground (as it is designed to do). The proposed
algorithm instead produces a segmentation similar to that
of the stereo system in [13], in which background motion is
effectively ignored. Figs. 1, 10, 11, and 12 provide more
segmentation results.8

6.2.2 Quantitative Evaluation

Fig. 13 shows segmentation errors with respect to ground
truth for four randomly chosen sequences of our test data.
The median error is around or below one percent. Median
errors for 10 randomly chosen test sequences are also
reported in Table 4.

6.2.3 Automatic Initialization

In our algorithm, segmentation of past frames affects only
the current frame from the learned color model [13]. Having
little memory helps minimize problems such as drifting,
and enables the system to (re)initialize itself.

Fig. 14 illustrates how the system initializes itself. At the
beginning, the subject is stationary, and the segmentation is

inaccurate. However, a small motion of the head is
sufficient to achieve the correct segmentation (Fig. 14d).
This “burn-in” effect may also be observed for a different
test sequence in the error plot in Fig. 13d.

The plot in Fig. 13a demonstrates how our algorithm can
recover automatically from possible mistakes. In fact, in
frames 60-85 of the “JM” sequence, the subject leans very
close to the camera and so the image looks very different
from the training frames, and segmentation errors occur.
The segmentation recovers promptly following this error.

6.2.4 Inaccurate Segmentation

Figs. 15a’ and 15b’ show examples of inaccurate segmenta-
tion. Under harsh lighting conditions, unary potentials may
not be very strong; thus, the Ising smoothness term may
force the segmentation to “cut through” the shoulder and
hair regions. Similar effects may occur in stationary frames.
Noise in the temporal derivatives also affects the results.
This situation can be detected by monitoring the magnitude
of the motion; in addition, enabling a temporal model such
as that in [8] may help reduce the problem.

7 DISCUSSION AND EXTENSIONS

In this section, we discuss and experimentally justify
several previous claims we made about the tree-based
classifiers and the motons.

7.1 Learning the Correct Level of Geometric
Rigidity

A straightforward bilayer segmentation approach in the
videochat application is to manually build a foreground
model with a “template,” such as the “spring model” [38] in
face recognition, to model the level of geometric rigidity of
the human upper body. We believe that such template-
based methods are generalized by our tree-based classifiers
in the following sense: Prior knowledge employed by the
template approach can be learned by tree-based classifiers
with sufficient depth; furthermore, variability in the data
can be maintained by a forest with a sufficient number of
trees that corresponds to a rather “adaptive” template. In
this section, we experimentally validate such a claim.

Let RF46 denotes the RF classifier trained on all 46 training
frames in Section 6, and RF7 denotes a separate RF classifier
trained on the seven frames from training video GTTS01
used by RF46. Due to the small number of training examples,
the training accuracy of RF7 stops improving after accumu-
lating 10 trees. Thus, for both RF7 and RF46, we use only the
first 10 trees for a fair comparison. For three video frames in
Figs. 16a, 16b, and 16c, we compute the bilayer segmentation
LLR by RF7 and RF46, in which foreground predictions
(LLR > 0) are colored with green and background predic-
tions (LLR < 0) are colored with magenta (dark indicates
large values). The first frame, Fig. 16a, is from the same
training video clip used for RF7 and RF46, but not used in the
training. Therefore, this frame is very similar to the training
frames. The other two frames, Figs. 16b and 16c, are from the
test clips. These segmentation results show that RF7 fits the
“familiar” data better than RF46. RF7 overfits the training
data and memorizes a rigid head-shoulder template. In
contrast, the RF46 classifier is more robust toward unseen
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TABLE 2
Comparison with State of the Art

Comparison between the proposed classifiers and existing stereo and
monocular unaries.

8. These sequences are randomly chosen.



sequences, especially with exotic movements such as those

in Fig. 16b. This experiment illustrates that RF46 has learned

a more flexible geometric template with “the correct level of

rigidity.”

