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Abstract -- Detection of execution anomalies is very im-

portant for the maintenance, development, and perfor-

mance refinement of large scale distributed systems. Ex-

ecution anomalies include both work flow errors and low 

performance problems. People often use system logs pro-

duced by distributed systems for troubleshooting and 

problem diagnosis. However, manually inspecting system 

logs to detect anomalies is unfeasible due to the increasing 

scale and complexity of distributed systems. Therefore, 

there is a great demand for automatic anomaly detection 

techniques based on log analysis. In this paper, we pro-

pose an unstructured log analysis technique for anomaly 

detection. In the technique, we propose a novel algorithm 

to convert free form text messages in log files to log keys 

without heavily relying on application specific knowledge. 

The log keys correspond to the log-print statements in the 

source code which can provide cues of system execution 

behavior. After converting log messages to log keys, we 

learn a Finite State Automaton (FSA) from training log 

sequences to present the normal work flow for each sys-

tem component. At the same time, a performance mea-

surement model is learned to characterize the normal 

execution performance based on the log messages’ timing 

information. With these learned models, we can automat-

ically detect anomalies in newly input log files. Experi-

ments on Hadoop and SILK show that the technique can 

effectively detect running anomalies. 

Keywords - log analysis; distributed system; problem 

diagnosis; FSA 

I. INTRODUCTION 

Large scale distributed systems are becoming key 
engines of IT industry. For a large commercial system, 
execution anomalies, including erroneous behavior or 
unexpected long response times, often result in user 
dissatisfaction and loss of revenue. These anomalies 
may be caused by hardware problems, network com-
munication congestion or software bugs in distributed 
system components. Most systems generate and collect 
logs for troubleshooting, and developers and adminis-
trators often detect anomalies by manually checking 
system printed logs. However, as many large scale and 
complex applications are deployed, manually detecting 
anomalies becomes very difficult and inefficient. At 
first, it is very time consuming to diagnose through 
manually examining a great amount of log messages 

produced by a large scale distributed system. Secondly, 
a single developer or system administrator may not 
have enough knowledge of the whole system, because 
many large enterprise systems often make use of Com-
mercial-Off-the-Shelf components (e.g. third party 
components). In addition, the increasing complexity of 
distributed systems also lowers the efficiency of manual 
problem diagnosis further. Therefore, developing auto-
matic execution anomaly monitoring and detection 
tools becomes an essential requirement of many distri-
buted systems to ensure the Quality of Service.   

There are two classes of typical anomalies: one is 
work flow errors - errors occurring during the execution 
paths; the other is execution low performance - the ex-
ecution time takes much longer than normal cases al-
though its execution path is correct. In this paper, we 
present an unstructured log analysis technique that can 
automatically detect system anomalies using commonly 
available system logs. It requires neither additional sys-
tem source code instrumentation nor any runtime code 
profiling. The technique mainly consists of two 
processes: the learning process and the detection 
process. The goal of the learning process is to obtain 
models that represent the normal execution behavior of 
the system from those logs produced by normally com-
pleted jobs. The input data for the learning process is 
training log files printed by different machines. At first, 
we convert the log message sequences in the log files 
into log key sequences. Log keys are obtained by ab-
stracting log messages. Then, we a derive Finite State 
Automaton (FSA) to model the execution path of the 
system. With the learned FSAs, we can identify the 
corresponding state sequences from training log se-
quences. Next, we count the execution time of each 
state transition in state sequences, and obtain a perfor-
mance measurement model through statistical analysis. 
In the detection process, for newly input log sequences, 
we check them with those learned models to automati-
cally detect anomalies. It should be noticed that the 
system’s normal behavior may change after an upgrade. 
Therefore, it is necessary to re-train the model after 
each system upgrade.  

Assumptions: In our technique, system anomaly de-
tection is based on the cues gained from the previous 
normally completed jobs’ log files. We assume that 



each log message has a corresponding time stamp that 
indicates its generation time. We further assume that the 
logs are recoded using thread IDs or request IDs to dis-
tinguish logs of different threads or work flows. Most 
modern operating systems (such as Windows and Linux) 
and platforms (such as Java and .NET) provide thread 
IDs. We can therefore work with sequential logs only.  

The paper is organized as follows. In section 2, sev-
eral related research efforts are briefly surveyed. The 
log key extraction and FSA construction are introduced 
in section 3 and section 4. In section 5, we discuss the 
performance measurement model construction. After 
that, anomaly detection is described in section 6. Then, 
experimental results are presented in section 7. Finally, 
section 8 concludes the paper. 

II. RELATED WORK 

Monitoring and maintaining techniques that make 
use of execution logs are the least invasive and most 
applicable, because execution logs are often available 
during a system’s daily running. Therefore, analyzing 
logs for problem diagnosis has been an active research 
area for several decades. In this paper, we only survey 
the approaches that perform the analysis automatically. 

One set of algorithms [1, 2, 3, 4] judge the job’s 
trace sequence as a whole, where a log sequence is of-
ten simply recognized as a symbol string. Dickenson et 
al [1] collect execution profiles from program runs, and 
use classification techniques to categorize the collected 
profiles based on some string distance metrics. Then, an 
analyst examines the profiles of each class to determine 
whether or not the class represents an anomaly. Mirgo-
rodskiy et al [2] also use string distance metrics to cate-
gorize function-level traces, and identify outlier traces 
or anomalies that substantially differ from the others. 
Yuan et al [4] propose a supervised classification algo-
rithm to classify system call traces based on the similar-
ity to the traces of known problems. In other literature, 
a quantitative feature is extracted from each log se-
quence for error detection. For example, in [3], the au-
thors preprocess the logs to extract the number of log 
occurrence times as a log feature, and detect anomalies 
using principal component analysis (PCA). These kinds 
of algorithms can find whether the job is abnormal, 
while can hardly obtain the insight and accurate infor-
mation about abnormal jobs. 

