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Abstract

Network coding [1] is a technique to maximize communicationrates within
a network, which may be used to devise communication protocols for simultane-
ous multi-party transmission of information. Linear network codes are examples
of such protocols in which the local computations performedat the nodes in the
network are limited to linear transformations of their input data, represented as el-
ements of a ring such as the integers modulo2. We demonstrate that the quantum
linear network coding protocols of Kobayashiet al. [17, 18], which coherently
simulate classical linear network coding protocols, correspond in a natural way to
measurement-based quantum computations with graph statesover qudits [21, 4, 8]
having a structure directly related to the network.

1 Introduction

Network coding[1] is a technique to maximize the rate at which a set ofsource nodes
can simultaneously transmit a set of independent messages to certaintarget nodes
through a fixed network. For this purpose, it is sufficient to give each communica-
tion link enough bandwidth to accommodate multiple messages to be transmitted at
once: however, less bandwidth may be required at each link ifone allows nodes to
distribute information about the messages across the network. A classic example is
the two-pair problemon the “butterfly network” (illustrated in Figure 1): ratherthan
halve the bandwidth between two messages at an apparent bottleneck in the network,
the internal nodes may perform simple local computations onthe messages, to allow
the input data to be reconstructed at the targets.Linear network codingis the special
case in which the protocol only requires each node to computea linear transformation
of its inputs to achieve this goal.

Quantum network codingconsiders how to perform similar tasks if the communica-
tion links are noiseless quantum channels, and the information to transmit through the
network is a quantum state. It is immediately apparent that some problems which can
be sensibly posed for “classical” network coding are impossible in general for quantum
network coding. For instance, while a classical network code allows for the each of the
source nodes to each send a copy of their inputs tobothtargets in the butterfly network
(see page 4), this is clearly not possible for quantum statesdue to the no-cloning the-
orem [24]. Other problems which do not require multiple copies of the input states to
be re-created at the output (such as the two-pairs problem above) are still potentially
unsolvable with fixed-capacity quantum channels alone, even when the corresponding
classical problem is solvable [15, 19]. However, some of these problems become feasi-
ble for quantum states when the network nodes share prior entanglement [14], or if the
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Figure 1: Thebutterfly network, with source
nodesS1 andS2 and target nodesT1 andT2.
The two-pair problem on this network is forS1

to communicate their input to the targetT2, and
simultaneously forS2 to communicate their in-
put to the targetT1, assuming that each edge can
carry at most one message (representede.g.by a
single bit,0 or 1). The classic solution is forS1,
S2, andV2 to duplicate their inputs, and forV1,
T1, andT2 to compute the parity of their inputs,
in which case(t1, t2) = (s2, s1).
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capacities of the communication links scale as the logarithm of the number of target
nodes [22].

Because classical information is easier to faithfully transmit and transform than
quantum information, it is common to consider quantum protocols which also allow
classical communication, and where fewer restrictions areimposed on the classical
than the quantum communication (see Ref. [20]). In a settingwhereno restrictions
are imposed on classical communication, Kobayashiet al. [17] describe a quantum
protocol for thek-pairs problem: the problem in which each ofk source nodes wish
to communicate their input message to one ofk distinct target nodes. Their protocol is
in effect a coherent simulation of a classical linear network code. More generally, for
any classical linear network code which performs some injective linear transformation
t = Ms of the input data, Ref. [17] yields a corresponding quantum procedure to
coherently simulate that network over for arbitrary superpositions of input data. We
call such a protocol a (classically assisted)quantum linear network code. For thek-
pairs problem, the protocols of Ref. [17] were subsequentlyextended in two different
ways by Ref. [18]: to restrict the classical communication to the same network as the
quantum communication (albeit with multiple rounds of communication, and sending
a single message backwards as well as forwards along each communication link) and
to accommodate non-linear protocols as well.

In this article we show that classically assisted quantum linear network codes in
the style of Ref. [18] are in effect an instance ofone-way measurement based quantum
computation(MBQC) [21, 4, 8, 9]: a model of quantum computation in which one may
entangle an arbitrary input state|ψ〉 with a graph state, which is then subjected to a
sequence of measurements, leaving a final residual state which contains a transformed
stateU |ψ〉 for some unitary transformation1 U . Furthermore, the graph state used as a
resource is closely related structurally to the network used in the coding protocol. This
demonstrates a link betweenMBQC and linear network coding, construed as distributed
models of computation, and suggests novel ways of interpreting measurement-based
procedures. At the same time, this suggestsMBQC as a unifying framework in which
to consider multi-party quantum networking protocols, including cryptographic appli-
cations formulated in the one-way model [3, 16] as well as standard security proofs of
BB84 [23].

1In general, the transformation which is performed on an input state|ψ〉 is not necessarily a unitary trans-
formation, but rather some completely positive trace preserving mapΦ acting onρ0 = |ψ〉〈ψ|. However,
standard treatments of the one-way model describe how measurements on graph states may be used to simu-
late the transformations performed by unitary circuits, which by construction would transform the input state
|ψ〉unitarily.
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Figure 2: An illustration of the trans-
formation of messages performed by
a single network node in a linear
coding protocol.
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2 Preliminaries

In this section, we present introductory remarks on classical linear network coding, and
summarize the development of Refs. [17, 18]. We assume familiarity with standard
models of quantum computation on qubits, as well as measurement-based quantum
computation (seee.g.Refs. [21, 4, 8, 9] for introductory references). We introduce the
notation and the definitions for the operators used over qudits of dimensiond below.