7.2 Motons as An Effective Motion Representation

Motons enable an efficient indexing of motion cues and
reduce noise for bilayer segmentation. To show that the
proposed motons are effective features representing

motion, we have conducted two experiments. In the first,
we built the bilayer GB/EB/BT/RF classifiers in the same
manner as we did in Section 6, but the features were Om

directly without clustering. This variation created 5 to
15 percent more error than their moton-based counter-
parts. The second experiment used random motons, that
is, Om were assigned with random moton labels and the
mean and the variance of the motons computed accord-
ingly without EM. GB/EB/BT/RF classifiers built using
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Fig. 9. Segmentation results on the “IU” test sequence. (a) Original, (b) stereo-based segmentation from [13] (after CRF smoothing), (c) monocular
segmentation from [8] (after CRF smoothing), in which background motion pops into the foreground, (d) monocular segmentation from the proposed
binary classifier (without CRF smoothing), and (e) monocular segmentation from the proposed algorithm (after CRF smoothing).

TABLE 3
Comparing Testing Accuracy and Efficiency for GB, EB, BT, and RF in One of Five Testing Trials (See Text)

Fig. 10. Segmentation results. (a) An original frame and four segmented frames for test sequence “41.” (b) An original frame and four segmented
frames for test sequence “54.” Border matting [25] could be applied here to improve the hair regions. This paper is concerned with binary
segmentation only.

Fig. 11. More segmentation results. (a) and (b) Original frames from test sequence “56,” in which the picture on the TV set changes. (a’) and
(b’) Corresponding segmentations. (c’)-(d’) More segmentation results on test sequence “43” and “50.”



random motons exhibited a 20 to 30 percent higher error
rate. These two experiments prove that motion and its
spatial context can be compactly represented by motons
for bilayer segmentation.

7.3 Generalization Ability of Different Tree-Based
Classifiers

7.3.1 Bias and Variance Decomposition

For a classification algorithm, bias describes its modeling
power while variance describes its stability [14]. Note that
bias and variance are different than the mean error and the
variance of error. The bias-and-variance decomposition of
the RF, GB, EB, and BT classifiers at similar evaluation
complexity (without parallelization) in Table 5 helps us to
understand the behavior of the three basic combination
moves and the nature of our task. This decomposition is
computed from five trials on the testing set, the results of
which are discussed below.

1. BT and RF yield lower bias than GB and EB.
The linear combination property of the B and

A-moves requires that the decision boundary of the
classification task be additive in terms of the decision
boundary of the weak learners, i.e., the capacity of the
base learning algorithm matches the complexity of the

problem [11]. By moving along the H direction, bigger
trees that are capable of modeling higher order
interaction between variables are constructed. For
example, a decision stump contains only one feature
while the typical decision path of a 50-node binary tree
equals a conjunction term of five to six features.
Therefore, result 1 indicates that the segmentation
task is complex, and the decision boundary is better
approximated by deeper trees using the H-move.

2. BT has lower bias than RF. This result confirms that
the B-move achieves additional reduction in bias by
aggressively perturbing the training process so that
it focuses on difficult samples [7], which, however,
sometimes results in overfitting (see Section 7.3.2).

3. EB and RF have the lowest variance. Boosting
persistently increases the minimum margin (of a
few incorrectly classified samples) at a potential cost
of decreasing the average margin (over all training
data) [37]. Therefore, boosting does not generalize
well in the presence of label noise.9 In contrast, EB
and RF are quite robust to such kind of noise. EB
trades empirical risk with structural risk [31] by
constructing a relatively small booster. In RF, the
effect of a few mistakenly labeled samples is locally
restricted to particular leaf nodes without sacrificing
the accuracy of other nodes or trees. Therefore, not
surprisingly, overfitting causes higher error in the
B-move than in the A-move. Similar phenomena have
also been reported in [7].

These insights also suggest that AB and AH may not be
favorable in building an efficient classifier with a low-test
error.
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Fig. 12. Background substitution on the “IU” test sequence from [13]. Original and corresponding segmented frames with background substitution.
People moving behind the person in the foreground are correctly classified as being in the background.

Fig. 13. Accuracy of segmentation. (a) The percentage of misclassified pixels on the “JM” test sequence from [13]. Note how the system promptly
recovers from possible mistakes. The median error (horizontal line) is well below 0.5 percent. (b)-(d) The percentage of misclassified pixels for test
sequences “41,” “54,” and “51,” respectively. (d) After an initial “burn-in” period, the segmentation converges to a good accuracy level (around or
below 1 percent of misclassified pixels).

