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Abstract

We propose a method that extends a given depth image
into regions in 3D that are not visible from the point of view
of the camera. The algorithm detects repeated 3D struc-
tures in the visible scene and suggests a set of 3D extension
hypotheses, which are then combined together through a
global 3D MRF discrete optimization. The recovered global
3D surface is consistent with both the input depth map and
the hypotheses.

A key component of this work is a novel 3D template
matcher that is used to detect repeated 3D structure in the
scene and to suggest the hypotheses. A unique property of
this matcher is that it can handle depth uncertainty. This
is crucial because the matcher is required to “peek around
the corner”, as it operates at the boundaries of the visible
3D scene where depth information is missing. The proposed
matcher is fast and is guaranteed to find an approximation
to the globally optimal solution.

We demonstrate on real-world data that our algorithm is
capable of completing a full 3D scene from a single depth
image and can synthesize a full depth map from a novel
viewpoint of the scene. In addition, we report results on
an extensive synthetic set of 3D shapes, which allows us to
evaluate the method both qualitatively and quantitatively.

1. Introduction
The popularity of depth cameras, such as the Microsoft

Kinect, makes depth maps accessible to all. These depth
maps are used for a variety of applications such as gesture
recognition and 3D modeling. A depth map assigns a depth
value to each pixel, generating a 2.5D representation of the
visible scene. The resulting depth map typically lacks mea-
surements of scene parts that are occluded from the camera
point of view. Many applications, such as path planning,
audio waves progress analysis and new view generation, to
name few, require an access to the three dimensional data
of the full scene, including the surfaces that are not visible
by the depth camera.

In this work we make an attempt at inferring the entire
invisible structure of a scene, which is an important under-
investigated problem in 3D vision. Figure 1 shows an exam-

(a) RGB (not used) (b) depth map (c) New view (d) Our completion

Figure 1. The ’Spray’ new viewpoint synthesis example. See
Fig. 9 for additional examples and the text for details.

ple of what we call a depth extension or depth outpainting
task. An input depth image (b) is rotated by 180◦ revealing
missing parts of the geometry, not seen by the camera. Our
method offers a complete solution (d) to such a scene.

Our Depth Extension algorithm follows a simple
scheme. We generate multiple volumetric hypotheses to ex-
tend the current depth map, and these hypotheses are later
all merged together. There are several unique challenges
we faced while tackling this problem, which gave rise to
the contributions of this work.

Novel 3D template matching with partial data To gen-
erate depth extension hypotheses, we rely on the existence
of repeating local 3D structures in the scene, similar to the
assumption made in 2D image inpainting. A depth cam-
era provides us with limited information about the volumet-
ric data, as each visible surface point occludes an unknown
amount of solid matter. Generating 3D completion hypothe-
ses therefor involves matching data with partially unknown
values, which is an inherently ill-posed problem. To over-
come this challenge, we present a novel and fast template
matching algorithm, that can match volumetric regions with
partial information, under 3D Euclidean transformations.
The matching scheme is based on a rigorous analysis of the
uncertainties that emerge due to the missing values and it
leverages both known spatial data, as well as bounds we de-
rive on the possible errors in areas with uncertainty. This
scheme may also be applicable to other problems where
matching under partial information is necessary.

Recovery of scene geometry using 3D hypotheses This
new matching scheme enables us to detect repetitions in the
scene. These repetitions are used to map sub volumes to
target locations and generate a set of 3D hypotheses, which
represent plausible extensions of the visible geometry. We
present an optimization algorithm that recovers a full scene
geometry that is as consistent as possible with both the input
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depth map and the set of generated hypotheses.
Finally, we report results on a number of scenarios

that demonstrate the effectiveness of the proposed method.
These include both analyzing simulated views of known ge-
ometries and comparing the completion results to ground
truth, as well as the processing of actual depth maps cap-
tured by a Kinect depth camera.