Another set of algorithms [5-8] view system logs as 
a series of footprints of systems’ execution. They try to 
learn FSA models from the traces to model the system 
behavior.  In the work of Cotroneo et al [5], FSA mod-
els are first derived from the traces of Java Virtual Ma-
chine collected by the JVMMon tool [6]. Then, logs of 
unsuccessful workloads are compared with the inferred 
FSA models to detect anomalous log sequences. SAL-
SA [7] examines Hadoop logs to construct FSA models 
of the Datanode module and TaskTracker module. In 
[8], based on the traces that record the sequences of 

components traversed in a system in response to a user 
request, the authors construct varied-length n-grams and 
a FSA to characterize the normal system behavior. A 
new trace is compared against the learned FSA to detect 
whether it is abnormal. In their algorithm, a varied-
length n-gram represents a state of the FSA. Unlike 
these methods, which heavily depend on application 
specific knowledge including some predefined log to-
kens and the stage structure of Map-Reduce, our algo-
rithm can work in a black-box style. In addition, our 
algorithm is the only one that uses timing information 
in the log sequence to detect the low performance prob-
lem. 

In some other literature [17, 18], logs are used to 
perform troubleshooting related tasks in different scena-
rios. GMS [17] detects abnormal machines with wrong 
configurations. It extracts features from the data source 
and applies the distributed HilOut algorithm to identify 
the outliers as the misconfigured machines. Its data 
source includes log files, utility statistics and configura-
tion files. In [18], a decision tree is learned to identify 
the causes of detected failures where the failures have 
been detected beforehand. It records the runtime prop-
erties of each request in a multi-tier Web server, and 
applies statistical learning techniques to identify the 
causes of failures. Unlike them, our algorithm mainly 
tries to detect anomalies through exploiting the timing 
and circulation information. 

III. LOG KEY EXTRACTION 

Systems logs usually record run-time program be-
haviors, including events, states and inter-component 
interactions. An unstructured log message often con-
tains two types of information: one type is free-form 
text string that is used to describe the semantic meaning 
of a recorded program behavior; the other type is a pa-
rameter that is used to express some important system 
attributes. In general, the number of different log mes-
sage types is often huge or even infinite because of var-
ious parameter values. Therefore, during log data min-
ing, directly considering log messages as a whole may 
lead to the curse of dimension.  

In order to overcome this problem, we replace each 
log message by its corresponding log key to perform 
analysis. The log key is defined as the common content 
of all log messages which are printed by the same log-
print statement in the source code. In other words, a log 
key equals to the free-form text string of the log-print 
statement without any parameters. For example, the log 
key of log message 5 (shown in Figure 1) is “Image file 
of size saved in seconds”. We analyze logs based on 
log keys because: (1) In general cases, different log-
print statements often output different log text messages. 
It means that each type of log key corresponds to one 
specific log-print statement in the source code. There-
fore, a sequence of log keys can reveal the execution 
path of the program. (2) The number of log key types is 



finite and is much less than the number of log message 
types. It can help us to avoid the curse of dimension 
during data mining.  

The challenging problem is that we know neither 
which log messages are printed by the same log-print 
statement nor where parameters are in log messages. 
Therefore, it is very difficult to identify log keys. Gen-
erally, the log messages printed by the same statement 
are often highly similar to each other, while two log 
messages printed by different log-print statements are 
often quite different. Based on this observation, we can 
use clustering techniques to group log messages printed 
by the same statement together, and then find their 
common part as the log key.  

However, the parameters may cause some clustering 
mistakes because the log messages printed by different 
statements may also be similar enough if they contain a 
lot of identical parameter values. In order to reduce the 
parameters’ influence on clustering, we first erase the 
contents that are obvious parameter values according to 
some empirical knowledge. Then, we further apply a 
raw log key clustering and group splitting algorithm to 
obtain log keys. Figure 1 gives an example to illustrate 
the procedure of extracting log keys from log messages. 

A. Erasing parameters by empirical rules 

As we know, parameters are often in forms of num-
bers, URIs, IP addresses; or they follow the special 
symbols such as the colon or equal-sign; or they are 
embraced by braces, square brackets, or Parentheses. 
These contents can be easily identified. Therefore, em-
pirical rules are often used to recognize and remove 
these parameters [9]. By roughly going through the log 
files, we can define some empirical regular expression 
rules to describe those typical parameter cases, and 
erase the matched contents. After that, the left contents 
of log messages are defined as raw log keys. The 
second block of Figure 1 gives some examples of raw 
log keys.  We can see that the IP addresses, the numbers, 
and the full path of a file are all removed from the log 
messages. 

Although many parameters are erased, there are still 
some parameters that could not be completely removed 
in raw log keys. The main reason is that the empirical 
rules can’t exhaust all parameter patterns without appli-
cation specific knowledge.  

B. Raw log key clustering 

We separate a raw log key into words using a space 
as separator. We use words as primitives to represent 
raw log keys because words are minimal meaningful 
elements in a sentence. So, each raw log key can be 
represented as a word sequence.  

 

Log Message 1:  [172.23.67.0:4635] TCP Job name UpdateIndex
Log Message 2:  [172.23.67.0:4635] TCP Job name DropTable
Log Message 3:  [172.23.67.0:4635] TCP Job name UpdateTable
Log Message 4:  [172.23.67.0:4635] TCP Job name DeleteData
Log Message 5: Image file of size 57717 loaded in 0 seconds.
Log Message 6: Image file of size 70795 saved in 0 seconds.
Log Message 7: Edits file \tmp\hadoop-Rico\dfs\name\current\edits 
of size 1049092 edits # 2057 loaded in 0 seconds.