TABLE 4
Segmentation Errors for 10 of the Test Sequences

9. Label noise is unavoidable in segmentation problems.



7.3.2 The Error Divergence Graph of the Classifiers

We plot the training error and the divergence of the training

and the testing errors (computed by the testing error minus

the training error) in Fig. 17. The greedy optimization of

boosting (GB and BT) effectively reduces the empirical error

in training. However, boosting is subject to more severe

overfitting than RF as training proceeds. Note that EB,

constructed by 50 short ensembles of size 6, shares the spirit

of “voting by committee” like RF, rather than the aggressive

optimization of GB. Therefore, the divergence of the
training and the testing errors for EB is relatively lower.
However, since each short booster in EB is unable to
approximate the complicated decision boundary well, EB
has a higher error in both training and testing than RF.

7.4 Using the Tree-Cube Taxonomy to Design an
Order-3 Classifier

Our experiments show that the H-move creates a reasonably
complicated decision boundary that matches the bilayer
segmentation task; the B-move maneuvers the base learners
and reduces the bias even for the HB combination, but it
suffers from noise; the A-move is very effective in reducing
the classification variance for HA and BA. Projecting these
observations onto the tree-cube taxonomy motivates us to
combine the merits of the three moves. Our intuition is to
reduce the bias first and to obtain a proper fit to data from
overfitted classifiers later. Therefore, we use H (decision
trees) as the base learners; then, we let B search for the
optimal linear combination of the trees to approximate the
empirical decision boundary and, finally, utilize A to reduce
overfitting. This yields an order-3 classifier HBA: an
ensemble of boosted trees (EBT). We construct an EBT with
10 independent BTs, in which each BT has 19 trees obtained
by gentle boost. The testing error and the evaluation speed
of the unary potential computed by EBT with the other four
classifiers are compared in Table 6. As we expected, the
error10 of HBA (EBT) is lower than that of HB (BT), HA (RF),
or BA (EB). The HBA combination harnesses the efforts of
H-move, B-move, and A-move from the tree cube. However,
this order-3 ensemble, which contains 19�10 ¼ 190 trees,
evaluates much slower than the other four classifiers. Thus,
to attain live streaming speed for EBT, we must employ
proper parallelization.
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Fig. 16. Diversity in training data affects the model flexibility in testing.

(a)-(c) Original frames from the sequence “01,” “AC,” and “15.” “01” is a

training sequence, while the other two are testing sequences. (a’)-(c’)

Bilayer segmentation LLR by 10-tree RF trained on “01” only (seven

frames, where the foreground head mostly stays steady) (a’)-(c’) Motion-

shape likelihood by 10-tree RF trained on all the 46 training frames.

Fig. 14. Self-initialization. (a) Original frame from test sequences “58.” Because of harsh lighting conditions, the segmentation problem is
challenging. (b)-(d) Segmentation for different frames in chronological order. After an initial “burn-in” period, the algorithm converges to the correct
Fg/Bg separation. A “clean” background image or other types of initialization was not necessary.

Fig. 15. Some inaccurate segmentation. (a) A frame from test sequence “41.” (b) A frame from test sequence “60.” (a’) and (b’) corresponding
segmentations. Strong background contrast and bad scene illumination produce inaccurate segmentation in the hair region of (a’) and in the
shoulder region of (b’), respectively. Note the errors in Table 4.

10. Since the classification output of EBT is the sum of the outputs of S
independently trained BTs, the testing error of EBT also estimates the
classification bias of BT. Therefore, the bias estimation for BT using S ¼ 5 in
Table 5 is about one percent higher than that using S ¼ 10 here. However,
this minor difference does not affect our conclusion in Section 7.3.1.



7.5 Random Forests and Random Ferns

Another tree-based classifier that has become popular
recently is “random ferns” [21]. Random ferns can be
considered a multidimensional stump and a restricted
version of random forests. Without losing generalizability,
we assume a binary classification in our discussion below,
which can easily be extended to a multiclass case.

For a binary fern of depth d, the same d tests are applied
to any testing samples, which provides an ordered binary
coding of the output bins. The posterior outputs are
computed according to the empirical posterior distribution
at the corresponding bins. In contrast, a binary forest of
depth d contains d (as a degenerated tree) to 2d�1 � 1 (as a
complete binary tree) tests. Different tests may be
evaluated for different samples according to their “decision
path” in the tree.

