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Abstract
A hierarchical program is one with multiple procedures but no loops
or recursion. This paper studies the problem of deciding reachability
queries in hierarchical programs where individual statements can
be encoded in a decidable logic (say in SMT). This problem is
fundamental to verification and most directly applicable to doing
bounded reachability in programs, i.e., reachability under a bound
on the number of loop iterations and recursive calls.

The usual method of deciding reachability in hierarchical pro-
grams is to first inline all procedures and then do reachability on
the resulting single-procedure program. Such inlining unfolds the
call graph of the program to a tree and may lead to an exponential
increase in the size of the program. We design and evaluate a method
called DAG inlining that unfolds the call graph to a directed acyclic
graph (DAG) instead of a tree by sharing the bodies of procedures
at certain points during inlining. DAG inlining can produce much
more compact representations than tree inlining. Empirically, we
show that it leads to significant improvements in the running time
of a state-of-the-art verifier.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification

Keywords Verification Condition generation, Bounded Model
Checking, Procedure inlining, Satisfiability modulo theories, Reach-
ability modulo theories

1. Introduction
Advances in the area of satisfiability (SAT) and satisfiability modulo
theories (SMT) solvers has had a significant impact on automated
software verification. SAT and SMT solvers, even though they ad-
dress NP-complete problems, have earned a reputation of being
robust, efficient and scalable. Their success and continuous improve-
ments over the last few years have prompted verification tools to
employ them much more directly than before.

One concrete evidence is the gaining popularity of verifiers
generally referred to as bounded model checkers (BMC). BMC tools
focus on a restricted version of full program verification: Given
a user-specified bound, search all program behaviors under that

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PLDI ’15, June 13–17, 2015, Portland, OR, USA.
Copyright c© 2015 ACM 978-1-4503-3468-6/15/06. . . $15.00.
http://dx.doi.org/10.1145/2737924.2737987

procedure main() {
i f (?) c a l l bar();
e l s e c a l l baz();

}

procedure bar() {
c a l l foo();

}

procedure baz() {
c a l l foo();

}

(a) (b) (c)

Figure 1. DAG Inlining example

bound for assertion violations. Bounding usually includes enforcing
maximum number of loop iterations and recursive calls. When the
operational semantics of a language can be encoded in SAT or SMT,
such a bounded version of verification is a decidable problem [11].
BMC tools all operate by encoding the set of all bounded executions
as a SAT/SMT formula, a process called verification condition (VC)
generation; the difference between different tools is in how this
encoding is performed.

Both bounded and unbounded verification problems can be
reduced to reachability on hierarchical programs. A hierarchical
program is one with possibly multiple procedures but no loops
and no recursion. For bounded verification, once loops have been
unrolled and recursion unfolded up to a bound, the resulting program
is hierarchical. For unbounded verification, given annotations only
for loops and recursive procedures, the back edges in the flow graph
and the call graph can be eliminated to create a hierarchical program.

VC generation algorithms for single-procedure hierarchical
programs are well understood. For hierarchical programs with
multiple procedures, the unquestioned approach is to inline all
procedures to result in a single-procedure hierarchical program.
This process of inlining procedures, which can be thought of as
unrolling the call graph of the program to a tree, has an exponential
cost. The size of the resulting program can be exponential in the
size of the original hierarchical program, and this directly impacts
the scalability of tools.

The main contribution of this paper is a novel algorithm for
VC generation of multi-procedure hierarchical programs. Instead of
unrolling the call graph to a tree, we unroll it to a directed acyclic
graph (DAG). We give conditions under which using a DAG is
precise, i.e., sound and complete compared to tree inlining. Using
a DAG can lead to up to exponential reductions in the size of the
generated VC.

We illustrate the basic idea behind our approach using Fig. 1. We
show a simple hierarchical program in Fig. 1, where the code for



foo has been elided away. Usual inlining, which we will refer to
as tree-based inlining in this paper, proceeds by inlining bar and
baz into main, creating two call sites of foo. Next, each of these
call sites gets replaced with the body of foo and then its callees
and so on. This inlining is illustrated by the tree shown in Fig. 1(b).
The tree captures an unfolding of the call graph of the program and
shows the amount of inlining that needs to be performed to get to a
single-procedure program. T refers to the unfolding of the call graph
reachable from foo. Note that two copies of foo and T are created
by tree inlining.

We show that with our DAG inlining technique it is possible
to unfold the call graph to a DAG. Notice that on any program
execution foo cannot be called twice: either the execution takes the
then branch in main and goes through bar, or it takes the else
branch and goes through baz. In such a case, DAG inlining will
share the body of foo to obtain the DAG shown in Fig. 1(c). In
general, we show how to merge bodies of procedure instances that
are known to be never taken on the same execution. This merging
can have large benefits in terms of compressing the VC needed to
represent all behaviors of a hierarchical program. In our example, the
size of T can be arbitrarily large, making the savings also arbitrarily
large.

We illustrate the potential for speedups using the contrived
example of Fig. 2, which is an extension of the program in Fig. 1.
The program is parameterized by the value of “N”. Program
execution starts in main and proceeds through a chain of procedures
P0,P1, · · · ,PN, and the only assertion is in PN. It is easy to see that
this program is correct; the invariant at the beginning of procedure
Pi is that g == i.

Fig. 3 shows the running time of two tools: CBMC [6, 7] and
Corral [14] that each employ tree inlining (in their own ways) as the
value of N is increased. Note that the Y-axis is on log scale. CBMC
performs better than Corral but it is clear that both have exponential
scalability with respect to the value of N . Our method, shown as
“DI”, which uses DAG inlining, has linear scalability. The reason for
improved scalability is simply that the size of the VC generated by
DI scales linearly with N for this program. The structure of inlining
is also shown in Fig. 2. Both CBMC and Corral construct the tree
inlined version, which is exponentially sized in N .

DAG inlining is based on the idea of merging procedure instances
that can never be called on the same execution. A natural question to
ask is if there is enough opportunity to merge in real programs? Our
evaluation shows that despite of pruning optimizations performed
by state-of-the-art verifiers, DAG inlining produces a VC that is
three times as compact. Without pruning (which is true of verifiers
that eagerly inline all procedures), DAG inlining can lead up to 200
times compression, as shown in Fig. 4.

Producing a compact VC is only one step of the solution.
Eventually, we must evalute the time taken by the SAT/SMT solver
to discharge the VC. Our evaluation shows that DAG inlining is able
to solve many more verification problems than tree inlining within
the timeout budget. On instances that both solved within the timeout,
DAG inlining was approximately twice as fast.

This paper makes the following contributions.

• We give a VC generation algorithm to decide reachability in
hierarchical programs. The algorithm is based on the novel idea
of DAG inlining.