2.1 Classical network coding

We model a communications network by a directed graph of communications links,
each of which can be used to transmit a single message from some message setM . In
this article we suppose thatM consists of a cyclic ring2 Zd = Z/dZ. The messages
are sent between between co-operative agents (representedby nodes of the digraph)
who may perform some non-trivial transformation of the datathey receive from ingo-
ing links. In the context of linear network codes, the transformations performed by
each node is a linear transformation, as represented in Figure 2. The result of this
computation is then sent as output messages to other nodes. We restrict ourselves to di-
rected acyclic networks, and assume that each node waits forall inputs to arrive before
computing its outputs.

The canonical network coding problems involve distributing information from a
collection of sourcenodesS = {S1, S2, . . .} to a collection oftarget nodesT =
{T1, T2, . . .}, such as themulticast problem(in which each sourceSh must transmit
their data to every one of the targetsTj), and thek-pairs problem(in which each source
Sh tries to send their message to a single targetTπ(h), for some permutationπ ∈ Sk

of the indices). The source nodesSj each have some piece of information, usually
represented as a single elementsj ∈ Zd or vectorsj ∈ Z

nj

d . To put the source and
target nodes on an equal footing to the other network nodes, we suppose that the inputs
sj of the sourcesSj are messages received from elsewhere (e.g.storage devices owned
by the source nodes), and the outputstj to be computed by the targetsTj are also
transmitted to somewhere, as depicted in Figure 1. A solution via linear network codes
simply assigns linear transformations to each node, in sucha way that the composite
transformation performs the correct redistribution of input messages.

We regard linear network coding as a distributed model of computation, in which
linear transformations are decomposed into block matrices, where each non-trivial
block is represented by a single node. Forany linear functionf — of which thek-
pairs and multicast problems are special cases — we considerwhich transformations
the nodes may perform (if any) to computef . Figure 3 presents the multicast problem
on the butterfly network in this form, to which one solution isthe following assignment

2In the setting where messages represent elements of a finite fieldGF(pr) (seee.g.Ref. [13]), we may
replace each communication link withr parallel communications links, representing elements ofGF(pr)
asr-dimensional vectors overGF(p) ∼= Zp. In the case of linear network codes, this leads to no loss of
generality, as everyGF(pr)-linear transformation of messages is also aGF(p)-linear transformation.
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whereS1, S2 : Zd → Z
2

d

V1 : Z2

d → Zd

V2 : Zd → Z
2

d

T1, T2 : Z2

d → Z
2

d

Figure 3: The multicast problem on the butterfly network, formulated as a linear transformation
over the a ringZd. A solution by linear network coding decomposes this transformation as a
product of block matrices according to the network structure. A typical solution to this problem
is presented in Eqn. (1).

of matrices to each node in the network:

S1 = S2 = V2 =

[

1
1

]

, V1 =
[

1 1
]

, T1=

[

1 0
−1 1

]

, T2 =

[

1 −1
0 1

]

. (1)

2.2 Classically assisted quantum network coding

We now outline the constructions of Ref. [17], and also of Ref. [18] in the special case
of linear coding protocols over the ringZd of integers modulod, for protocols using
message qudits of dimensiond.

Consider a nodeV performing some coding operationy = V x for x ∈ Zℓ
d and

y ∈ Zm
d in a classical coding network. We may simulate this node by initializing an

output registery = 0 ∈ Zm
d , performing a bijective mapping(x,y) 7→ (x, y + V x)

in the larger spaceZℓ+m
d , and then discarding the inputx. The bijective mapping can

be performed by elementary row transformations onx, which in the quantum setting
may be performed by controlled-X operations,

ΛXj,k =

d−1
∑

c=0

|c〉〈c|j ⊗X c
k , (2)

whereX |q〉= |q + 1 mod d〉 is an analogue of the unitary Pauli operatorσx on qubits.
Consider a generic nodeV which accepts a collection of input quditsa1, . . . , aℓ as
input and produces output quditsb1, . . . , bm, coherently simulating the transformation
|x〉a1···aℓ

7−→ |Tx〉b1···bm . In the construction of Ref. [17] for quantum linear codes,
V simulates this transformation by preparing the quditsb1, . . . , bk in the |0〉 state, and
performing the transformations

ΛXVj,k

(

|xk〉⊗ |0〉
)

= |xk〉⊗ |Vj,kxk〉 (3)

on the quditsak andbj, for every index1 6 j 6 ℓ and1 6 k 6 m in any order. For
standard basis states, the result is to transform|x〉|0〉 7→ |x〉|V x〉. This characterizes a

4



linear transformation

ŨV =





m
∏

j=1

ℓ
∏

k=1

ΛX
Vj,k

ak,bj





(

1a ⊗ |0〉b
)