The ferns trade efficiency with flexibility in the following
ways: 1) The ferns do not store any intermediate nodes
other than the leaf nodes, and 2) all of the tests of all of the
ferns can be evaluated in parallel for efficient processing,
while the tests of the same tree have to be evaluated
sequentially in the forests. However, the trees are more
flexible for modeling data distributions. We usually do not
expect that all the 2d�1 bins of ferns will be “useful” for

several reasons. First, the posterior for many bins may be
extremely biased toward one class such that a confident
decision can be made with less than d tests. For example, a
degenerated decision tree (e.g., an attention cascade [33]) is
able to achieve surprisingly high accuracy and efficiency in
face detection [33]. Second, the ferns require that the same
tests be applied to all the samples. Thus, random ferns are
less likely to overfit than forests with the same depth;
however, this restriction may also demand deeper or
“fatter” ferns to achieve empirical risk comparable to that
of the forests.

Whether random ferns or random forests have lower
structural risk depends on the application and the data.
Superior classification by ferns is reported in [21], but the
performance gain, as illustrated in [20], is mainly from the
summation of the log posteriors by the ferns compared to
the summation of the posteriors by the forests. That is, in
their application, the geometric mean of the posteriors are
better than the arithmetic mean of the posteriors. The
geometric mean is particularly good at suppressing false
positives, a property that can be quite effective in rare event
detection with biased risk, such as key points recognition
and face detection. However, reducing false negatives is
equally important as reducing false positives in classifica-
tion tasks, such as bilayer video segmentations. Besides, the
impact of label noise is not negligible. Therefore, we believe
that random forests are more robust in our video layer
segmentation task because they take the arithmetic means
of posteriors.

8 CONCLUSIONS AND FUTURE WORK

We present an algorithm for the efficient segmentation of
the foreground and the background in monocular video
sequences. Our algorithm is capable of inferring bilayer
segmentation monocularly even in the presence of
distracting background motion without the need for
manual initialization.

This research has accomplished the following: 1) intro-
duced novel visual features that capture motion and motion
context efficiently, 2) provided a general understanding of
tree-based classifiers, and 3) determined an efficient and
accurate classifier in the form of random forests. Experi-
ments and the related analysis of existing test data and our
own database confirm accurate and robust layer segmenta-
tion in videochat sequences. Similarly to a stereo-based
system, our approach manages to separate the foreground
from the background even when distracting background
motion occurs.

The segmentation results can also be used in the head
tracking application shown in Fig. 18. Given bilayer
segmentation, we simply extract the top point of the
foreground pixels and use it as a reference point for our
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TABLE 6
Revisit: Comparing Testing Accuracy and Efficiency

for GB, EB, BT, RF, and EBT (See Text)

Fig. 17. Comparing the generalization ability of classifiers. (a) Training
unary accuracy with respect to the complexity of the ensembles in one
trial (the same trial as that in Fig. 8). (b) The divergence graph of testing
error and training errors (see text.)

TABLE 5
Bias/Variance Analysis

Bias and variance of RF, BT, GB, and EB.



framing window (lighter in Fig. 18). This result can be used

for the “smart framing” of videos. On the one hand, this

simple head tracker is efficient. It works for both frontal and

side views, and it is not affected by background motion. On

the other hand, it is heavily tailored toward the videochat

application.
The tree-cube taxonomy has facilitated our theoretical

analysis in Sections 7.3 and 7.4 and enabled fair experimental

comparisons of classifiers like booster of trees and random

forests. The insights gained from the comparison assisted us

in designing a new classifier, namely, an ensemble composed

of boosters of trees that combines the spirit of bias-variance

reduction, boosting, and randomization. It achieves the

lowest unary classification error in our videochat applica-

tion. Next, we would like to apply our classifier taxonomy to

other domains and applications to assess the merits of

different types of classification algorithms in various situa-

tions. More investigation on learning “the correct level of

rigidity” can be done by comparing the learned segmenta-

tion model with a random background without subjects.

Further comparisons between tree-based classifiers and

kernel machines [26] (such as SVMs) are also necessary.
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