• We give an extensive evaluation of DAG inlining compared to
tree inlining using a state-of-the-art verifier on real data. Our
experiments show that DAG inlining can be much faster than tree
inlining, often allowing verification to finish when tree-inlining
would time out.

var g: int;

procedure main() {
g := 0;
i f (?) c a l l P0();
e l s e c a l l P0();

}

procedure Pi() {
g := g + 1;
i f (?) c a l l Pi+1();
e l s e c a l l Pi+1();

}

procedure PN() {
a s s e r t g == N;

}

Figure 2. A program parameterized by the value of N and an
illustration of DAG inlinig for N=3
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Figure 3. Comparison of BMC tools against DAG Inlining (DI) on
the program of Fig. 2, under a timeout of 900 seconds.
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2. Overview
A dynamic instance of a procedure is a procedure qualified by its
call stack. A procedure can have as many dynamic instances as the
number of its calling contexts.

As mentioned in the previous section, merging is only done for
dynamic instances of the same procedure when they are disjoint,



i.e., they can never be taken on the same program execution. In this
section, we first show commonly occurring programming patterns
that create opportunities for merging in hierarchical programs,
even when they are obtained from real programs after unrolling
loops and unfolding recursion. These patterns were observed in our
experiments on real world programs.

Consider a hierarchical program with the following statement:

switch(...) {
case A: foo1(); break;
case B: foo2(); break;
case C: foo3(); break;
...

}

Because there are no loops and recursion, we know that once a
case block is entered, there is no way to enter a different case block.
This creates opportunities for disjointness, either immediately if
some fooi is the same procedure as fooj for i 6= j, or transitively,
if some fooi and fooj for i 6= j end up calling the same procedure
bar; those dynamic instances of bar will be disjoint.

Switch statements can, of course, occur for a variety of reasons,
e.g., (a) deciding on the type of a request and dispatching to the
appropriate handler, or (b) a test harness that dispatches to multiple
entrypoints, or (c) IR simplification such as resolving a function
pointer to its possible targets, and so on. Note that there is nothing
special about using a switch statement. Even branches of an if
condition create opportunities for disjointness in a similar manner.

Such disjointness is not a fictitious creation because we consider
“hierarchical” programs. While in real (loopy) programs, it is natural
to have branches inside a loop and executions that take both sides
of the branch, we can still make a finer distinction. The same
iteration of the loop cannot take both sides of a branch and this
still creates disjointness that is specific to each iteration of the loop.
This observation naturally falls out once loops are unrolled, which
is done anyway for doing bounded reachability.

Deciding disjointness Our analysis does not rely on any particular
programming idiom or pattern to decide disjointness. Instead, we
analyze the control structure of the program as an (acyclic) push-
down system to decide if two dynamic procedure instances are
disjoint. Our method can be implemented efficiently. It requires a
pre-processing time that is quadratic in the size of a single procedure
and linear in the number of procedures of a program. Then disjoint-
ness of two dynamic instances can be answered in time proportional
only to the length of their calling context.

Merging strategies It can often be the case that there are several
possibilities of merging dynamic instances of a procedure. An
approach that picks disjoint instances randomly and merges them
may not be optimal. For instance, consider a procedure with the
control-flow graph shown in Fig. 5(a) and suppose that nodes A–D
each call the same procedure. We examine which of these calls can
be merged when inlining is performed.

Fig. 5(b) is the induced conflict graph on the call nodes: there is
an undirected edge between n1 and n2 if they are not disjoint. Two
calls can be merged (i.e., share the body of the callee) if there is no
edge between them in the conflict graph. If we decide to merge B
and C then we end up with the graph Fig. 5(c) where there is no
further opportunity to merge. On the other hand, if we merge A and
B, we can still merge C and D and end up with Fig. 5(d) that has
more compression.

In general, one strategy is to construct the conflict graph of
all dynamic instances of a procedure and color it so that adjacent
nodes do not have the same color. Using minimum number of colors
(commonly called the graph coloring problem) leads to maximum
compression: nodes of the same color should be merged. This

A B

DC

A

B D

C A

D

BC AB CD

(a) (b) (c) (d)

Figure 5. (a) The control-flow graph of a procedure will four calls
to the same callee; (b) the induced conflict graph of the callee;
(c) conflict graph after merging B with C; (d) conflict graph after
merging A with B and C with D.

var g: int;

procedure main(v1: int, v2: int) r e t u r n s (r: int)
{ var c: bool;

i f (c) {L1: c a l l r := foo(v1);}
e l s e {L2: c a l l r := foo(v2);}

}

procedure foo(a: int) r e t u r n s (b: int)
{ b := a + 1; }

Figure 6. A program to illustrate VC generation

strategy, while it performs the best when the program needs to
be fully inlined, may not be the best when only parts of the program
are inlined. We give multiple strategies to pick instances that should
be merged in Section 3.4 and evaluate them in Section 4.

VC generation with merging Consider the program shown in
Fig. 6. main has two disjoint calls to foo, labelled with L1 and
L2, respectively. The goal of VC generation is to create a constraint
between the input state of the program and its output state.

We first create a VC for each procedure individually (called a
procedural VC, or pVC). The pVC of main is φmain(v1, v2, r) =
(c ∧ E0) ∨ (¬c ∧ E1), where c is the value on which the branch
is taken and Ei is a place holder indicating if the call at label Li+1

is taken. Note that the relationship between the return value r and
input parameters v1 and v2 is unconstrained in φmain. The pVC of
foo is φfoo(a, b) = (b == a+ 1).

We further introduce constants Ni, one for each procedure
instance that is inlined, to indicate when execution enters that
instance. Tree inlining produces the following VC:

N0 // execution starts in main
∧ N0 ⇒ ((c ∧ E0) ∨ (¬c ∧ E1)) // pVC of main
∧ E0 ⇒ (N1 ∧ v1 == a1 ∧ r == b1) // callsite L1
∧ E1 ⇒ (N2 ∧ v2 == a2 ∧ r == b2) // callsite L2
∧ N1 ⇒ (b1 == a1 + 1) // pVC of foo
∧ N2 ⇒ (b2 == a2 + 1) // pVC of foo

In this VC, theNi variables guard their pVCs. The call-site constants
Ei guard a constraint for the call-site. For instance, setting E0 to
true indicates that the call at L1 is taken, which is enforced by
asserting N1 and an equality between formals of foo and actuals
of the call.



P ∈ Prog ::= (gs, ls, ps, init, bs, ts)
v, g, h ∈ Global

gs ∈ 2Global

v, l, k ∈ Local

ls ∈ 2Local

p, q ∈ Proc
ps ∈ Label → Proc

init ∈ Proc → Label
bs ∈ Label → Stmt

ts ∈ Label → 2Label

st ∈ Stmt ::= assume e | v := e | call p
i, f, x, y, b ∈ Label

xs ∈ 2Label

e ∈ Expr

Figure 7. Program syntax

DAG inlining, when it decides to merge the two calls to foo,
will produce the following VC:

N0 // execution starts in main
∧ N0 ⇒ ((c ∧ E0) ∨ (¬c ∧ E1)) // pVC of main
∧ E0 ⇒ (N1 ∧ v1 == a1 ∧ r == b1) // callsite L1
∧ E1 ⇒ (N1 ∧ v2 == a1 ∧ r == b1) // callsite L2
∧ N1 ⇒ (b1 == a1 + 1) // pVC of foo

The difference with tree inlining is that both E0 and E1 enable N1

and share the pVC of foo. Note that this is semantically equivalent
to the tree-inlined version: setting c to true in each case simplifies
the formula to r == v1 + 1, and setting c to false in each case
simplifies the formula to r == v2 + 1. The key reason why the
merging works is that both E0 and E1 (and also both N1 and N2)
need never be simultaneously true.