, (4)

which is a unitary embedding for any transformationV . (An example of such a circuit
is illustrated in Figure 4.) If the quditsa1, . . . , aℓ where originally in standard basis
states, we could simply discard them; but if they are initially not in standard basis
states, they will become entangled withb1, . . . , bm. To decouple them, we attempt to
project each of the quditsaj to the|+〉 state by measurement,

|+〉 = 1√
d

(

|0〉+ |1〉+ · · ·+ |d− 1〉
)

. (5)

Successfully doing so on a generic input state|ψ〉 =
∑

x ux |x〉 would lead to the
sequence of transformations

|ψ〉 7−→
∑

x

ux |x〉a |0〉b 7−→
∑

x

ux |x〉a |V x〉b

7−→ 1√
dℓ

(

ℓ
⊗

k=1

|+〉ak

)

⊗
∑

x

ux |V x〉b . (6)

This mapping is of course non-unitary: projection onto|+〉must be performed as part
of a measurement onto some basis. Ref. [17] considers a measurement of the quditsaj
in the Fourier basis,

|ωr〉 =
1
√
d

d−1
∑

x=0

e2πixr/d |x〉 = F |r〉 , whereF =
1
√
d

d−1
∑

x,r=0

e2πikx/d |x〉〈r| . (7)

The operatorF is thequantum Fourier transform overZd. The state|+〉 can then be
re-characterized as|ω0〉. If measurement in the Fourier basis on each quditaj yields
the result

∣

∣ωrj

〉

for rj 6= 0 instead of|+〉, the post-measurement state is

(

ℓ
⊗

k=1

|ωr〉ak

)

⊗
∑

x

uxe
−2πi(r·x)/d |V x〉b (8)

up to normalization. IfV is injective, the relative phasee−2πi(r·x)/d can be undone by
a suitable application ofZ operations on the quditsb1, . . . , bm, whereZ is the unitary
generalization ofσz :

Z =

d−1
∑

q=0

e2πiq/d |q〉〈q| . (9)

If V is not injective, then only certain vectorsr of measurement outcomes can be imme-
diately corrected, resulting in a non-unitary CP map. However, regardless of whether
some nodes in coding network perform non-invertible operations, the relative phases
which accumulate on the entire state are linear functions. Then if the transformation
performed by the whole network is injective, the phases which have accumulated due to
the measurements can be undone if the target nodes have sufficient information about
the measurement outcomes.

5



The protocol of Ref. [17] solves thek-pairs problem: thus the transformation it
performs is indeed injective. Each node simply transmits their measurement outcomes
to each target node, which performs a suitable combination of Z operations to correct
the relative phases. Ref. [18] presents an alternative protocol in which the measure-
ments are deferred until after all quantum messages have been sent, and in which the
internal nodes of the network do the majority of the phase corrections, as follows. Con-
sider a node which attempts to coherently simulate a transformationL : Zℓ

d → Zm
d in

the middle of a coding network which attempts to coherently simulate a transforma-
tion M : ZS

d → ZT
d on an input state|ψ〉 = ∑

x ux |x〉. Suppose that we perform
the the simulation procedure above, but omitting the Fourier basis measurements. For
some linear mapsH andK, the state after the final quantum messages is in general an
entangled state of the form3

|Ψ〉 =
∑

x

ux |x〉S ⊗ |Mx〉T ⊗
(

|Kx〉a1,...,aℓ
⊗ |LKx〉b1,...,bm

)

⊗ |Hx〉rest, (10)

where the factors in parentheses are the input and output qudits to the nodeL. If the
quditsb1, . . . , bm are measured in the Fourier basis by the nodes to which they are sent,
they yield some outcomesr1, . . . , rm, and the remaining qudits are transformed to

|Ψ′〉 =
∑

x

ux |x〉S ⊗ |Mx〉T ⊗
(

e−2πi(r·LKx)/d |Kx〉a1,...,aℓ

)

⊗ |Hx〉rest, (11)

wherer is the vector of the outcomes. Letτ = L⊤r: we haveτ · Kx = r · LKx

by construction. If the nodes which perform these measurements send the outcomes to
the nodeL, thenL can undo the phases induced by measurement of the quditsbk by
performing the operationZτ := Zτ1

a1
Zτ2
a2

· · ·Zτℓ
aℓ

, which performs the mapping

Zτ1
a1
Zτ2
a2

· · ·Zτℓ
aℓ

∣

∣

∣

(

Kx
)

1

(

Kx
)

2
· · ·
(

Kx
)

ℓ

〉

= exp
(

2πi
d

[

τ1(Kx)1 + · · ·+ τℓ(Kx)ℓ
]

)

|Kx〉

= e2πi(τ ·Kx)/d |Kx〉. (12)

Performing these corrections on|Ψ′〉 then yields the state

|Ψ′′〉 =
∑

x

ux |x〉S ⊗ |Mx〉T ⊗ |Kx〉a1,...,aℓ
⊗ |Hx〉rest, (13)

which has fewer unmeasured qudits than|Ψ〉, and no relative phases. This simulates
projecting the quditsb1, . . . , bm to the|+〉 state. By induction, if each node aside from
the source nodes (but including the target nodes) measures their input qudits in the
Fourier basis, and communicates the outcomes backwards along their incoming links
to the nodes which provided those qudits, those nodes can correct for the effect of the
measurements. Eventually one obtains the state

∣

∣Ψ(n)
〉

=
∑

x

ux |x〉S ⊗ |Mx〉T, (14)

3The final tensor factor is on the remaining nodes entangled with the sources, whose components in the
standard basis are again some linear transformations of thestandard basis on the source nodes’ inputs; by
induction on the depth of the coding network, one may show thatH andK are indeed linear transformations.
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which is an entangled state of the (collective) inputs to thesource nodes and the outputs
of the target nodes. If the source nodes measure their quditsin the Fourier basis, it
suffices for them to communicate the outcomes to target nodesin such a way that the
outcomes can be corrected.