Erasing parameters by empirical rules

Raw log key 1: [] TCP Job name UpdateIndex
Raw log key 2: [] TCP Job name DropTable
Raw log key 3:  [] TCP Job name UpdateTable
Raw log key 4:  [] TCP Job name DeleteData
Raw log key 5: Image file of size  loaded in  seconds.
Raw log key 6: Image file of size  saved in  seconds.
Raw log key 7: Edits file of size  edits #  loaded in  seconds.

Clustering raw log keys 

Splitting groups

Raw log key 1: [] TCP Job name UpdateIndex
Raw log key 2: [] TCP Job name DropTable
Raw log key 3:  [] TCP Job name UpdateTable
Raw log key 4:  [] TCP Job name DeleteData
----------------------------------------------------------------------------------------
Raw log key 5: Image file of size  loaded in  seconds.
----------------------------------------------------------------------------------------
Raw log key 6: Image file of size  saved in  seconds.
----------------------------------------------------------------------------------------
Raw log key 7: Edits file of size  edits #  loaded in  seconds.

log key 1: [] TCP Job name
----------------------------------------------------------------------------------------
log key 2: Image file of size  loaded in  seconds.
----------------------------------------------------------------------------------------
log key 3: Image file of size  saved in  seconds.
----------------------------------------------------------------------------------------
log key 4: Edits file of size  edits #  loaded in  seconds.

Extracting log keys

Raw log key 1: [] TCP Job name UpdateIndex
Raw log key 2: [] TCP Job name DropTable
Raw log key 3:  [] TCP Job name UpdateTable
Raw log key 4:  [] TCP Job name DeleteData
----------------------------------------------------------------------------------------
Raw log key 5: Image file of size  loaded in  seconds.
Raw log key 6: Image file of size  saved in  seconds.
Raw log key 7: Edits file of size  edits #  loaded in  seconds.

Initial 

Group1

Initial 

Group2

Figure 1 Examples of log key extraction 

 
Before clustering, we need to find a proper metric to 

represent the similarity of two raw log keys. The string 
edit distance is a widely used metric to represent the 
similarity between word sequences. It equals to the 
number of edit operations required to transform one 
word sequence to the other. One edit operation can op-
erate only one word. The operation can be adding, de-
leting or replacing. Obviously, the edit distance only 
counts the number of operated words; it does not con-
sider the positions of the operated words. However, for 
our problem, the positions of operated words in raw log 
keys are meaningful for measuring similarity. It is be-
cause most programmers tend to write text messages 
(log keys) firstly, and then add parameters afterwards. 
Therefore, words at the beginning of raw log keys have 



more probability to be parts of log keys than words at 
the end of raw log keys do. Therefore, the operated 
word at the beginning of the raw log keys should be 
more significant for measuring raw log keys’ differ-
ence. Based on this observation, we measure raw log 
keys’ similarity by the weighted edit distance, in which 
we use sigmoid similar function to compute weights at 
different positions. For two raw log keys 𝑟𝑘1 and 𝑟𝑘2, 
we denote the necessary operations required to trans-
form 𝑟𝑘1  to 𝑟𝑘2  as 𝑂𝐴1 ,𝑂𝐴2 ,…,𝑂𝐴𝐸𝑂 ; 𝐸𝑂is the num-
ber of necessary operations. The weighted edit distance 
between 𝑟𝑘1  and 𝑟𝑘2  is denoted as 𝑊𝐸𝐷 𝑟𝑘1 , 𝑟𝑘2 , 

𝑊𝐸𝐷 𝑟𝑘1 , 𝑟𝑘2 =  
1

1+e(𝑥𝑖−𝜐)
𝐸𝑂
𝑖=1 . Here, 𝑥𝑖  is the index 

of the word that is operated by the i
th
 operation 𝑂𝐴𝑖 ; 𝜐 

is a parameter controlling weight function.  
 

 
 (a) The histogram on SILK experiment 

 
 (b) The histogram on Hadoop experiment 

Figure 2. The histogram of raw log key pair number 

over weighted edit distance  

 
We cluster similar raw log keys together. For every 

two log keys, if the weighted edit distance between 
them is smaller than a threshold ς, we connect them 
with a link. Then, each connected component corres-
ponds to a group which is called as an initial group. The 
initial group examples are shown in the third block in 
Figure 1.  

The threshold ς could be automatically determined 
according to the following procedure. For every two 
raw log keys, we compute the weighted edit distance 
between them. Then we obtain a set of distance values. 
Each distance should be either inner-class distance or 
inter-class distance. The inner-class (or inter-class) dis-
tance is the distance between two raw log keys corres-
ponding to the same log key (or different log keys). In 
general, the inner-class distances are usually small 
while the inter-class distances are large. Therefore, we 
use a k-means clustering algorithm to cluster all dis-
tances into two groups. The distances in the two groups 
roughly correspond to the inner-class and the inter-class 
distances respectively. Finally, we select the largest 
distance from the inner-class distance group as the val-
ue of threshold ς.  

We obtain the raw log keys by the experiments on 
Hadoop and SILK respectively (the experiments’ de-
tails are described in section 7). We calculate the dis-
tances between every two raw log keys, and show the 
histogram of raw log key pair number over distance in 
Figure 2. The x-coordinate is the value of the weighted 
edit distance. The y-coordinate is the number of raw log 
key pairs. The figures show that: (1) There are two sig-
nificant peaks in each histogram. It seems that the pro-
posed weighted edit distance is a good similarity metric 
for raw log key clustering. (2) There is a flat region 
between two peaks. It implies that our raw log key clus-
tering algorithm is not sensitive to the threshold ς.  

C. Group splitting 

Ideally, raw log keys in the same initial group cor-
respond to the same log key. In such cases, a log key 
can be obtained by extracting the common part of the 
raw log keys in the same initial group. However, raw 
log keys in one initial group may correspond to differ-
ent log keys because those log keys are similar enough. 
To handle those cases, we propose a group splitting 
algorithm to obtain log keys. 