3. DAG Inlining
We describe our VC generation algorithm for hierarchical programs
based on DAG Inlining using the simple programming language
shown in Fig. 7. A program P is a tuple (gs, ls, ps, init , bs, ts).
The finite set gs contains the names of global variables. The finite
set ls contains the names of local variables. The control flow of
the program is defined over the finite set of labels in Label . These
labels are partitioned among the procedures in the set Proc. This
partition is specified via the map ps from Label to Proc. The map
init provides for each procedure p ∈ Proc the initial label from
which a call to p begins execution. For each label x ∈ Label , the
map bs provides the code statement executed at x and the map ts
the set of labels to one of which control moves nondeterministically
after executing the statement bs(x); if the set ts(x) is empty, then
control returns to the caller of ps(x). We assume that the set of
labels of a procedure is closed under control transfers, that is, for
all p ∈ Proc, x ∈ Label and y ∈ ts(x), we have ps(init(p)) = p
and ps(x) = ps(y).

Although local variables of procedures are declared at the top
level in a program, dynamic instances of procedures get their
own copy of storage associated with those local variables. The
initial value of the global variables in the beginning of program
execution and the initial value of the local variables in the beginning
of a procedure execution is unconstrained (nondeterministic). To
simplify presentation, we have chosen to omit input and output
parameters from procedures but these can be simulated through an
appropriate use of local and global variables.

A statement at a label is one of three kinds, assume e, v := e,
and call p, where v is a variable name in Global ∪ Local , e is an
expression over Global ∪ Local , and p is a procedure name. The
semantics of these statements is standard. The statement assume e
blocks if e evaluates to false and otherwise terminates without any
side effect. The statement v := e assigns the result of evaluating e
to v. The statement call p calls the procedure p. While our language
does not include conditional control flow, it can be encoded using

nondeterminism and assume statements. Other modeling languages
such as Boogie [5] also provide a havoc statement for updating a
variable with a nondeterministic value. Since local variables are
nondeterministically initialized at the beginning of a procedure call,
our language can simulate havoc using procedure calls and the
assignment statement.

We elide the syntax of expressions and the types of variables
from our description; the formal requirements are mentioned else-
where [11]. Our implementation handles all types and expressions
supported by existing satisfiability-modulo-theory solvers and for-
malized in the SMTLIB standard, including bitvectors, integers,
arrays, and datatypes.

DEFINITION 1. (REACHABILITY DECISION PROBLEM) Given a
program P and a procedure p of the program, find a terminating
execution of p, i.e., an execution that returns from p.

The problem of finding assertion violations (or violations of general
safety properties) can be compiled to the reachability decision
problem [13].

Let P be the program (gs, ls, ps, init , bs, ts). The program P
induces a flow graph whose nodes are the elements of Label and
(x, y) is an edge if and only if y ∈ ts(x). The program P also
induces a call graph whose nodes are the elements of Proc and
(p, q) is an edge if and only if there exists x ∈ dom(bs) such that
ps(x) = p and bs(x) = call q. The program P is hierarchical if
its induced flow and call graphs are acyclic.

3.1 The DAG Inlining Algorithm
The DAG inlining algorithm solves the reachability decision prob-
lem for a hierarchical program. It takes a hierarchical program P
and a procedure p as input and generates a formula φ such that φ is
satisfiable if and only if p has a terminating execution.

Fig. 8 shows pseudo-code for the DAG inlining algorithm. The
basic data structure used by this algorithm is a DAG; the types
Node and Edge represent the nodes and edges, respectively, of the
DAG. Root is the root node of the DAG. The maps Src and Dest
map edges to nodes; they indicate the source and destination node
of an edge, respectively. The nodes represent dynamic procedure
instances and the edges represent calls from the source procedure to
the destination procedure. Entry maps a node to the entry label of
its procedure. Callee maps an edge to the name of its destination
procedure. CallSite maps an edge to the label of the block where
the corresponding call was made.

The type Const refers to symbolic constants. The map Control
maps each edge and node to a distinct Boolean symbolic constant;
this variable is used as a flag to indicate if program execution hits
that particular node or edge. The maps In and Out provide the
input and output interfaces of nodes and edges. The input and
output interfaces of a node are sequences of symbolic constants
representing the value of global variables at the input and output,
respectively, of the node procedure. Intuitively, these correspond to
formal input and output parameters of the procedure. Similarly, the
input and output interfaces of an edge are sequences of symbolic
constants representing the value of global variables before and after
the call represented by the edge. Intuitively, these correspond to
actual input and output arguments of the call.

The method Gen_pVC is very similar to the standard intra-
procedural VC generation algorithm [4]. It generates and pushes the
procedural VC (pVC) of a given procedure. We clarify the notation
used in Gen_pVC . The method Push(e) asserts the expression e
to the solver (i.e., it conjoins e with expressions previously pushed).
For a setX , letm,m1,m2 be maps of type [X]Const . The formula
m1 = m2 is shorthand for

∧
x∈X(m1[x] = m2[x]). For an

expression e over variables X , e[m] refers to substituting each



1 Input: P, p
2

3 var Root : Node
4 var Src : [Edge]Node
5 var Dest : [Edge]Node
6 var Entry : [Node]Label
7 var Callee : [Edge]Proc
8 var CallSite : [Edge]Label
9 var Control : [Node ∪ Edge]Const

10 var In : [Node ∪ Edge][Global]Const
11 var Out : [Node ∪ Edge][Global]Const
12

13 Gen_VC () {
14 var n : Node ∪ {None}
15 var d : DAG
16

17 Root = Gen_pVC (p)
18 while (dom(Src) ⊃ dom(Dest)) {
19 pick c ∈ dom(Src) \ dom(Dest)
20 pick compatible n ∈ Node ∪ {None}
21 if (n = None) {
22 n = Gen_pVC (Callee[c])
23 }
24 Dest[c] = n
25 Push(Control[c]⇒
26 Control[n] ∧ In[c] = In[n] ∧Out[c] = Out[n])
27 }
28 Push(Control[Root])
29 }
30

31 Gen_pVC (q : Proc) : Node {
32 var n : Node
33 var c : Edge
34 var BS : [Label]Const
35 var VS : [Label][Global ∪ Local]Const

36 var VS ′ : [Label][Global ∪ Local]Const
37

38 n = new Node
39 foreach (y : ps(y) = q) {
40 BS [y] = new Const
41 foreach (v ∈ gs ∪ ls) {
42 VS [y][v] = new Const

43 VS ′[y][v] = new Const
44 }
45 }
46 Entry[n] = init(q)
47 Control[n] = BS [init(q)]
48 In[n] = VS [init(q)]|gs
49 foreach (v ∈ gs)
50 { Out[n][v] = new Const }
51 foreach (y : ps(y) = q) {
52 match bs(y) with
53 | assume e→
54 Push(BS [y]⇒ e[VS [y]] ∧ VS ′[y] = VS [y])
55 | v := e→
56 Push(BS [y]⇒
57 VS ′[y][v] = e[VS [y]] ∧
58 VS ′[y]|gs+ls−v = VS [y]|gs+ls−v)
59 | call p→
60 c = new Edge
61 Src[c] = n
62 Callee[c] = p
63 Control[c] = BS [y]
64 In[c] = VS [y]|gs
65 Out[c] = VS ′[y]|gs
66 CallSite[c] = y