For arbitrary linear transformationsM , direct communication among target nodes
or between the source and the target nodes may be required to undo the relative phases
induced by measurement. If the source nodes measure their qudits and collectively
obtain a vectors of outcomes, the resulting state on the remaining qudits is

∣

∣Ψ(n+1)
〉

=
∑

x

uxe
−2πi(s·x)/d |Mx〉T. (15)

If M has a left-inverseA, and we letB = A⊤, it suffices for the sources to somehow
communicateσj :=

∑

k Bjksk to the target nodeT which is responsible for producing
the messagetj . This would allowT to perform aZσj correction and undo the relative
phase on thej th output qudit. Specifically, if the sources collectively communicateσ =
Bs to the targets, who collectively perform the phase operationsZσ = Zσ1

t1 Z
σ2

t2 · · · on
the target qudits, the resulting state is

∣

∣Ψ(n+2)
〉

=
∑

x

uxe
2πi
[

σ·(Mx)−s·x
]

/d |Mx〉T =
∑

x

uxe
2πi[s⊤(AM−1)x]/d |Mx〉T

=
∑

x

ux |Mx〉T; (16)

There are special cases where the amount of communication required outside of the net-
work can be bounded. In particular, for thek-pairs problem whereM is a permutation
matrix (so thatM−⊤ = M ), it suffices to perform the classical linear coding protocol
on the vectors to transmitσ =Ms to the target nodes. In this case, all classical com-
munications may be restricted to the same network as the quantum communications
— albeit using each communication link once in reverse, for the measurements of the
qudits involved in the intermediate messages. More generally, if M is injective and
there is a block-diagonal matrixB (where the blocks act on collections of messages
held by individual target nodes) such thatM⊤BM = 1, the sources may communicate
Ms to the targets, allowing the target nodes to computeσ = B⊤Ms and use this to
govern phase corrections.

3 Classically assisted quantum linear coding
is one-way MBQC

We now show how any coherent linear coding protocol, as described in Section 2.2,
is in essence a measurement computation in the one-way model. The graph states
of the MBQC procedures constructed in this way are easily derived from the coding
network itself: they may be described by allocating two entangled qudits at either end
of each communications link in the network (one for the node on either side of the link),
with further entangling operations between the qudits corresponding to the incoming
links and the outgoing links. The corrections are the same asfor the coherent coding
network, albeit with some supplemental corrections arising from the way that theΛX
operations are simulated. If we follow the protocol of Ref. [17], the corrections are all
deferred to the end of the procedure, as in standard treatments of measurement-based
computation.

7



|x1〉
|x2〉

|xℓ〉

|0〉
|x1〉
|x2〉

|xℓ〉

|v·x〉
v1v2 vℓ

≡
|x1〉
|x2〉

|xℓ〉

|+〉 F †

|x1〉
|x2〉

|xℓ〉

|v·x〉
v1v2 vℓ

Figure 4: Equivalent ways to decompose a unitary transformation ŨV which prepares a single
message qudit, for a single-row matrixV = v

⊤. The left-hand circuit represents the decompo-
sition of Eqn. (4). Variablesvj below operations denote the power to which the circuit operation
is raised. Multi-row coding transformationsV may be simulated by several such circuits, acting
on different target qudits.

Again, we assume familiarity with the measurement based model: see Refs. [21, 7,
4, 9] for references applicable to qubits (similar results and constructions apply over
arbitrary qudits).

3.1 MBQC simulation of a single coding node

The main element of the correspondence between quantum linear network coding and
MBQC is the observation thatΛX operations differ by only a Fourier transform from a
controlled-phase operation,

ΛZ = (1⊗ F )ΛX(1⊗ F †) =

d−1
∑

c=0

|c〉〈c| ⊗ Z c, (17)

which are the diagonal operations used to construct the entanglement structures in
measurement-based computation. This means that the injective mapsŨV used to per-
form the coding at each node may be straightforwardly represented in terms of prepar-
ing the state|+〉= F |0〉 for each output quditbj to be sent, performing the entangling
operationΛZVj,k between each input quditak and each output quditbj , and then acting
on bj with a Fourier transform, as represented in Figure 4.