For an initial group, suppose there are 𝐺𝑁 raw log 
keys in this group. The common word sequence of the 
raw log keys within the group could be represented by 
𝐶𝑊1, 𝐶𝑊1, … , 𝐶𝑊𝑁 . For example, the initial group 2 in 
Figure 1 contains raw log key 5, 6, 7, and the common 
word sequence in the raw log keys are “file”, “of”, 
“size”, “in”, “seconds”. 

For each of the raw log keys in this group, e.g. the 
i
th
 log key, the common word sequence 

𝐶𝑊1, 𝐶𝑊2,…,𝐶𝑊𝑁  separates the raw log key into N+1 

parts which is denoted as 𝐷𝑊1
𝑖 , 𝐷𝑊2

𝑖 , … , 𝐷𝑊𝑁
𝑖 , 𝐷𝑊𝑁+1

𝑖 , 

where 𝐷𝑊𝑗
𝑖  (2 ≤ 𝑗 ≤ 𝑁 − 1) is the i

th
 raw log key’s 

content between CWj-1 and CWj ; 𝐷𝑊1
𝑖  is the i

th
 raw log 

key’s content on the left side of CW1; 𝐷𝑊𝑁+1
𝑖  is the i

th
 

raw log key’s content on the right side of CWN. We call 

𝐷𝑊𝑗
𝑖  as the private content at position j of the i

th
 raw 

log key. In the above example, the private content se-
quence of raw log key 7 is “Edits”,  ∅ ,∅ , “edits # 



loaded”, ∅,∅. In the paper, ∅ represents that there is not 
any word in the private content.  

For each position j, 1 ≤ 𝑗 ≤ 𝑁 + 1, we can obtain 
𝐺𝑁 private contents at position j from 𝐺𝑁 raw log keys 

in the group, and they are 𝐷𝑊𝑗
1 , 𝐷𝑊𝑗

2, …, 𝐷𝑊𝑗
𝐺𝑁 . We 

denote the number of different values (not including ∅) 
among those 𝐺𝑁  values as 𝑉𝑁𝑗 , and 𝑉𝑁𝑗  is called the 

private number at position j. For the initial group 2 in 
Figure 1, 𝑉𝑁1 =2, 𝑉𝑁2 =0, 𝑉𝑁3 =0, 𝑉𝑁4 =3, 𝑉𝑁5 =0, 
𝑉𝑁6=0.  

Intuitively speaking, if the private contents at posi-
tion j are parameters, 𝑉𝑁𝑗  is often a large number be-

cause parameters may probably have many different 
values. However, if the private contents at position j are 
a part of log keys, 𝑉𝑁𝑗  should be a small number. Based 

on this observation, we find the smallest positive one 
among 𝑉𝑁1 , 𝑉𝑁2 ,…, 𝑉𝑁𝑁 , 𝑉𝑁𝑁+1 , e.g. 𝑉𝑁𝐽 . If 𝑉𝑁𝐽  is 

equal to or bigger than a threshold ϱ, which means that 
the private contents at position J have at least ϱ differ-
ent values, then we consider that the private contents at 
position J are parameters. In such a situation, this initial 
group does not split anymore. Otherwise, if 𝑉𝑁𝐽  is 

smaller than the threshold ϱ, we consider that the pri-
vate contents at position J are a part of log keys. In such 
a situation, this initial group splits into 𝑉𝑁𝐽  sub-groups, 

satisfying that the raw log keys in the same sub-group 
have the same private content at position J. In the pa-
per, we set ϱ as 4 according to experiments. 

For the initial group 2, 𝑉𝑁1 is the smallest positive 
value 2 and is smaller than the threshold 4, so the initial 
group 2 splits into 2 sub-groups according to raw log 
keys’ private contents at position 1. The raw log key 5 
and 6 are in one sub-group, because they have the same 
private content “Image”; the raw log key 7 is in the 
other sub-group.  

When there are multiple private numbers at differ-
ent positions that have the same smallest positive value 
smaller than the threshold, we further compare the en-
tropies at those positions respectively, select the one 
position with the minimal entropy, and split the group 
according to the private contents at that position. We 
denote the entropy at position j as 𝐸𝑃𝑗 . We compute 𝐸𝑃𝑗  

according to the distribution of private content values at 
position j. For example, for the initial group 2 and j=1, 
we can obtain 3 values of the private content which are 
“Image”, “Image”, and “Edits”. The value’s distribu-
tion is p(“Image”)=2/3, p(“Edits”)=1/3, so 𝐸𝑃1 =

−
2

3
log

2

3
−

1

3
log

1

3
= 0.918. The entropy rule is reason-

able because a smaller entropy indicates lesser diversi-
ty, which means the private contents at that position 
have more possibility to be parts of log keys.  

If there are still multiple positions that have the 
same private number and the same entropy, then we 
split the group according to the private contents at the 
most left one among those positions.  

We perform the split procedure repeatedly, until 
there is no group satisfying the split condition. Finally, 
we extract the common part of raw log keys in each 
group as a log key.  

D. Determine log keys for new log messages 

After the above steps, we obtain the log key set 
from the training log messages in the training log files. 
When a new log message comes, we determine its log 
key according to the following two steps: First, we use 
the empirical rules to extract the raw log key from the 
log message. Second, we select the log key which has 
the minimal edit distance to the raw log key of the log 
message. If the weighted edit distance between the raw 
log key and the selected log key is smaller than a thre-
shold ℴ, the selected log key is considered as the log 
key of the log message. Otherwise, the log message is 
considered as an error log message, and its log key is its 
raw log key. Here, we set ℴ as the largest one of the 
weighted edit distances between all raw log keys of 
training log messages and their corresponding log keys. 

By replacing each log message with its correspond-

ing log key, a log message sequence can be converted 

into a log key sequence. 

