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1 Introduction

Stereo vision has numerous applications in robotics, graphics, inspection and
other areas. A prime application, one which has driven work on stereo in our
laboratory, is teleconferencing in which the use of a stereo webcam already
makes possible various transformations of the video stream. These include
digital camera control, insertion of virtual objects, background substitution,
and eye-gaze correction [9, 8].

Digital camera control: Here the foreground part of a scene is isolated
using stereo, and used to drive the digital pan/zoom/tilt controls of a
camera, to keep the subject well framed in the virtual view.

Insertion of virtual objects: Knowing the depth structure of a scene,
virtual objects can be inserted live into the video stream, in a way that
respects the space occupancy of existing, real objects.

Background substitution: Having isolated the background of a scene us-
ing stereo, it can be manipulated — for example blurred, re-colored or
replaced entirely, without touching foreground elements. This demands
foreground layer separation to near Computer Graphics quality, including
α-channel determination as in video-matting [6], but with computational
efficiency sufficient to attain live streaming speed.

Eye-gaze correction: A particularly challenging application is to combine
video streams from a pair of cameras, stereoscopically, to generate a virtual
camera in locations that are inaccessible to a real physical camera. In this
way, a virtual camera can be placed in the centre of the screen of each of
two computers, so that a pair of subjects in conversation can gaze at one
another directly, eye to eye. This problem is particularly hard in practice
because the baseline separating the left and right cameras has to be large
(fig. 1), resulting in more substantial differences to be resolved between
the two images.
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Fig. 1. Stereo cameras for teleconferencing. Two cameras are placed on the
frame of a computer monitor. A virtual camera can be sythesised right over the
window for viewing the remote participant is (marked in blue) on the middle of the
computer screen. Viewing the subject through the virtual camera, rather than the
left or right, ensures direct eye contact.

Stereo algorithms have been developed over the past 25 years that are
competent at computing depth “densely” — that is at all pixels — in 3D
scenes. Earlier algorithms used Dynamic Programming (DP) to compute op-
timal matches [15, 7] but lately two new algorithms — Belief Propagation and
Graph Cut — have come to head the league table of stereo performance [18].
Stereo “occlusion” is a further cue, arising for those parts of a scene that are
visible in one eye (or camera) but not the other. Occlusion needs to be accu-
rately detected, as it is a strong cue for discontinuity of surfaces, and some
modern algorithms are capable of doing this [10, 1, 13, 9, 8]. However, some
problems remain. In particular, the strength of stereo cues degrades over low-
texture regions such as blank walls, sky or saturated image areas. In general,
it is difficult to deal with this problem, but in the particular application of
stereo to foreground/background segmentation, a powerful remedy is at hand
in the form of cue fusion. Recently color and contrast have been shown to be
powerful cues for segmentation [4, 17], even in the absence of texture. Segmen-
tation based on color/contrast alone is nonetheless beyond the capability of
fully automatic methods. This suggests a robust approach that exploits fusion
of a variety of cues for segmentation. Here we propose a model and algorithms
for fusion of stereo with color and contrast, and a prior for intra-layer spatial
coherence.

2 Probabilistic models for stereo matching

First we outline the probabilistic structure of the stereo matching and color/contrast
models. A notation is set out for state variables and observables. Then an en-
ergy E or cost-function is defined to characterise well matched images. The
energy E also defines a probabilistic model, by acting as the Gibbs energy in
a Conditional Random Field (CRF) [14].
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Fig. 2. Matching a pair of rectified stereo images. Rectification means that

pixels in a left scanline all match to pixels in the corresponding right scanline. A

match function over a triangular domain is shown that scores the likelihood of all

feasible pixel pairs over a particular pair of corresponding epipolar lines — bright

means high match likelihood.

2.1 Notation

Pixels in the rectified left and right images are indexed by m and n respec-
tively, so the images are denoted

L = {Lm, m = 1, . . . , N}, R = {Rn, n = 1, . . . , N}.

We refer jointly to the data as z = (L,R). Rectification is a projective warping
transformation applied to left and right images that brings their respective
scanlines into direct correspondence. Thus, in rectified images, all pixels on
a horizontal (“epipolar”) line in the left image match to pixels in the cor-
responding epipolar line in the right image. This geometrical normalisation
greatly simplifies the complexity of matching pixels. A pair of rectified im-
ages is illustrated in figure 2 and the stereo problem is to establish a match
between pixels in the left image and corresponding pixels in the right image.
Typically, most pixels in each of the images are matched in this way. Those
that remain unmatched are the occluded pixels, arising for instance where a
particular point in the background of a scene is masked by a foreground object
in the left view, but visible in the right view.

The mapping between left and right images is expressed in terms of state
variables x and disparities d. The array x of state variables can be defined sym-
metrically with respect to left and right image coordinate frames, in so-called
cyclopean coordinates k. The array then coprises components x = {xk} which
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take values xk ∈ {M, O}, according to whether the pixel is matched or oc-
cluded. A further elaboration of the state space, employs values xk ∈ {F, B, O}
according to whether the pixel is a foreground match, a background match
or occluded. This subdivision of the scene into foreground and background
layers offers the opportunity for imposing further constraints, both prior and
driven by data.