Note that the inverse Fourier transform acting on the output-message qudit may
be simulated by a Fourier basis measurement by introducing another auxiliary qudit,
using a standardMBQC construction. Consider a quditv in an arbitrary pure state
|ψ〉=∑d−1

x=0 ux |x〉. We may introduce a quditw prepared in the state|+〉, and entangle
them using aΛZ† operation, obtaining the state

|Ψ〉vw = ΛZ†
vw |ψ〉v |+〉w . (18)

We then measurev in the Fourier basis, obtaining a state|ωr〉, and perform the opera-
tionX−r onw. We may use the stabilizer formalism (seee.g.Ref. [10]) to succinctly
verify how this sequence of transformations, considered asCP maps, transformX and
Z: as these generate an operator basis for single-qudit states, this will suffice to show
how it transforms|ψ〉v to F † |ψ〉w. Specifically, we wish to see how the group of
Pauli operators whichstabilizethe state (for which the state at each point in time is a
+1-eigenvector) transforms, for states onv and/orw. We use the following facts:
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• We writeω = exp(2πid ) ∈ C as a minor abuse of notation: it is easy to verify
thatX |ωr〉 = ωr |ωr〉. In particular,|+〉 is the unique+1-eigenvector ofX up
to scalar factors.

• Measuringv in the Fourier basis is equivalent to measuring the eigenstates of
Xv, obtaining some state|ωr〉: the post-measurement state is then stabilized by
ω−rXv, as well as any operators (but only those operators) which commute with
Xv and stabilized the pre-measurement state.

• ConjugatingXv byΛZ†
vw yieldsXvZ

†
w, and similarly conjugatingXw byΛZvw

yieldsZ†
vXw. As they are diagonal, conjugatingZv or Zw by ΛZvw has no ef-

fect. Conjugating byX−r
w transformsZ†

w to ω−rZ†, and leavesXw unchanged.

We may then describe the sequence of transformations on|ψ〉v as follows: for any
scalarφ ∈ C, the operatorφXv transforms as follows:

〈φXv〉 7 prep.|+〉w−−−−−−−→
〈

φXv , Xw

〉

7 ΛZ
†
vw−−−−→

〈

φXvZ
†
w , Z

†
vXw

〉

7 Xv meas.−−−−−−→
〈

φXvZ
†
w , ω

−rXv

〉

=
〈

ω−rXv

〉

⊗
〈

φωrZ†
w

〉

7 X
−r
w corr.−−−−−−→

〈

ω−rXv

〉

⊗
〈

φZ†
w

〉

, (19a)

so that these operations transformφXv 7→ φZ†
w; and similarly,

〈φZv〉 7 prep.|+〉w−−−−−−−→
〈

φZv , Xw

〉

7 ΛZ
†
vw−−−−→

〈

φZv , Z
†
vXw

〉

=
〈

φZv , φXw

〉

7 Xv meas.−−−−−−→
〈

ω−rXv , φXw

〉

7 X
−r
w corr.−−−−−−→

〈

ω−rXv

〉

⊗ 〈φXw〉 , (19b)

so that we obtainφZv 7→ φXw. Similarly, for any Weyl operatorWa,b [10, Defini-
tion II], the operatorφWa,b acting onv will be transformed to a Weyl operatorφW−a,b

on w; the calculation is straightforward. This implies (c.f. [10, Eqn. 17]) that aside
from the teleportation fromv to w, the effect is an inverse Fourier transform of the
state.

Thus, we may simulate the coding procedure of a nodeV as described in Sec-
tion 2.2 as follows. provided a collection of incoming qudits a1, . . . , aℓ, we may pre-
pare output quditsb1, . . . , bm by:

1. preparing output message quditsb1, . . . , bm and auxiliary quditsb′1, . . . , b
′
m in

the state|+〉;
2. entangling the quditsbj andb′j by aΛZ† operation, and performingΛZVjk oper-

ations between each pair of quditsak andb′j;

3. measuring each quditb′j in the Fourier basis, obtaining some outcomerj , and
performing anX−rj operation on the corresponding output quditbj .

This describes aMBQC procedure with inputs and outputs which we may illustrate by
a geometry(in the terminology of Ref. [9, 7]) specifying the input and output qubits.
Figure 5 presents geometries for the partial coding operation performed byŨV as in
Figure 4, and for the entire operation of a single coding node(including the eventual
measurement of the input qubits): input qudits have arrows pointing inwards, and out-
put qudits have arrows pointing outwards.
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Figure 5: Geometries ofMBQC procedures for a single
node performing a transformationV : Z

ℓ
d → Z

m
d of

the standard basis. Incoming/outgoing message qudits
are represented by blue circles; auxiliary qudits by black
squares.(a) The geometry associated to coding a single
message qudit, simulating the right-hand circuit of Fig-
ure 4. Edges are labeled by their “weights”,i.e. the nec-
essary power ofΛZ in the procedure. As the quditsak

remain unmeasured, these are depicted as being outputs
as well as inputs of this procedure.(b) The geometry as-
sociated to the entire operation of a coding node, includ-
ing measurement of the incoming message qudits. Edge
weights between the quditsak andαj depend on the cod-
ing operation being simulated: if the coding operation
being performed is sparse, many of these edge weights
will be zero (corresponding to edges which should be
omitted entirely). Only the quditsbj form the output of
this procedure.

b′j bj

a1

Vj,1

a2

Vj,2

aℓ
Vj,ℓ

...
−1

(a)

a1

a2

a3

aℓ

b′1 b1
−1

b′2 b2
−1

b′m bm
−1

...
...

...