67 Push(BS [y]⇒ VS ′[y]|ls = VS [y]|ls)
68

69 if (ts(y) = ∅)
70 Push(BS [y]⇒ VS ′[y]|gs = Out[n])
71 else

72 Push(BS [y]⇒
∨

x∈ts(y)
BS [x] ∧ VS ′[y] = VS [x])

73 }
74 return n
75 }

Figure 8. DAG inlining

// State: Node = {}, Edge = {}
17. Root = Gen_pVC (p)

// Gen_pVC invokes: Push(N0 ⇒ ((c ∧ E0) ∨ (¬c ∧ E1)))

// State: Root = n0, Node = {n0}, Edge = {e0, e1},
Src = {e0 7→ n0, e1 7→ n0}, Dest = {},
Callee = {e0 7→ foo, e1 7→ foo},
Control = {n0 7→ N0, e0 7→ E0, e1 7→ E1},
CallSite = {e0 7→ L1, e1 7→ L2}

19. pick c = e0

20. pick n = None

22. n1 = Gen_pVC (foo)

// Gen_pVC invokes: Push(N1 ⇒ (b1 == a1 + 1))

24. Dest[e0] = n1

// State: Root = n0, Node = {n0, n1}, Edge = {e0, e1},
Src = {e0 7→ n0, e1 7→ n0}, Dest = {e0 7→ n1},
Callee = {e0 7→ foo, e1 7→ foo},
Control = {n0 7→ N0, n1 7→ N1, e0 7→ E0, e1 7→ E1},
CallSite = {e0 7→ L1, e1 7→ L2}

25. Push(E0 ⇒ (N1 ∧ v1 == a1 ∧ r == b1))

19. pick c = e1

20. pick n = n1 // compatible choice

24. Dest[e1] = n1 // creates merging in the DAG structure

25. Push(E1 ⇒ (N1 ∧ v2 == a1 ∧ r == b1))

// State: Root = n0, Node = {n0, n1}, Edge = {e0, e1},
Src = {e0 7→ n0, e1 7→ n0}, Dest = {e0 7→ n1, e1 7→ n1},

28. Push(N0)

Figure 9. An execution of DAG Inlining over the program of
Fig. 6. Instructions of the algorithm are boxed and shown with
their corresponding line numbers. The value of some of the global
variables is also shown at certain points during the execution.

x with m[x] in e. For a set Y ⊆ X , m|Y refers to restricting the
domain of m to Y .

We focus our attention on the top-level method Gen_VC . This
method creates the DAG-inlined VC for the input procedure p
through a sequence of calls to Push . It begins by initializing the
DAG with a node and edges corresponding to the body of p and
the calls from it (line 17). Then, it enters a loop which executes as
long as there is an edge that has not been bound to a destination
node (line 18). Such an edge, called an open edge, corresponds to a
procedure call that has not yet been inlined. Clearly, for hierarchical
programs this loop of picking open edges will terminate.

After picking an open edge c (line 19), the method Gen_VC
then non-deterministically picks either the special value None or a
node of the DAG (line 20). If the value picked is None , Gen_VC
invokes Gen_pVC to create a freshly-inlined copy of the target
of the call (line 22). Note that the method Gen_pVC creates and
returns a new node (lines 38 and 74) that is then bound to the
destination of c (line 24). Further, Gen_pVC also creates additional
(open) edges corresponding to the calls made by inlined procedure
(lines 60–66). If, instead of None, an existing node n is picked at
line 20, then we avoid the call to Gen_pVC and simply bind c to
n. In either case, after binding the target of the call (line 24), we
assert equality between formals and actuals of the call (line 25).
Fig. 9 shows the execution of Gen_VC on the program of Fig. 6
that produces the DAG-Inlined VC discussed in Section 2.

Our algorithm uses non-deterministic choices for picking the
open call c (line 19) and the target node n (line 20). The choice
for c is completely unconstrained as the correctness of Gen_VC
does not depend on it. The freedom in picking open call sites is
essential for integration with state-of-the-art tools that use their



type DAG = (Node, 2Node , 2Node×Node ,
Node → Label,Node × Node → Label)

CreateDAG() : DAG {
let

es = {(n, n′) | ∃c ∈ dom(Dest). Src[c] = n ∧Dest[c] = n′},
nls = {(n, x) | Entry[n] = x},
els = {(n, n′, xe) | ∃c.Src[c] = n ∧Dest[c] = n′ ∧ CallSite[c] = x}

in
return (Root, cod(Src), es,nls, els)

}

/* pick compatible n ∈ Node ∪ {None} */
pick n ∈ Node ∪ {None}
assume (n = None) ∨

IsConsistent(CreateDAG() + (Src[c],CallSite[c], n))

Figure 10. Resolving line 20 of Fig. 8

own heuristics to decide the order in which to inline procedures
[1, 14, 18]. The choice for n can always be None; if the algorithm
picks None each time we obtain the special case of tree inlining as
every open call results in a call to Gen_pVC . Choices other than
None are constrained to be compatible with the current DAG; this
notion, along with a proof of correctness that relies on it, is given in
the next section.

3.2 Consistent DAG
For a set S, let S⊗ refer to strings of arbitrary length over the
alphabet S, i.e., S⊗ = {s1s2 · · · sn|n ≥ 0, si ∈ S}. Let S⊕ be the
set of non-empty strings over S. For sets S1 and S2, let S1 ·S2 be
pairwise string concatenation, i.e., S1 ·S2 = {s1s2 | s1 ∈ S1, s2 ∈
S2}. For a binary relationR, letR∗ be its reflexive transitive closure
and R+ be its non-reflexive transitive closure.

Let us fix a hierarchical program P with set of labels Label .
Let Γ = Label ∪ {be | b ∈ Label}. Intuitively, b denotes the
control location just before the statement at b and be denotes the
control location just after the statement at b. Let Γret = {be |
b has a procedure call} be a subset of Γ representing the set of
return sites. A configuration of program P is an element of Γ ·Γ⊗ret ,
representing a possible call stack that may arise during program
execution. The transition relation ; of a program P is a binary
relation over configurations of P . It is the smallest relation such
that:

1. If block b has a non-call statement, then for any u ∈ Γ⊗ret ,
bu; beu.

2. If block b has a call statement to procedure p, then for any
u ∈ Γ⊗ret , bu; init(p)beu.

3. If b1 has a successor block b2, then for any u ∈ Γ⊗ret , b
e
1u ;

b2u.

4. If b does not have a successor block, then for any u ∈ Γ⊕ret ,
beu; u.

Two configurations c1 and c2 of a program P are called disjoint,
denoted by Disj (c1, c2), if neither c1 ;∗ c2 nor c2 ;∗ c1.