IV. WORK FLOW MODEL 

In order to detect anomalies of work flows, we use a 
Finite State Automaton (FSA) to model the execution 
behavior of each system module. Although there are 
some other alternate models, such as Petri-Net, we 
adopt FSA because it is simple but effective. FSA has 
been widely used in testing and debugging software 
applications [11]. A FSA consists of a finite number of 
states and transitions between the states. A set of algo-
rithms have been proposed in previous literature to 
learn FSA from sequential log sequences [10, 11, 12]. 
In this paper, we use the algorithm proposed by [11] to 
learn a FSA for each system component from training 
log key sequences which are produced by normally 
completed jobs. Each transition in the learned FSAs 
corresponds to a log key. All training log key sequences 
can be interpreted by the learned FSAs. Therefore, each 
training log key sequence can be mapped to a state se-
quence. Figure 3 shows the example of the learned 
FSM of JobTracker of Hadoop (refer to Section 7.1). 
We give the state interpretations according to the log 
message in Table 1. From the learned the FSM, we ob-
tain the following work flow: from S87 to S96, the 
JobTracker carries out some initialization tasks when a 
new job is submitted. After initialization, the state ma-
chine enters S197 to add a new Map/Reduce task. For 
each map task, it selects local or remote data source for 
processing. Then, the task is completed. When the last 
task is finished, the job is completed, and all resources 
of tasks are cleared iteratively. In fact, the learned FSM 
correctly reflects the real work flow of the JobTracker. 



S0

S87
S88 S89

S90

S92 S93

S94

S95S96
S197

S99
S107

S103

S106
S198

S91

 
Figure 3. Example of a learned FSM 
 
Table 1. The interpretations of states 

State  Interpretation 

S87~
S96 

Initialization when a new job submitted 

S197 Add a new map/reduce task 

S103 Select remote data source 

S99 Select local data source 

S198 Task complete 

S106 Job complete 

S107 Clear task resource 

V. PERFORMANCE MEASUREMENT MODEL 

In this section, we present our technique to charac-
terize the performance of the normally completed jobs. 
By comparing with normal performance characteristics, 
we can detect low performance in new jobs. 

After log key extraction, we obtain corresponding 
log key sequences. The time stamp of a log key is the 
same as the time stamp of its corresponding log mes-
sage. In order to derive a performance measurement 
model, we need to know applications’ execution states. 
Therefore, we first convert each log key sequence to its 
corresponding state sequence. A state’s time stamp is 
specified by the time stamp of its corresponding log key 
in the log key sequence.  

In a system execution, there are two types of low 
performance problems. One is that the time interval that 
a system component transits from a state to the next 
state is much longer than normal cases; we name it 
transition time low performance. The other is that the 
circulation numbers of a loop structure are far more 
than normal cases; we name that loop low performance. 
We use the transition time between adjacent states and 
the circulation numbers of all loop structures to charac-
terize the normal performance of jobs.  

A. Transition time measurement model 

In a distributed system, each machine writes log 
message sequences to its local disc independently. 
Therefore, different training state sequences may be 
derived from logs in different machines. Suppose we 
have M machines in a distributed system. For each state 

transition in the FSA, e.g. from Sa to Sb, the time inter-
vals between two adjacent states (Sa, Sb) in the training 
state sequences produced by i

th
 machine are denoted as 

𝜏𝑖
1(𝑆𝑎 , 𝑆𝑏) ,  𝜏𝑖

2(𝑆𝑎 , 𝑆𝑏) ,…, 𝜏𝑖
𝐾𝑖 (𝑆𝑎 , 𝑆𝑏) ; 1 ≤ 𝑖 ≤ 𝑀 . 

Here, Ki is the total number of the time intervals in all 
state sequences produced by the i

th
 machine. 

We use a Gaussian model to present the distribution 
of the state transition interval. In practice, the computa-
tional capacity of machines in a distributed system is 
often heterogeneous. The different computing capacity 
of machines results in the state transition time intervals 
in different machines being quite different. In order to 
handle this problem, we introduce a capacity parameter 
for each machine. Our model contains machine inde-
pendent Gaussian distribution parameters 
{𝜇 𝑆𝑎 , 𝑆𝑏 ,  𝜎2(𝑆𝑎 , 𝑆𝑏)} and machine dependent capaci-
ty parameters {𝜆1 𝑆𝑎 , 𝑆𝑏 ,𝜆2 𝑆𝑎 , 𝑆𝑏 ,…, 𝜆𝑀(𝑆𝑎 , 𝑆𝑏)}. 
Here, the Gaussian distribution 
𝑁(𝜇 𝑆𝑎 , 𝑆𝑏 , 𝜎2 𝑆𝑎 , 𝑆𝑏 ) is used to represent the distri-
bution of the state transition time on an imaginary com-
puter with a standard computing capacity. It is only 
determined by the property of the specified state transi-
tion, and does not depend on the property of any specif-
ic machine. The computers’ properties are modeled by 
the computers’ computing capacity parameters 
𝜆𝑖(𝑆𝑎 , 𝑆𝑏), 1 ≤ 𝑖 ≤ 𝑀. The computers’ computing ca-
pacity parameters are also associated with the state 
transition, because different state transitions often cor-
respond to different computing tasks and the same 
computer may have a different computing capacity un-
der different work load characteristics. 

In this subsection, because the state transition is 
specified, we abridge state indicators in expressions or 
formulas for simplicity. We assume that the mean value 
of state transition time in the i

th
 machine is proportional 

to its computing capacity parameter 𝜆𝑖 , and the variance 

is proportional to 𝜆𝑖
2 . With that assumption, the ob-

tained transition time instances in the i
th
 machine satisfy 

the Gaussian distribution 𝑁(𝜆𝑖𝜇, (𝜆𝑖𝜎)2) , 1 ≤ 𝑖 ≤ 𝑀 . 
We further assume that the obtained transition time 
instances are independent, and then the likelihood func-
tion is as follows. 