(b)

3.2 MBQC geometries to simulate entire network coding protocols

In the diagrammatic convention of this article, composition of MBQC procedures may
be represented by contracting the arrows between the outputs of earlier procedures and
the inputs of later ones. ForMBQC procedures to simulate the linear network codes,
composing the geometries associated to each node yields a bipartite graph with a struc-
ture closely related to that of the coding network itself. Specifically, one associates
a qudit for the output qudits of the coding network, as well asfor each incoming and
outgoing message qudit at each node (with qudits at the outgoing links being the “auxil-
iary” qudits described above), and connecting them by a bipartite graph corresponding
to the non-zero coefficientsVjk of the coding node. The edges of the coding network
are replaced byundirectededges with weights−1, corresponding to the entangling
operations between the outgoing message qudits (which are either the inputs for some
other node, or the outputs of the entire network). The directionality of the communica-
tion links are represented by the order of the measurement and correction operations,
as well as the classical communication involved in the correction subroutine.

As an example, we illustrate this construction in Figure 6 for procedure for the
two-pair problem performing aSWAPoperation on two qudits (e.g.in which we use the
coding operationsS1 = S2 = V2 = [ 1 1 ]⊤ andV1 = T1 = T2 = [−1 −1 ]).

As every measurement involved is performed in the Fourier basis (equivalently: the
eigenbasis of theX operator), the only information which this graphical representation
omits are the order in which the measurements occur, and the correction procedures,
which we consider next.

3.3 Measurement and communication of outcomes

The corrections required to useX measurements to simulate projection onto|+〉may
be performed in two natural ways, corresponding to the protocols of Refs. [17] and [18]
respectively.
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Figure 6: Construction of aMBQC geometry for a procedure simulating a coding protocol for
the 2-pair problem on(a) the butterfly network, shown with message qudits for each commu-
nication link. (b) The graph obtained by substituting each coding node, with the geometry for
the correspondingMBQC procedure. This is derived by adding vertices for “auxiliary” qudits
(black squares) for each output message qudit, and associating each “auxiliary–output” pair to
an outbound network link. Edges represent powers ofΛZ operations, which are used for single-
qudit teleportation along the network links. The input and output message qudits of the linear
code become the source and target subsystems of theMBQC procedure.(c) The same geometry,
presented in grid formation.(d) The geometry of aMBQC procedure (c.f. Ref. [5, Figure 7]) for
theSWAP operation.

3.3.1 Free classical communication

In a setting as in Ref. [17] where classical communication isfree, all corrections may
be deferred to the target nodes of the coding network, which prepare the output qudits.
This is a natural approach for simulating the network code asa MBQC procedure, as
it is conventional to describe corrections as being performed only on the output qudits
in procedures to simulate CP maps. As in Ref. [17], successful projection onto the
|+〉 state (or a “0” outcome of aX measurement) is the ideal case; it then suffices
to determine how the errors (orbyproduct operationsin the terminology of Ref. [21])
propagate to the output qudits, in order to correct them. We describe this in terms
of communication directly to the targets, as well as some amount of communication
within the coding network.

When simulating the coding procedure at each node using auxiliary qudits, measur-
ing those auxiliary qudits introduces an additional sourceof error: if the correction is
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not immediately performed on the outgoing message qudits, this induces additional
phase errors. Commuting anX−r

bj
operation past an entangling operationΛZUij

bjc′i
,

wherec′i is an auxiliary qudit for a subsequent node performing a coding operation
U , yields an error operationX−r

bj
Z−rUij

c′
i

. The operationX−r
bj

does not affect the out-

come of the measurement onbj , as the states|ωr〉 are eigenvectors ofX . TheZ error
on c′i induced by postponing the correction onbj is significant, but we may account
for this error by classical post-processing of the measurement resultr′ on c′i itself. Let
r̃ = rUij for the sake of brevity: becauseXZ−r̃ ∝= ωrZ−r̃X , we may account for
an uncorrectedZ−r̃ operation onc′i by performing anX measurement, obtaining some
outcomer′0, and then subtracting̃r from that outcome to obtain an adjusted outcome
r′ = r′0 − r̃ for future corrections.

More generally,c′i will accumulate uncorrectedZ errors arising from the uncor-
rectedX errors on each of the input messages on which it depends. If those input
qubitsbj have errorsX−rj associated with them, these collectively induce an error

Z−(r1Ui1+r2Ui2+··· ) = Z−êi·Ur (20)

on c′i. We may simulate this correction after theZ measurement by subtracting̃r =
êi ·Ur from the measurement outcomer′0, yieldingr′ = r′0 − êi ·Ur. By propagating
the results of the auxiliary qudit measurements forward through the coding network,
subsequent coding nodes may locally adapt the measurement outcomes in order to sim-
ulate the correction of errors on their own auxiliary qudits, allowing the target nodes to
perform the necessaryX corrections on the output qudits of the network. Alternatively,
all of the results may be transmitted directly to the target nodes, which can simulate
this sequential adaptation of measurement outcomes themselves.