Fig. 10 shows how to resolve line 20 of Fig. 8. The method
CreateDAG converts the imperative data structure of Fig. 8 to a
mathematical representation of a DAG. A DAG is defined as a tuple
(r,N,E,LN ,LE), where N is a set of nodes, r ∈ N is the root
node, E ⊆ N × N is a set of edges, LN is a map from N to Γ
and LE is a map from E to Γret . Further, N and E together must
define an acyclic graph. As with the imperative notation, each node
n ∈ N corresponds to (possibly multiple) dynamic instances of a
procedure and an edge e ∈ E corresponds to a procedure call. For

all n ∈ N , LN (n) is the entry block of the procedure corresponding
to n. For all e ∈ E such that e = (n, n′), LE(e) is be for some
label b containing a call from the procedure corresponding to n to
the procedure corresponding to n′.

For a DAG D = (r,N,E,LN ,LE), and a tuple (n1, b, n2)
such that n1, n2 ∈ N and b ∈ Label , define D + (n1, b, n2)
as the DAG obtained by adding an edge from n1 to n2, i.e.,
(r,N,E∪{(n1, n2)},LN ,LE ∪{(n1, n2) 7→ be}). The condition
in Fig. 10 checks any node n can be picked in line 20 as long as
the DAG obtained by adding (Src[c],CallSite[c], n) is consistent.
For any node n ∈ N , let paths(n) be the set of all paths from
root r to n. This set is guaranteed to be finite because D is
acyclic. Given a path p = (e1, e2, · · · , en), let conf (p) be the
configuration (LE(en) · LE(en−1) · · · LE(e1)). Given n ∈ N , let
conf (n) = {LN (n) · conf (p) | p ∈ paths(n)}, the set of all
dynamic procedure instances represented by n.

DEFINITION 2. A DAG D = (r,N,E,LN ,LE) is consistent,
denoted IsConsistent(D), if Disj (c1, c2) holds for each n ∈ N
and distinct configurations c1, c2 ∈ conf (n).

In a consistent DAG, each node can only represent a set of
mutually-disjoint configurations. Clearly, when a DAG D is a tree,
i.e., paths(n) is a singleton set for each n, then D is consistent. It
is easy to argue, given the particular resolution of line 20 in Fig. 10,
that IsConsistent(CreateDAG()) is a loop invariant of Fig. 8 at
line 18.

Fix a particular execution of Gen_VC for the rest of the section.
Let gs be the set of global variables of the input program. Let
D = (r,N,E,LN ,LE) be the result of calling CreateDAG()
after Gen_VC finishes. For any node n ∈ N , let Proc(n) be the
procedure represented by n. Let Dn be the sub-DAG of D rooted at
node n. Let Nn ⊆ N and En ⊆ E be the set of nodes and edges of
Dn, respectively. Let F be a function from N to the set of formulas
such that F (n) is the following:

Control [n] ∧ pVC (n)∧
m∈Nn\{n}

(Control [m]⇒ pVC (m))∧
e∈En

(Control [e]⇒ Control [Dest [e]]

∧ In[e] = In[Dest [e]]
∧ Out [e] = Out [Dest [e]])

where each of Control ,Dest , In,Out are the corresponding global
variables of Fig. 8 at the end of Gen_VC ’s execution. Further,
pVC (n) is the procedural VC created by Gen_pVC (by a sequence
of calls to Push) on the unique invocation that returned node n. Let
C(ϕ) be the set of symbolic constants of the formula ϕ. It is easy to
establish the following results:

• The formula generated by Gen_VC is syntactically equivalent
to F (r).

• For any two distinct nodes n1, n2 ∈ N , C(pVC (n1)) ∩
C(pVC (n2)) = ∅. Further, ifNn1∩Nn2 = ∅, then C(F (n1))∩
C(F (n2)) = ∅.

• For any edge e = (n1, n2) ∈ E, (F (n1) ∧ Control [n2]) ⇒
F (n2).

The following theorem immediately establishes the correctness
of Gen_VC . The rest of this section is devoted to proving this
theorem.

THEOREM 1. The formula F (r) is satisfiable if and only if Proc(r)
has a terminating execution.

We first mention some results on pVC generation (without
proof). For n ∈ N , let {e1, e2, · · · , ek} be the set of out-going
edges of n such that the edge ei represents the ith procedure call
in Proc(n) (for some arbitrary numbering of procedure calls in



Proc(n)). Let Proc′(n) be a procedure that is the same as Proc(n)
except that the ith procedure call is replaced with havoc gs followed
by assume Control [ei]. (Thus, Proc′(n) is call-free.) The havoc
over-approximates the effect of the procedure call, and the control
constant Control [ei] tracks if the ith call is taken (without actually
going into the callee).

Let Value be a type referring to the set of values over which
program expressions are evaluated. Let state refer to a map of type
[Global ]Value, denoting a valuation of the global variables. Let
model refer to a map of type [Const ]Value , denoting an assignment
to symbolic constants. Given a model M and a map m of type
[Global ]Const , letM(m) be the state obtained as the composition
M◦m.

For convenience, we say that an execution τ of Proc′(n)
takes edge e if e is an out-going edge of n and τ goes through
assume Control [e]. Further, in this case, the actual-in (respectively,
actual-out) state of τ at e is the state before (respectively, after) the
corresponding havoc .

The following results hold of pVC generation:

• If pVC (n) is satisfiable, say with a modelM, then there exists
an execution τ of Proc′(n) starting in stateM(In[n]) and end-
ing in stateM(Out [n]). If τ takes edge e thenM(Control [e])
is true and statesM(In[e]) andM(Out [e])) are the actual-in
and actual-out states, respectively, of τ at e.

• If there is an execution τ of Proc′(n) then pVC (n) is satisfiable
with a model M such that M(In[n]) is the input state of τ ,
M(Out [n]) is the output state of τ ,M(Control [e]) is true if
τ takes edge e, andM(In[e]) andM(Out [e]) are the actual-in
and actual-out states, respectively, of τ at e.

We now prove (a stronger version of) one side of Thm. 1: given
a satisfying modelM of F (n), there is an execution of Proc(n)
that goes from stateM(In[n]) toM(Out [n]).

We proceed by induction on the size of Nn (the number of
descendant nodes of n). If the size of this set is 1, then this claim
trivially follows from the results on pVC generation. Otherwise,
because M satisfies pVC (n), there must be an execution τn of
Proc′(n) that goes from stateM(In[n]) toM(Out [n]). Further,
if e is an out-going edge of n and τn takes e then actual-in and
actual-out states of τ at e areM(In[e]) andM(Out [e]). We will
extend τn to a full execution of Proc(n).

If edge e = (n,m) is taken by τn then M(Control [e]) is
true, hence M(Control [m]) must be true as well. Because M
satisfies (F (n)∧Control [m]), it must satisfy F (m). By induction
hypothesis (on m), we get an execution τm of Proc(m) that
goes from state M(In[m] to M(Out [m]). This execution can
be stitched inside τn to replace the skipped call at e because
M(In[e]) = M(In[m]) and M(Out [e]) = M(Out [m]). We
can repeat this for all edges taken by τn to obtain a full execution of
Proc(n). This completes this side of the proof. Note that we did not
require D to be consistent; this side of the proof holds for any DAG.