Stereo disparity is an inverse measure of three-dimensional depth, and is
defined to be d = m − n. The disparity values along one epipolar line are
expressed as d = {dk, k = 1, . . . , 2N − 1}. Note this means that

m =
(k + dk)

2
and n =

(k − dk)

2
, (1)

so that k, d forms the cyclopean coordinate system for the space of epipolar
matches, which is symmetric and this is well known to be helpful for proba-
bilistic modeling of stereo matching [1].

This sets up the notation for a complete match of two images as the
combined vector (d,x) of disparities and states. Now a posterior distribution
for (d,x), conditioned on image data, can be defined.

2.2 Generative model

A Gibbs energy E(z,d,x; θ) is defined to specify the posterior over the inferred
sequence (d,x), given the image data z, as:

p(x,d | z) ∝ exp−E(z,d,x; θ). (2)

Here θ is a vector of parameters for the model, which will need to be set ac-
cording to their relation to physical quantities in the stereo problem, and by
learning from labeled data. The posterior could, for instance, be globally max-
imised to obtain an estimated segmentation x̂ and estimated stereo disparities
d̂.

The model (2) can be regarded simply as a Conditional Random Field
(CRF) [14], without any generative explanation/decomposition in terms of
priors over (x,d) and data likelihoods. However, simpler forms of the model
do admit a generative decomposition, and this is very helpful also in motivat-
ing the structure of a fuller CRF model that is not so naturally decomposed.
One reasonable generative model has a Gibbs energy with the following de-
composition:

E(z,x,d; θ) = V (x,d; θ) + UM(z,x,d; θ) + UC(z | x; θ), (3)

in which the role of each of the three terms is as follows.

Prior: an MRF prior for (x,d) has an energy specified as a sum of unary
and pairwise potentials:
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V (x,d; θ) =
∑

(k,k′)∈N

[F (xk, xk′ , ∆dk, ∆dk′ )] +
∑

k

Gk(xk, dk), (4)

where ∆d is the disparity gradient along epipolar lines, that is

∆dk = dk − dk−1. (5)

Typically, F (. . .) discourages excessive disparity gradient within matched
regions. Pixel pairs (k, k′) ∈ N are the ones that are deemed to be neigh-
bouring in the pixel grid. The first component F (. . .) of the prior Gibbs
energy V in (4) should incorporate an Ising component that favours co-
herence in the segmentation variables xk, xk′ . It should also favour conti-
nuity of disparity over matched regions, and do so anisotropically — more
strongly along epipolar lines than across them.
Optionally, when the extended state-space xk ∈ {F, B, O} is used, the
Gk(. . .) term is included to implement “disparity-pull”, the tendency of
foreground elements to have higher disparity than background ones. The
specific form of Gk(. . .) can be set by taking

Gk(xk, dk) = − log p(dk | xk), (6)

and determining the conditional density p(dk | xk) from the observed
statistics of some labelled data. Various models could be used here, but in
our experiments a simple, constant disparity, separating surface is used,
so that d > d0 characterises foreground, with uniform distributions for
p(dk | xk) over each of the possible states x ∈ {F, B, O}.

Stereo likelihood, represented by the UM term, evaluates the stereo-match
evidence in the data z, both to distinguish occlusion (xk = O) from full
visibility (xk ∈ {F, B}) and, given visibility, to determine disparity dk.

Color likelihood, represented by the UC term, uses probability densities
in colour space, one density for the background and another for the fore-
ground, to apply evidence from pixel colour to the segmentation xk of
each pixel. This term is optional, used only with the extended state-space
xk ∈ {F, B, O}.

2.3 Contrast dependence

One further elaboration, due to Boykov and Jolly [4], incorporates the evi-
dence from image contrast for segmentation — see also ‘line processes” [11],
“weak constraints” [3] and “anisotropic diffusion” [16]. It proves important
in refining segmentation quality, at the cost of obscuring somewhat the clear
generative distinction between prior and likelihood [2]. The Ising component
F in (4) is made contrast dependent, disabling the penalty for breaking co-
herence in x wherever image contrast is high. Segmentation boundaries tend,
as a result, to align with contours of high contrast. The MRF model (3) is
extended in this way to a CRF
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E(z,x,d; θ) = V (z,x,d; θ) + UM(z,x,d; θ) + UC(z | x; θ), (7)

in which dependence on data z is now incorporated in to the V (. . .) term, so
that this no longer represents a pure prior distribution.

3 Inference

Two inference problems are considered for the model of the previous section.
The first is the full inference of disparity d and state x, necessary when the
three-dimensional structure of a scene is required explicitly. This would be the
case in many robotics applications, and for the gaze-correction function in the
teleconferencing application described in section 1. The other three telecon-
ferencing applications however, require only segmentation — the inference of
x but not of d.