For a coding network performing an injective transformation M : ZS
d → ZT

d ,
the phase errors induced by measurement of the message qudits may be corrected in
the manner described in Ref. [17]. Without loss of generality, we may suppose that
the agents at each network coding node prepare their auxiliary and message qudits,
and all nodes except the target nodes communicate their outgoing messages to their
recipients. Afterwards, they measure their auxiliary nodes in some order consistent
with the topological ordering of the network, and similarlycommunicate the outcomes
forward, allowing subsequent nodes to adjust their auxiliary measurement outcomes,
and allowing target nodes to perform whatX corrections are necessary on the output
qudits. The remaining measurement operations and classical messages are identical
to those of Ref. [17], in which it does not matter if nodes transmit outgoing message
qudits before they measure incoming message qudits.

For the sake of completeness, we sketch an inductive approach to theZ correction
protocol of the target nodes in this setting. LetA be a left-inverse ofM , and consider
an input state|ψ〉 to the coding network, expressed as

|ψ〉 =
∑

x∈ZS

d

ux |x〉 =
∑

y∈img(M)

uAy |Ay〉 . (21)

The state obtained after performing the preparation and entanglement phases of the
MBQC procedure, and after performing the auxiliary qudit measurements andX cor-
rections on the output qudits, is exactly a state of the form in Eqn. (10), of the form

|Ψ〉 =
∑

y∈img(M)

uAy |Ay〉S ⊗ |MAy〉T ⊗ |HAy〉rest

=
∑

y∈img(M)

uAy |Ay〉S ⊗ |y〉T ⊗ |HAy〉rest (22)
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for some linear mapH . (The latter equality holds because for anyy = Mx, we
haveMAy = MAMx = y.) Indeed, the distinction between the input quditsS and
the other non-target qudits is unimportant: we may subsume the linear mapA on the
standard basis ofS and the mapHA on the standard basis of the other qudits into a
map

K =

[

A

HA

]

(23)

where the upper rows correspond to indices inS, and the lower rows to the other non-
output qudits. We may then write

|Ψ〉 =
∑

y∈img(M)

uAy |y〉T ⊗ |Ky〉ΩrT . (24)

We may isolate any non-output quditu ∈ Ω r T . Let Ω′ = Ω r {u}, and consider
another decomposition

K =

[

κ
⊤
u

K ′

]

(25)

where the upper row corresponds to the index for the quditu and contains a row-vector
κ
⊤
u , andK ′ corresponds to all of the other non-output qudits; we may then once more

re-write
|Ψ〉 =

∑

y∈img(M)

uAy |y〉T |κu · y〉u ⊗ |K ′y〉Ω′rT. (26)

Measuringu in the Fourier basis and obtaining the outcomer, the resulting state on the
remaining qudits is

|Ψ′〉 =
∑

y∈img(M)

uAy ω
−r(κu·y) |y〉T |K ′y〉Ω′rT, (27)

following Eqn. (11). If the outcomer is transmitted to the target nodes, and who
know the value ofκu, they may simply computeσ := rκu and collectively perform
Zσ = Zσ1

t1 Z
σ2

t2 · · · on the qudits ofT, thereby obtaining

|Ψ′′〉 =
∑

y∈img(M)

uAy |y〉T |K ′y〉Ω′rT, (28)

which is again a state of the same form as in Eqn. (10), on one fewer qudits. By
induction, we may measure each of the qudits ofΩrT in any order (or simultaneously),
and transmit them to the target nodes, which then make the appropriateZ corrections
to obtain the state

∣

∣Ψ(n)
〉

=
∑

y∈img(M)

uAy |y〉T =
∑

x∈ZS

d

ux |Mx〉T . (29)

In summary, provided free classical communication to the targets and within the coding
network, all measurements may be performed simultaneously, with the results of the
measurement of incoming messages being transmitted directly to the targets to perform
Z corrections on the output qudits. Measurement results of the auxiliary qudits may be
communicated along the coding network, and used to adapt theoutcomes of subsequent
measurements, culminating in measurement information useful to the target nodes to
performX corrections on the output qudits.
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3.3.2 Constrained classical communication

In the setting of Ref. [18], we attempt to reduce the amount ofclassical communication
which takes place outside of the network (but allowing messages to pass in either direc-
tion). To this end, we allow the source nodes and the intermediate nodes of the network
to performZ corrections. The way in which these corrections are performed follows
from (a) the description of howX corrections may be simulated in the setting of “free”
classical communication, as this already can be performed only with communication
within the coding network; and(b) the phase correction procedure of Ref. [18] which
was outlined in Section 2.2. These corrections may be performed as follows:

• All auxiliary qudits may be measured simultaneously, and their outcomes prop-
agated forward through the network, as in the previous section. Alternatively,
one may instead performX correction operations for the auxiliary qudits at each
node: this imposes an order on the measurement of the auxiliary qudits which
is consistent with the topological order of the network, so that each node may
use the measurement outcomes for preceding auxiliary qudits when correcting
its own auxiliary qudits.

• The measurement of each node’s incoming message qudits mustbe performed in
an order opposite to the topological order of the coding network, in order to allow
the node which sent each message qudit to perform the necessary corrections
involving its own incoming message qudits.

From this, one may derive schedules for measuring each quditin the network, and for
communicating classical messages forward or backward through the network to allow
the necessaryX orZ corrections.