We now prove (a stronger version of) the second side of Thm. 1:
given an execution τ of Proc(n) that goes from state vin to vout,
there is a satisfying modelM of F (n) such that vin =M(In[n])
and vout =M(Out [n]).

The proof is by induction on the size of Nn. Again, if the size of
this set is 1 then the result follows from pVC generation. Otherwise,
let τn be a sub-execution of τ that corresponds to an execution
Proc′(n). (τn can be obtained simply by taking out the callee traces
of Proc(n) from τ .) For an edge e taken by τn, let vein and veout
be the actual-in and actual-out states, respectively, of τn on e. By
properties of pVC generation, there is a model Mn of pVC (n)
such that vin = Mn(In[n]) and vout = Mn(Out [n]). Further,
vein =Mn(In[e]) and veout =Mn(Out [e]).

Let Tn (resp., Un) be the set of out-going edges of n that are
taken (resp., not taken) by τ . For e = (n,m) ∈ Tn, let τe be
the sub-execution of τ for Proc(m). τe must go from state vein to
state veout. By induction hypothesis (on m), there is a modelMe

of F (m) such thatMe(In[m]) = vein andMe(In[m]) = veout. For
two distinct edges a, b ∈ Tn, we know that LE(a) and LE(b) must
be non-disjoint because they are taken on the same execution. Thus,
it must be that NDest[a] ∩NDest[b] = ∅ because otherwise Dest [a]
and Dest [b] will have a common descendant, violating consistency
of D (extensions of non-disjoint configurations are non-disjoint).
Therefore, C(F (Dest [a])) ∩ C(F (Dest [b])) = ∅. Define M =
Mn ∪e∈Tn (Me ∪ (Control [e] 7→ true)) ∪e∈Qn (Control [e] 7→
false). This union is well-defined because the models Me for
e ∈ Tn are over disjoint sets of constants. It is easy to show thatM
satisfies F (n), completing the proof.

3.3 Checking DAG Consistency
Defn. 2 does not give an efficient way of deciding if a DAG is
consistent because: (1) deciding disjointness of two configurations
involves transitive reachability queries, and (2) a DAG may represent
an exponential number of configurations. Lem. 1 helps address the
first problem. Alg. 1 exploits Lem. 1 to address the second problem.

For any b ∈ Label , let Blk(b) = Blk(be) = b. For two blocks
γ1, γ2 ∈ Γ, let Disj blk (γ1, γ2) hold if and only if there is no path
in the control flow graph of the procedure from Blk(γ1) to Blk(γ2)
or vice versa.

LEMMA 1. Let c1 = uγ1w and c2 = vγ2w be two distinct
configurations such that γ1 6= γ2. Then Disj (c1, c2) holds if
Disj blk (γ1, γ2) holds.

Proof [sketch]. First we show that for any configuration c, it is
never the case that c ;+ c, by induction on the length of c. For
configurations of length 1, this simply reduces to intraprocedural
reachability and we know that control-flow graphs of procedures are
acyclic. For the inductive case, let c = γc′. There are two options
when we start following the transition relation from c. The first
option is that the top element γ is popped off (after one or more
steps) to reach c′. Applying the induction hypothesis to c′, once we
are at c′ we can never get back to c′, which implies we cannot get
to c. The second option is that the top element is not popped. Then
again the problem reduces to intraprocedural reachability.

Next, for c1 = uγ1w to get to c2 = vγ2w we know that it
must first pop off the unmatched prefix and get to γ1w. Because
Disj blk (γ1, γ2) holds, we know that γ1w cannot get to γ2w unless
γ1 is popped off. If γ1 is popped off, we get to w but then, if we
take any step, we can never get back to w. Thus, we cannot get to
c2.2

Lem. 1 implies that computation of Disj blk (., .) is enough to de-
cide disjointness of configurations. Disj blk (., .) is easily computed
using a topological sort of the (acyclic) control-flow graph of each
procedure in isolation. This computation requires time quadratic in
size of the control-flow graph of a procedure and linear in the num-
ber of procedures. After this preprocessing, deciding disjointness of
two configurations simply requires identifying the longest common
suffix and consulting the Disj blk (., .) table once. As an example,
consider the DAG shown in Fig. 11. A path from the root to a node
in the graph represents a configuration. Let us pick two configu-
rations c1 = γ10γ8γ2 and c2 = γ11γ9γ2 terminating in node n8.
By Lem. 1, Disj (c1, c2) holds if Disj blk (γ8, γ9) holds. This is the
same as following the paths that generated c1 and c2 starting from
the root, finding the first node where they diverge (which is n3) and
then deciding disjointness of the labels of the next edges on the
paths.

For verifying consistency of the entire DAG, a strawman al-
gorithm could repeat the above process for all configurations rep-
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Figure 11. A DAG

Algorithm 1 Deciding consistency
Input: DAG D = (r,N,E,LN ,LE)
Output: true if and only if D is consistent

1: for all n ∈ N do
2: for all n1, n2 ∈ Succ(n), n1 6= n2 do
3: if Desc(n1) ∩Desc(n2) = ∅ then
4: continue
5: end if
6: if ¬Disj (LE(n, n1),LE(n, n2)) then
7: return false
8: end if
9: end for

10: end for
11: return true

resented by each node, leading to exponential complexity. Alg. 1
avoids this blowup by making the observation that that a local dis-
jointness check Disj blk (., .) for two edges (n, x) and (n, y) coming
out of a node n contributes to the disjointness checking for every
node m that is reachable from both x and y. For example, it suffices
to check only Disj blk (γ1, γ2) and Disj blk (γ8, γ9) to conclude that
the DAG in Fig. 11 is consistent. Alg. 1 captures this intuition. In
this algorithm, Succ(n) is the set of all successor nodes of n and
Desc(n) is the set of all descendant nodes of n. The algorithm
iterates over each pair of edges from some node to two distinct suc-
cessor nodes. A Disj blk (., .) check is performed if the two successor
nodes have a common descendant. It is easy to see that Alg. 1 has
quadratic complexity in the size of the input DAG, once the table for
Disj blk (., .) has been pre-computed.

THEOREM 2. If Alg. 1 returns true then IsConsistent(D) holds.

We note that both Alg. 1 and Lem. 1 are, in fact, precise. That
is: (1) Alg. 1 returns true only if IsConsistent(D) holds, and (2)
Disj (uγ1c, vγ2c) holds only if Disj blk (Blk(γ1),Blk(γ2)) holds.
The reason is that disjointness is only defined over the control
structure of the program (and also the fact that in our programming
language procedure executions must return, i.e., for any γ ∈ Γ,
γc ;∗ c). The control structure is only an abstraction of the
program. Stronger version of disjointness between configurations are
possible; it is only required that no program execution goes through
both configurations. We leave the benefit of stronger definitions,
which can classify more configurations as disjoint, but possibly at a
larger analysis cost, for future work.

3.4 Merging Strategies
It is possible that there are many compatible nodes that can be
added to the DAG so that it remains consistent. In this section, we
discuss strategies for picking a node among various correct choices.
Let D be a DAG, n a node of D and γ a label representing an
open call out of node n. Let M be the set of all nodes m such
that IsConsistent(D + (n, γ,m)) holds. In each strategy, if M is
empty, we return None . Otherwise, we have the following options.