𝑝 𝜏1
1, 𝜏1

2, … , 𝜏1
𝐾1 , 𝜏2

1 , 𝜏2
2, … , 𝜏2

𝐾2 , … , 𝜏𝑀
1 , … , 𝜏𝑀

𝐾𝑀    

=    𝑁(𝜏𝑖
𝑗
; 𝜆𝑖𝜇, (𝜆𝑖𝜎)2)

𝐾𝑖
𝑗 =1  𝑀

𝑖=1                (1) 

With the variable substitutions of 𝛼𝑖 = 𝜆𝑖𝜇 and 𝛽 =
𝜎2

𝜇 2, 

we can obtain the log-likelihood function: 

𝐿 𝛼1, 𝛼2, … , 𝛼𝑀 , 𝛽   

= −  [2ln 𝛼𝑖 + ln 𝛽 +
1

𝛽
(1 −

𝜏𝑖
𝑗

𝛼𝑖
)2]

𝐾𝑖
𝑗 =1

𝑀
𝑖=1                (2) 

According to the Maximum Likelihood Estimation 
criterion, the optimal parameters should maximize 
𝐿 𝛼1, 𝛼2 , … , 𝛼𝑀 , 𝛽 . Because the optimal parameters 
should satisfy that the partial differentiates of 
𝐿 𝛼1, 𝛼2, … , 𝛼𝑀 , 𝛽  equal to 0, we have: 



 

 
 
 

 
 

𝛼𝑖 =

   𝜏𝑖
𝑗𝐾𝑖

𝑗=1
 

2
+4𝐾𝑖𝛽  𝜏𝑖

𝑗 2𝐾𝑖
𝑗=1

 −  𝜏𝑖
𝑗𝐾𝑖

𝑗=1
 

2𝐾𝑖𝛽
, 1 ≤ 𝑖 ≤ 𝑀

𝛽 = (  (𝛼𝑖 − 𝜏𝑖
𝑗
)2)

𝐾𝑖
𝑗=1

𝑀
𝑖=1 ( 𝐾𝑖𝛼𝑖

2𝑀
𝑖=1 )                

         (3) 

However, there is no closed form solution to the 
above equation group; we can only use an iterative pro-
cedure to obtain an approximation of the optimal para-
meters. It could be proved that after each iteration step, 
the value of 𝐿 𝛼1 , 𝛼2, … , 𝛼𝑀 , 𝛽  increases. The iterative 
procedure is shown in Table 2. When the difference of 
β in two iterations is small enough (< Thβ), the iterative 

procedure terminates.  
Finally, we can obtain the transition time measure-

ment model: the transition time from Sa to Sb in the i
th
 

machine satisfies the Gaussian distribution 

𝑁(𝛼𝑖 𝑆𝑎 , 𝑆𝑏 , 𝛼𝑖
2 𝑆𝑎 , 𝑆𝑏 𝛽 𝑆𝑎 , 𝑆𝑏 ). 

It should be pointed out that the above algorithm 
can be easily implemented in a parallel mode. Accord-
ing to formula (3), when given 𝛽, 𝛼𝑖  can be determined 

by the sample data in the i
th
 machine, i.e. 𝜏𝑖

𝑗
 (1 ≤ 𝑗 ≤ 𝐾𝑖). 

Thus, each 𝛼𝑖  can be calculated separately at the i
th
 ma-

chine. When given 𝛼𝑖  (1 ≤ 𝑖 ≤ 𝑀), the intermediate re-

sults, i.e. 𝐾𝑖𝛼𝑖
2  and  (𝛼𝑖 − 𝜏𝑖

𝑗
)2𝐾𝑖

𝑗 =1 , can also be calcu-

lated by machines separately. Then, it is very easy to 
integrate those intermediate results to obtain 𝛽. There-
fore, our algorithm can be used to learn models from 
the logs of very large scale systems.  

B. Circulation numbers measurement model 

The circulation numbers of loop structures are mea-
ningful measurements for low performance detection 
because some executions’ low performance is caused 
by abnormally more loops although each of its adjacent 
state transition times seem normal. A loop structure is 
defined as a directed cyclic chain composed by the state 
transition in the learned FSA. For example, for the FSA 
shown in Figure 4, one loop structure is {S2, S3}, the 
other is {S1, S2, S3}. A loop structure execution instance 
is formed by consecutively repeating several rounds of 
a loop structure from its beginning to its end; and the 
number of execution rounds is defined as a circulation 
number. For example, in the state sequence “S0 S1 S2 S3 

S2 S3 S1 S2 S3 S4”, the subsequences, e.g. “S2 S3 S2 S3” and 
“S2 S3”, are two execution instances of the loop struc-
ture {S2, S3} in the state sequence, and the circulation 
numbers are 2 and 1 respectively; the subsequence, e.g. 
“S1 S2 S3 S2 S3 S1 S2 S3” is an execution instance of the 
loop structure {S1, S2, S3}, and the circulation number is 
2.  

We identify loop structures in the learned FSA. For 
each loop structure, e.g. L, we find the execution in-
stances of L in all training state sequences, and record 

their circulation numbers as 𝐶1 𝐿 ,𝐶2 𝐿 ,…,𝐶𝐻(𝐿)(𝐿); 
where H(L) is the amount of L’s execution instances. 
Similarly, we use Gaussian distribution 𝑁(𝜇 𝐿 , 𝜎2(𝐿)) 
to model them. 