For the correction of phases induced by measurement of the input qubits of the
source, following As in Section 2.2, whether the corrections arising from the mea-
surement of the input qudits managed by the source nodes can be corrected without
communicating outside of the network, may depend on the transformation which the
network performs. For any linear transformationM for whichM⊤BM = 1 for some
block-diagonalB acting on blocks of qudits held by target nodes —e.g. for permu-
tation matricesM — classical network coding of of the outcomes of measuring the
inputs of the source nodes will suffice.

3.4 Overview of the MBQC construction

The above construction rests on the fact that the protocol ofRef. [17] is unaffected
if the measurements are deferred until each node sends its messages. (The protocol
of Ref. [18] in fact requires this modification.) The result of doing so causes these
protocols to give rise to large distributed entangled states, on which local measurements
are performed to simulate projection onto the|+〉 state. In this sense, these protocols
are literally quantum computation by measurements; the modifications described in this
Section — namely, replacement ofΛX operations byΛZ operations, introduction and
measurement of auxiliary qudits in order to make the previous modification possible,
and communication of the results of measuring auxiliary qudits — are straightforward
modifications which demonstrate that they are effectively computations in the one-way
MBQC model of Refs. [21, 7].

The MBQC procedures which result from these transformations have comparable
complexity to the original protocols of Refs. [17, 18], differing essentially only in the
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various operations performed on the auxiliary qudits, as well as the communication
and transformation of their measurement outcomes. For a coding network withk input
messages,ℓ output messages, andm internal communication links, the total number of
qudits involved in theMBQC procedure is easily verified to bek + 2ℓ+ 2m, following
Section 3.2. The number of entangling operations involved for each node (disregarding
exponents) is simply the same as the number ofΛX operations involved in simulating
ŨV , plus twice the out-degree (involved in entangling the auxiliary and outgoing mes-
sage qudits for the node). Thus there are exactly2(m+ ℓ) more entangling operations,
in the form ofΛZ operations, in theMBQC protocol than there areΛX operations in the
original presentation of the protocols in Refs. [17, 18]. There are also exactly2(m+ ℓ)
additional classical messages sent in theMBQC protocol, either directly to the targets
or entirely within the network, again as a result of measuring the auxiliary qudits.

4 Open questions

In this article, we have illustrated the way in which classically-assisted quantum linear
network coding overZd as described by Kobayashiet al. [17, 18] is in effect an in-
stance of measurement-based computation in the one-way model [21, 7], in particular
using measurements only in the Fourier basis (the eigenbasis of theX cyclic shift oper-
ator ond-dimensional qudits). While not explicitly presented as aninstance ofMBQC,
the differences between the protocols of Refs. [17, 18] and one-way measurement-
based procedures are straightforward, and involve no substantial differences ine.g.the
amount of classical communication required. We may ask to what extent these results
(particularly the bounds on classical communication outside of the network) hold for
classically assistednon-linearquantum codes as well.

While theMBQC model is sometimes described as a distributed model of compu-
tation, little emphasis has been placed on the communication cost ofMBQC compu-
tation. A common presentation (e.g.as in Refs. [3, 2]) is that measurement results
are recorded by an effectively delocalized classical control, which receives messages
containing measurement outcomes from one or more agents which manage individual
qudits, and which responds with instructions of how to perform subsequent measure-
ments. Bounding the communication requirements of aMBQC procedure, to eliminate
the need of a delocalised control center, may be necessary torealize the reduction in
the computational depth of aMBQC procedure (one of the theoretical selling points of
theMBQC model [21]).

As network coding subsumes constant-depth distributed computation, we may in-
terpret these results as recommending measurement-based computation as a framework
for analyzing multiparty communication protocols, as we have suggested in the intro-
duction. We may also consider this as an alternative means ofapproaching the problem
of assigning semantics to measurement-based computations, a problem of some inter-
est in models of quantum computation [7, 9, 12, 6]. Specifically: rather than interpret-
ing a measurement-based procedure as a quantum circuit withsome potentially exotic
features (such as closed time-like curves [6]), we may interpret pieces of measurement-
based computations as coherently simulating transformations of the standard basis on
several qudits at once. Such simple semantics is likely to prove useful to any pro-
gramme to find novel ways of using measurement-based computation as a medium in
which to develop algorithms (see Ref. [11]).

As a final open question, we ask whether a converse to our results hold, the form
of a classical simulation algorithm for certain measurement-based computations by
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linear network codes. This article shows that (a coherent quantum simulation of) a
classical linear network code is in effect a measurement-based procedure which per-
forms onlyX-eigenbasis measurements, on a graph state with similar structure to the
coding network. This is a special case of an efficiently simulatable class of compu-
tations: the unitary transformations realized byMBQC procedures performing only
Pauli-eigenbasis measurements areClifford group operations,4 which can be simu-
latede.g.on standard basis states by linear transformations on a cyclic ring [10]. This
raises the question: is there a sense in which aMBQC procedure on a graphG, which
implements unitary a transformation using only measurements in a Pauli eigenbasis (or
only theX-eigenbasis) and Pauli corrections, can be “locally” simulated by a classical
linear code — in such a way that the expectation value of any observable on a single
given qudit can be evaluated from information available at acorresponding target node
— on a network similar toG?
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