FIRST: List M in chronological order, i.e., in the order in which
they were added to D, and return its first element.

RANDOM: With low probability, return None (even if M is
non-empty), otherwise return a randomly picked element of M .

RANDOMPICK: Return a randomly picked element of M .
MAXC: Return the element of M that has the largest number

of descendants in D. (The intuition is that the bigger the sub-dag
rooted at a node, the more the sharing when merged with that node.)

OPT: All of the previous strategies are greedy; they base their
decision solely on the current DAG. In the OPT strategy, we first
precompute a DAG Do that represents the best possible compression
of the fully-inlined tree of the input program. OPT maintains the
invariant that D is always embedded inside Do. When asked for a
node to merge against, OPT looks for an edge (n,m) in Do with
label γ. If it exists, then it returnsm, otherwise it returns None . This
strategy guarantees that as D grows, it remains embedded inside Do

(thus, D can never become larger than Do).
The DAG Do is computed as follows. In the fully inlined tree,

for each procedure, we consider the set of all dynamic instances
of that procedure and construct their induced conflict graph (see
Section 2). Next, we color this graph with minimum colors possible,
and merge all nodes with the same color. In our experiments, when
all calls needed to be inlined, OPT performs the best, followed by
FIRST. However, OPT is too expensive because the computation of
Do requires reasoning over all dynamic instances. Further, when
only a part of the program needs to be inlined, OPT need not be
optimal.

Our default choice for a merging strategy is FIRST. It is very fast
in practice (with overhead less than 0.4%) yet provides compression
close to OPT in the limit.

4. Evaluation
We evaluate DAG inlining on several real-world verification in-
stances obtained from the Static Driver Verifier (SDV) [16]. SDV
is a commercial tool offered by Microsoft to third-party driver de-
velopers. SDV comes packaged with several rules (or properties)
that a driver must satisfy. A developer can ask SDV to verify if
the driver violates any of these rules. Internally, SDV compiles the
driver and instruments the rule to end up with a verification instance
(a program with assertions) and feeds it to a verifier. SDV currently
uses Corral as the verification engine [12].

Corral takes a bound R as input and unrolls loops up to R
iterations and unfolds recursion up to R recursive calls to produce
a hierarchical program. (This expansion is not done up-front, but
lazily.) Next, it feeds the hierarchical program to an algorithm called
stratified inlining (SI) to decide reachability. SI inlines procedures
lazily; it can be thought of a particular instance of Fig. 8 that
intelligently implements “pick” to decide which procedure to inline
next. However, it still unfolds to a tree. SI can stop early when
it determines that enough of the program has been inlined to
conclude that it is safe. We implemented DAG inlining (DI) using
the framework of SI, with merging strategy FIRST used by default.

Our benchmark suite consists of 105 drivers and 180 rules. The
size of these drivers range from 2KLOC to 40KLOC, and the total
lines of code across all drivers exceeds 800KLOC. The number of
procedures per driver ranges from 106 to 531. Of all verification



Algorithm #TO #Bugs #Inlined Time (1000 s)
(avg.) Bug No-bug

SI-Inv 418 51 885.2 9.1 50.7
DI-Inv 354 64 271.6 5.4 25.2
SI+Inv 358 72 759.3 13.6 82.6
DI+Inv 280 83 272.4 9.3 44.3

Figure 12. Results, in aggregate, for the SDV benchmarks. #TO
refers to timeouts (2000 seconds) and spaceouts (8 GB), #Bugs is
the number of bugs reported (at most one per instance), #Inlined
is the number of procedures inlined before reaching a verdict, and
Time is reported in thousands of seconds, divided into instances that
reported a bug and ones that finished without reporting a bug.
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Figure 13. Scatter plot of SI+Inv vs. DI+Inv

instances generated by SDV, we only took ones on which either
SI or DI took at least 60 seconds to finish. There were 619 such
instances.

Corral uses invariant generation techniques as pre-pass [14].
Any inferred invariant is injected into the program as an assume
statement. Invariants can be a powerful mechanism to prune search.
In the limit, when the invariants are strong enough to prove the
assertion correct, the search can conclude trivially. We compare SI
and DI on the 619 SDV verification instances, both when they had
invariants inserted and when they did not have them inserted. We
use the terms “SI+Inv” and “SI-Inv” to refer to running SI on files
with invariants inserted and without invariants inserted, respectively.
Similarly for “DI+Inv” and “DI-Inv”.

Fig. 12 presents the aggregate results over these benchmarks.
For example, all instances on which SI-Inv returned a bug took a
total of 9100 seconds. There were 51 such instances (#Bugs). SI-Inv
timed out on 418 instances (#TO), and inlined 885.2 procedures per
instance (on average) when it finished. Because we had focussed
only on the hard verification instances, the large proportion of
timeouts is not surprising. Inlining 885.2 procedures on average
is already a small number compared to full tree inlining that can
easily inline a million procedure instances (see Fig. 4). The main
reason for reduction is the property-guided pruning of SI. Further,
previous work shows that Corral with SI already outperforms other
verifiers (e.g., SLAM [3]) on these benchmarks [12]. This justifies
why these benchmarks are good for evaluating further improvements
by using DAG inlining.

Fig. 12 shows that DI results in a reduction in the number of
timeouts, finds more bugs, inlines fewer procedures, and improves
running time for both buggy and non-buggy instances. In particular,
in the absence of invariant injection (SI-Inv vs. DI-Inv), there is
a 15.3% reduction in timeouts, 25.5% increase in the number of
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Figure 14. Scatter plot of SI-Inv vs. DI-Inv
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Figure 15. Cactus plot of SI+Inv vs. DI+Inv

bugs found, 3.2X reduction in number of procedures inlined and
1.95X reduction in the running time. In the presence of invariants,
the comparison is not much different: there is 21.8% reduction
in timeouts, 15.2% increase in the number of bugs found, 2.78X
reduction in the number of procedures inlined and 1.8X reduction
in time.

It may be confusing to see that in the presence of invariants,
the running time (for both SI and DI) is higher. However, note that
we are reporting the running time for only those instances that did
not timeout or spaceout. More instances were solved when using
invariants, hence the higher cumulative running time. We also note
that whenever any of the two techniques returned an answer for a
verification instance, it was the same answer, giving us confidence
that our implementation does not have bugs.

We also present two other visualizations of the comparisons.
Fig. 13 and Fig. 14 show a scatter plot of the running time of SI
and DI with and without the use of invariants, respectively. While
DI inlines fewer procedures than SI, this did not always result in a
speedup.1 Nonetheless, the overall trend is positive. In fact, DI+Inv
was an order of magnitude faster than SI+Inv on 5% of the instances
on which they both finished. DI+Inv was 5X faster on 14% of the
instances.