𝜇 𝐿 =
1

𝐻(𝐿)
 𝐶𝑖(𝐿)

𝐻(𝐿)
𝑖=1                (4) 

𝜎2 𝐿 =
1

𝐻(𝐿)
 [𝐶𝑖 𝐿 − 𝜇 𝐿 ]2𝐻(𝐿)

𝑖=1                           (5) 

 

Table 2. Iterative procedure to compute parameters 

 
 

S0

Log key A

S1 S2

Log key B

S3

Log key C

S4

Log key D

Log key A

Log key B

 
Figure 4. An example of FSA 

 

VI. ANOMALIES DETECTION 

For a newly input log message sequence, we can ob-
tain the corresponding log key sequence according to 
section 3.4. If the log key sequence can be generated by 
the learned FSA, then we consider that there is no work 
flow error. Otherwise, the first log key in the sequence 
that can’t be generated by the learned FSA is detected 
as a work flow error. The details of work flow error 
detection can be found in paper [11]. In this paper, we 
mainly focus on the low performance detection.  

A. Transition time low performance detection  

During low performance detection, we first convert 
the testing log key sequences to the corresponding state 
sequences according to the learned FSA. For each state 
transition in the state sequence produced by the i

th
 ma-

chine, e.g. from Sa to Sb, we then compare its execution 
time with the learned transition time measurement 
model of the i

th
 machine. If the execution time is larger 

Initialization:  

𝛼𝑖 =
1

𝐾𝑖
 𝜏𝑖

𝑗𝐾𝑖
𝑗=1 , 1 ≤ 𝑖 ≤ 𝑀;  

𝛽 = 𝛽′ = 0; 

While true 

Set 𝛽′  = 𝛽 ; 

Using current value of 𝛼𝑖  (1 ≤ 𝑖 ≤ 𝑀), com-

pute 𝛽 according to the last one formula in the 

formula group (3); 

If  𝛽′ − 𝛽 < 𝑇ℎ𝛽 ,  

break; 

Else  

using current value of 𝛽 , compute 𝛼𝑖  

(1 ≤ 𝑖 ≤ 𝑀) according to the first M for-

mula in the formula group (3); 

Endif 

End 



than a threshold 𝛾𝑖(𝑆𝑎 , 𝑆𝑏), it is considered as a transi-
tion time low performance. Here, the threshold is de-
fined as the sum of the mean value and 𝜖 times standard 
deviation of the learned transition time distribution. 

𝛾𝑖 𝑆𝑎 , 𝑆𝑏 = 𝛼𝑖 𝑆𝑎 , 𝑆𝑏 (1 + 𝜖  𝛽(𝑆𝑎 , 𝑆𝑏))              (6) 

Obviously, the smaller 𝜖  is, the more state transi-
tions are detected as low performance problems. At the 
same time, there will be more false positives and less 
false negatives. When applying our technique, users can 
adjust the value of 𝜖 according to real requirements. In 
the experiments, we set 𝜖 as 3. 

B. Loop low performance detection  

Similar to transition low performance detection, for 
each loop structure L, we calculate its threshold 𝜗(𝐿) as 
follows  

𝜗 𝐿 = 𝜇 𝐿 + 𝜖𝜎(𝐿)                (7) 
We find the execution instances of L whose circula-

tion numbers are larger than 𝜗(𝐿) as loop low perfor-
mance. 

VII. EXPERIMENTS 

In this section, we evaluate the proposed technique 
through detecting anomalies in two typical distributed 
computing systems: Hadoop and SILK (a privately 
owned distributed computing system). In this section, 
we represent some typical cases to demonstrate our 
technique, and give out some over all evaluations on 
our experiment results. 

A. Case study on Hadoop 

Hadoop [13] is a well-known open-source imple-
mentation of Google’s Map-Reduce [14] framework 
and distributed file system (GFS)[15]. It enables distri-
buted computing of large scale, data-intensive and 
stage-based parallel applications. Hadoop is designed 
with master-slave architecture. NameNode is a master 
of the distributed file system, which manages the meta-
data of all stored data chunks, while DataNodes are 
slaves used to store the data chunks. JobTracker acts as 
a task scheduler that decomposes the job into smaller 
tasks and assigns the tasks to different TaskTrackers. A 
TaskTracker is a worker of a task instance.  

The logs produced by Hadoop are not sequential log 
message sequences in its original forms. The log mes-
sages for different tasks interleave together. However, 
we can easily extract sequential log message sequences 
from logs by the task IDs.  

 

Table 3. Basic configurations of machines 
Machine Basic configuration 

PT03~PT05 Intel dual-core E3110@3.0G, 8G RAM 

PT06~PT11 Intel quad-core E5430@2.66G, 8G RAM 

PT12~PT17 AMD Quad-Core 2376@2.29G, 8G RAM 

 
Our test bed of Hadoop (version 0.19) contains 16 

machines (from PT3 to PT17) connected with a 1G 

Ethernet switch. The basic configurations are listed in 
Table 3. Among them, PT17 is used as a master that 
hosts NameNode and JobTracker components. The 
others are used as slaves, and each slave hosts Data-
Node and TaskTracker components. During the expe-
riments, we run the stand-alone program (namely 
CPUEater) which consumes a predefined ratio of CPU 
so that we can better simulate a heterogeneous envi-
ronment. Table 4 shows the utility ratios (i.e. 100%-
consumed CPU ratio of CPUEater) and the learned 
model parameters. We can see that the more powerful 
machine, the smaller the average transition time is. 

 

Table 4. Utility ratio and model parameters 

Machine Utility Ratio 
Learned parameters 

α  (s) β 

pt09 100% 38.04 

0.0187 

pt07 30% 47.10 

pt12 50% 65.02 

pt14 30% 65.63 

pt05 50% 78.46 

 
In the learning stage, we run 100 jobs of counting 

words in the test bed and collect the produced log files 
of these jobs as training data. The counting words job 
gives out the word frequency in the input text files. 
Each input text file for a job is about 10G. In the testing 
stage, we run 30 counting words jobs to produce testing 
data.  