3.1 Inferring disparity

To compute both disparity and state, the posterior is maximised with respect
to d and x:

(x̂, d̂) = argmax
x,d

p(x,d | z). (8)

Here we take the short form of the state vector xk ∈ {M, O}, and use only
stereo cues, without colour. This problem is not formally tractable but could
be regarded as tractable in practice because it can be solved approximately by
the α-expansion form of graph-cut [5], over the variables x,d jointly (provided
the energy function E is chosen to meet the necessary regularity conditions). In
practice α-expansion over (x,d) jointly is computationally burdensome, one
or two orders of magnitude slower than real-time, for a conventional video
stream on a current single processor architecture. A faster solution can be
computed by neglecting vertical constraints in the model. All vertical cliques
in V (4) are removed, resulting in a posterior density consisting simply of a
set of one-dimensional Hidden Markov Models (HMMs), one HMM along each
epipolar line. For the coherence encouraged by V , constraints can be imposed
only horizontally, and the vertical constraint is lost. Nonetheless there is some
implicit transfer of information vertically via the overlap of the patches used
in the stereo match likelihood [8]. In exchange for the lost vertical constraint,
the problem becomes exactly tractable by dynamic programming and DP can
be performed along scanlines, jointly with respect to disparities and state
variables [9, 8]. This can be achieved in real time.

3.2 Inferring segmentation

An alternative aim to computing full disparity and state, is to compute only
the state, and this useful with the extended state xk ∈ {F, B, O}, so that
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the image is segmented into foreground, background and occluded regions.
Then colour distributions, associated with background and foreground, can be
brought into the model. For this problem, the posterior should, in principle,
be marginalised with respect to d, and then maximised with respect to x to
estimate a segmentation:

x̂ = argmax
x

∑

d

p(x,d | z). (9)

This problem is intractable with the Gibbs energy model (7) above. This
paper proposes two approaches to simplifying the Gibbs energy model, to
make inference of segmentation x practically tractable and efficient.

LDP. In Layered Dynamic Programming [12], vertical constraints are ne-
glected as above for full stereo. The marginalised form of the problem (9)
is not tractable even without vertical constraints, so it is necessary to stick
with the full problem (8), and simply discard the unwanted disparities.
This is not ideal because, in principle, statistical information is wasted on
the computation of disparities.
The difference then between LDP and full DP stereo is simply that the
extended state xk ∈ {F, B, O} is used, with appropriate energy terms to
represent foreground and background constraints, both prior and from
data, in terms of colour properties of the foreground and background
layers of the scene.

LGC. In Layered Graph Cut [12], the prior term F (. . .) in (4) is made in-
dependent of disparity d. Now the posterior density can be marginalised
exactly over d in the original inference problem (9). Marginalization gives
the posterior density p(x | z) for segmentation only, which can be max-
imised by graph-cut with α-expansion. Parameter learning has not been
made tractable, but some guidance comes from priors and likelihoods es-
timated for LDP, transplanted (and simplified) to the LGC model.

In summary, we have two approximate models for the original problem. One,
LDP, has the advantage of practical tractability not only for inference but in
fact also for parameter learning [12]. It has the disadvantage though that ver-
tical constraints have been neglected. On the other hand LGC retains vertical
constraints at least for segmentation, but neglects all direct constraints on
continuity of disparity. It has the advantage of solving the original max-sum
form of the inference problem, rather than just the max-max approximation,
but the disadvantage that parameter estimation remains intractable. In terms
of practical efficiency and efficacy, the two algoriths, LDP and LGC, perform
remarkably similarly [12], despite having very different structures.

4 Some results from stereo matching and segmentation

Results of full stereo matching, used to generate virtual camera views, are
illustrated in figure 3. The top line show real left and right cameras, used
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Fig. 3. Virtual camera.

as input to stereo matching. Computed disparities are then used, either im-
plicitly or explicity, to recover the shape of the scene. The scene can then be
reprojected onto the image plane of a virtual camera. In the bottom centre,
an interpolated cyclopean view is shown, of the sort that can be used for gaze
correction — the subject is looking directly forwards in this view. It is crit-
ically important for the quality of the virtual image, that not only disparity
but also the occlusion information in x is available [9, 8]. Bottom left and
right images in the figure show the views when the virtual camera is moved
respectively backward and forward in space.

Results of stereo segmentation, fusing stereo, colour and contrast, are
shown in figure 4. Left and right images are processed using the LGC al-
gorithm above, to separate the foreground subject from its background [12].
The extracted foreground can then be applied to a new background and this
is illustrated in the figure for three frames of a test video. Special measures
— so-called border matting [17] — are taken so that he extracted foreground
sequence can be composited, free of “aliasing” artefacts, onto the background.
Border matting deals with mixed pixels — pixels that contain both foreground
and background colour, occurring typically around the boundary of an object.
If this is neglected, discolouration occurs around boundaries, where traces of
the original background colour remains stuck to the foreground subject.

The paper has made a rapid tour of some recent progress in algorithms
for stereo vision. Highlights include: a probabilistic framework; the full treat-
ment of occlusion via an appropriate representation of state; fusion of cues,
specifically stereo, colour and contrast. Many details have been omitted in
this account, and the reader is directed to [8, 12] for full details.
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Fig. 4. Background substitution.
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