1 Ultimately, every technique (including ones used inside SMT solvers, not
just DAG inlining) is a heuristic because of the intractable nature of the
problem (Section 5), making it difficult to guarantee speedups across the
board.
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Figure 16. Cactus plot of SI-Inv vs. DI-Inv

Tree OPT FIRST MAXC RANDOM RANDOMPICK
312231 1582 1673 1629 5096 1760
348329 16223 16261 16263 18539 16256
486713 9379 9751 9960 15406 10376
499799 4854 6400 6920 T/O 10191
553790 2793 2846 2848 8555 2860
621285 17182 22589 22545 T/O 24921
964394 1796 1890 1878 5258 2231

1125448 21459 22068 21997 42743 22733
1177613 17419 17576 17557 30873 18463
1384747 8315 8527 8484 T/O 10268
1390941 4887 4999 5109 13327 5306
2645020 8623 8798 9017 18246 9270
3211353 T/O 13782 13837 18976 13847

Dev: – 8% 9% 129% 21%

Figure 17. A comparison of the number of procedures inlined by
different merging strategies when all dynamic instances must be
inlined. T/O implies that the fully-inlined DAG could not be created
within 900 seconds.

Fig. 15 and Fig. 16 show a cactus plot of SI against DI, with and
without the use of invariants, respectively. The X-axis is the number
of instances solved and Y-axis is the time taken. Again, the trends
with and without invariants are similar, except that more instances
are solved by SI and DI when using invariants. The figures show
that DI solves more instances than SI irrespective of the timeout
value chosen.

Merging strategies In the context of lazy inlining that may not
need to inline all procedures, it is hard to design an optimal merging
technique because the tree that needs to be inlined is not known up
front.

In order to evaluate the performance of a merging strategy, we
keep inlining until all dynamic instances get inlined. Then we
compared the number of inlined procedures against our optimal
strategy and measured the difference between them.

Fig. 17 shows the number of procedures inlined by different
merging strategies on a small subset of the SDV benchmarks. The
first column (Tree) gives the size of fully inlined tree and the rest
of the columns give the DAG sizes under different strategies. For
both RANDOM and RANDOMPICK, we did five runs and took their
average.

The last row of Fig. 17 shows the deviation of various merging
strategies against OPT. As we can see, FIRST performs the best
with just 8% deviation from the optimal, on average. RANDOM
performs the worst, indicating that it is best to take the opportunity
for merging when there is one.

We also measured the total time spent inside the routine that
looks for a candidate to merge each time a procedure needs to be

inlined. (This time is included in the time taken by DI.) It turns out
to be insignificant; it is 0.4% of the total time taken by DI. This
implies that one can invest in more aggressive merging techniques
without adding an overhead. For instance, we can decide disjointness
by reasoning over data values as well, but we leave this for future
work.

5. Discussion
Asymptotic complexity For a programming language whose oper-
ational semantics can be encoded in SMT, deciding reachability in
single-procedure hierarchical programs is in NP, but NEXPTIME-
hard for general hierarchical programs [11]. This jump in complexity
shows up in practical algorithms, namely ones implemented in BMC
tools. These algorithms suffer from a doubly-exponential complex-
ity: one exponent in generating the SMT formula (after inlining)
and another that is incurred inside the SMT solver for finding a
satisfying model.

The proof of NEXPTIME-hardness relies crucially on the pro-
gram generating exponentially long paths. We know that the com-
plexity is lower (in NP) when the program only generates poly-
nomially sized paths. The program in Fig. 2 is one example that
demonstrates the lower complexity. However, we are unaware of
any efficient VC generation that exploits shorter path sizes.

DAG inlining is our first step towards reducing the exponen-
tial explosion in VC generation. DAG inlining by itself does not
fundamentally reduce asymptotic complexity because it relies on
disjointness, which a program may not have. However, in practice,
it does provide good compression, leading to performance improve-
ments. As future work, we aim to study the general problem of VC
generation for hierarchical programs with at most polynomially long
paths.

Procedure inlining Procedure inlining is a well-understood con-
cept that comes from compiler optimizations. Many program anal-
ysis tools borrow this technology and performing inlining at the
source level. For example, SMACK [17] uses procedure inlining
that is provided by its LLVM frontend. DAG inlining, however, is
hard to perform at the source level. Our intuition behind DAG in-
lining was enabled by performing inlining at the VC level (i.e., at a
logical formula level).

Inlining at the VC level has its own cost. For instance, CBMC
performs inlining at the C level and then uses a pointer analysis to
compile away pointers. The pointer analysis can be very precise
after procedures have been inlined. In fact, many pointer accesses
can get resolved exactly because procedures are analyzed with
their complete calling context. If one were to use DAG inlining
inside CBMC, one would need to run pointer analysis without
inlining. Thus, one would have to offset the benefit of DAG inlining
against the precision lost inside the pointer analysis. We leave this
investigation as future work.

6. Related Work
Merging paths in symbolic execution The idea of merging states
symbolically has been used for improving the efficiency of path-
based symbolic execution [10, 19]. The main idea is that if two
symbolic paths (i.e., executions where some data values are repre-
sented symbolically) are similar enough, then their symbolic states
are merged together. Then exploration discards the original paths
and continues with the new merged path. This can improve efficiency
because continuing the merged path does the work of continuing
the multiple constituent paths. However, this is very different from
our use of merging. For instance, we merge on the call tree, not on
program executions. Further, our merging is for disjoint executions,
whereas in symbolic execution, similar (perhaps overlapping) paths
are what get merged.



Lazy inlining The problem of lazily inlining procedures, where
the full unrolling of the call graph as a tree is avoided, has been stud-
ied in different forms. Stratified inlining [14], structural abstraction
[1], inertial refinement [18] and scope bounding [9, 15] all explore
lazy inlining. However, in each case, the unfolded call graph is still
a tree and there is no merging. Our algorithm integrates nicely with
lazy inlining, as shown in Fig. 8.

Procedure summarization A popular way of avoiding inlining
of procedures is to summarize them and reuse the summaries
in different calling contexts. Procedure summarization can help
avoid the cost of inlining. While summarization is an effective
optimization (and should be used whenever applicable), it does not
fundamentally change the complexity of deciding reachability in
hierarchical programs over arbitrary (decidable) theories.

MOPED [8] and BEBOP [2] are summarization-based tools
for analyzing (recursive) Boolean programs. They offer much
better worst-case complexity than full inlining of procedures (even
up to a bound). However, they are fundamentally restricted to
programs with variables over a finite domain. Their summarization
techniques are not guaranteed to terminate when, say, the program
operates over mathematical integers. Thus, such tools cannot be
applied directly while dealing with hierarchical programs over
SMT theories like linear arithmetic, arrays, etc. However, they are
used indirectly inside software model checking tools like SLAM
[3] where programs are abstracted to a Boolean program and
then analyzed using summarization. Comparisons to SLAM-like
techniques are orthogonal to the goals of this paper, and have been
discussed elsewhere [12, 14].

7. Conclusions
We have presented a method called DAG inlining as an alternative
to the standard practice of doing tree-based procedure inlining for
deciding reachability in hierarchical programs. DAG inlining is a
way of compressing the VC of a hierarchical program. It relies
on the notion of disjoint procedures that cannot be taken on the
same program execution. We empirically evaluated that there is
enough opportunity to compress in real world programs and it
leads to significant performance improvements. We also evaluated
different merging strategies that can result in different amounts of
compressions.
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