In this subsection, we give one example of the test 
cases in Table 5. In this case, we manually insert a low 
performance problem by limiting the bandwidth of ma-
chine PT9 to 1Mbps when running a job, and check 
whether our algorithm can detect it. The result shows 
that our algorithm can successfully detect the low per-
formance problem that the transition time from state 
#21 to state #1 is much larger than the normal cases (i.e. 
60s > 38.04s). 

 

Table 5. Low performance transition of Hadoop 
Time Stamp State ID State Meaning 

2009-01-18 

10:42:31.452 
21 

Data source for a Map 

task is selected. 

2009-01-18 

10:43:30.423 
1 Map task is completed. 

 

B. Case study on SILK 

SILK is a distributed system developed by our lab 
for large scale data intensive computing. Unlike Ma-
pReduce, SILK uses a Directed Acyclic Graph (DAG) 
framework similar to Dryad [16]. SILK is also designed 
based on the master-slave architecture. A Scheduler-
Server component works as a master to decompose the 
job into smaller tasks, and then schedule and manage 
the tasks. SILK produces many log files during execu-



tion. For example, it generates about 1 million log mes-
sages every minute (depending on workload intensity) 
in a 256-machine system. Each log message contains a 
process ID and a thread ID. We can group log messages 
with the same process ID and thread ID into sequential 
log sequences. The test bed of SILK contains 7 ma-
chines (1 master, 6 slaves), which is set up for daily-
build testing. As our training data, we collect the train-
ing log files of all successful jobs during a ten-day run-
ning in the test-bed. The test logs are generated during 
one month of daily-build testing. Our algorithm can 
detect several system execution anomalies (shown in 
Table 7). In this subsection, we give two typical exam-
ples. 

Case 1: In this case, due to a networking issue, a 
slave task (CopyDatabase) tries several times to connect 
to a database, which makes a response to the master 
(SchedulerServer) and is largely delayed. From the log 
sequence of the master, our algorithm finds that the 
transition time from state #424 to state #428 is much 
larger than expected (see Table 6). According to the 
learned model, the average time interval is 12.32s, 
while the time interval in this case is 42.53s. Therefore, 
our algorithm detects it as an anomaly of transition time 
low performance. 
 

Table 6. Case 1: Low performance transition of SILK  
Time Stamp State ID State Meaning 

2008-09-09 

18:44:52.749 
424 Job task is started. 

2008-09-09 

18:45:35.280 
428 

A worker progress event is 

received. 

 
Case 2: In this case, the master (SchedulerServer) 

sends a job finish message to a client, but the client 
never replies. This causes the master to repeat the at-
tempt more than 20 times before giving up. Compared 
with 1 in normal situations, it is detected as a loop low 
performance anomaly by our algorithm. 

C. Overall results 

Table 7 shows the overall results of anomaly detec-
tion on Hadoop and SILK. In the experiments on Ha-
doop, we detect 15 types of anomalies, 2 of them being 
false positives (FP). In the experiments on SILK, we 
detect 91 types of anomalies, 22 of which are FPs. 
Looking into these FPs, we find that our current loop 
low performance detection is sensitive to different 
workloads. This is because the circulation numbers of 
some loop structures largely depend on the work load. 
With the help of user’s feedback, such FPs can be re-
duced by relaxing the threshold 𝜖.for the corresponding 
loop structures. 

D. Comparison of log key extraction 

In order to evaluate our log key extraction method, 
we compare our method with the method proposed by 
Jiang et. al. [9]. The comparison results are shown in 

Table 8, where the numbers of real log key types are 
manually identified, and are used as the ground truth. 
For our algorithm, the numbers of obtained log key 
types are very close to the ground truth. Furthermore, 
more than 95% of the log keys extracted by our method 
are identical with the real log keys. By comparison, our 
algorithm significantly outperforms the algorithm of [9].  

 

Table 7. Overall evaluation results 

Anomaly 

type 

Hadoop SILK 

Detected 

anomaly 

types 

False 

positive 

Detected 

anomaly 

types 

False 

positive 

Work flow 

error 
4 0 16 0 

Transition 

time low 

performance 

6 0 6 0 

Loop low 

performance 
5 2 69 22 

 

Table 8. Comparison results of log key extraction 

System 

Extracted log 

key types of 

Jiang et.al [9] 

Extracted log 

key types of 

our method 

Real log 

key types 

Hadoop 257 197 201 

SILK 2287 651 631 

VIII. CONCLUSION 

As the scale and complexity of distributed systems 
continuously increases, the traditional problem of diag-
nosis approaches; experienced developers manually 
checking system logs and exploring problems according 
to their knowledge becomes inefficient. Therefore, a lot 
of automatic log analysis techniques have been pro-
posed. However, the task is still very challenging be-
cause log messages are usually unstructured free-form 
text strings and application behaviors are often very 
complicated. 

In this paper, we focus on the log analysis technique 
for automated problem diagnosis. Our contributions 
include: (1) We propose a technique to detect anoma-
lies, including work flow errors and low performance, 
by analyzing unstructured system logs. The technique 
requires neither additional system instrumentation nor 
any application specific knowledge. (2) We propose a 
novel technique to extract log keys from free text mes-
sages. Those log keys are the primitives in our model 
used to represent system behaviors. The limited number 
of log key types avoids the curse of dimension in the 
statistic learning procedure. (3) Model the two types of 
low performance. One is for modeling execution time 
of state transitions; the other is for modeling the circula-
tion number of loops. In the model, we take into ac-
count the factors of heterogeneous environments. (4) 
The detection algorithm can remove false positive de-
tection of low performance caused by inputting large 



workloads. Experimental results on Hadoop and SILK 
demonstrate the power of our proposed technique. 

Future research directions include utilizing log pa-
rameter information to conduct further analysis, per-
forming analysis on parallel logs that are produced by 
multi-thread or event based systems, visualizing the 
models and the anomalies detection results to give in-
tuitive explanation for human operators, and designing 
a user-friendly interface. 
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