2. Background
Depth inpainting for filling holes in depth maps has been

an active research topic in recent years. Torres-Mendez and
Dudek [18] proposed a method for the reconstruction of
3D models from intensity images and partial depth, prop-
agating depth information based on intensity values. Later,
Wang et al. [19] proposed a stereoscopic inpainting algo-
rithm that synthesizes depth and color using a stereo cam-
era pair. Recently, Shen and Cheung [17] proposed a depth
layers approach for handling scenes consisting of a static
background and dynamic foreground objects, strongly ex-
ploiting the correlation between color and depth.

Common to these methods is that the set of hypotheses
considered is limited to 2D or 2.5D proposals. Also, they fill
holes within the (incomplete) input depth image itself, using
complete RGB information. In contrast, we use only depth
information and generate a much richer set of hypotheses,
directly in 3D, that extend to new viewpoints of the scene.

Our work borrows from the field of image inpainting.
Most notably, we are inspired by the work of He and Sun
[4]. They observed that the statistics of matching patches
in an image can be sufficiently described by a fairly small
number k of possible shifts. In the inpainting process, each
pixel is chosen from one of k respectively shifted versions
of the image, while minimizing a global energy function.

Guo and Hoiem [3] propose a method for predicting sup-
port surfaces in indoor scenes from an RGBD image. They
use a training set to label visible surfaces and then infer
occluding surface labels using contextual cues and layout
priors. Kim et al. [9] acquire the 3D structure of indoor
environments. Their system uses scans of individual ob-
jects to construct primitive-based 3D models, which are
then quickly recognized in a new scan. Pauly et al. [14] re-
cover complete and consistent 3D models from incomplete
surface scans using a database of 3D shapes that provide ge-
ometric priors for regions of missing data. These methods
achieve impressive results in understanding the 3D struc-
tures of scenes, largely due to the use of tailored databases
and efficient ways of finding shape occurrences in the scene.
The completion scheme of Silberman et al. [12] is dedi-
cated to uncovering the geometry of rooms, by completing
primitives such as bounding walls and planar furniture.

Zheng et al. [21] recover solid 3D primitives from a
point cloud. Their algorithm uses geometric reasoning to
fit simple surfaces to a point cloud, and these are then inter-

preted as simple 3D shape primitives. Physical reasoning is
then used to group the primitives into stable objects.

Another work related to ours is the context-based surface
completion of Sharf et al. [16]. Defective regions, which
are automatically detected as surface areas of low density
in a point-cloud, are filled by copying patches with simi-
lar signatures from valid surface regions, achieving realis-
tic results. Poisson Reconstruction [7, 8] and its extensions
provide a widely used tool for converting a point-cloud to a
smooth and highly detailed reconstructed surface. A recent
work by Shan et al. [15] further constrains Poisson recon-
struction through the detection of occluding contours in a
multi-view stereo setup. These methods were all designed
to provide accurate reconstructions of the captured part of
a scene, which might be noisy and contain gaps and holes,
but were not meant for the task of reconstructing the entire
unseen part of a scene, in which the holes to be filled are
much larger, with far less relevant data to use.

3. Method
In order to infer a 3D scene from a single depth map,

our goal is to detect repeated sub-volumes and use their ex-
tended surroundings to extend the depth map into unseen
parts of the scene. This raises two questions. The first is
how to efficiently detect repeated sub-volumes in the scene,
and the second is how to merge the different extensions
(termed hypotheses) into a single and coherent result.

As for the first question, we extend the visible surface
areas of the scene into its unseen surface areas, using a
novel 3D template matcher. This is done by detecting mul-
tiple template sub-volumes, on the visible surface, and then
searching for similar target volumes under the group of rigid
Euclidean 3D transformations (including combinations of
translations, rotations and reflections). Once such a trans-
formation is found, the surface points in a larger vicinity of
the 3D-template are mapped according to the transforma-
tion to form a potential hypothesis into the unseen areas. A
key problem we face is that the 3D matcher must operate on
the boundaries of the visible depth map where, by nature,
there are large amounts of missing data. To address this is-
sue, the template matcher uses novel scoring scheme over
a scene representation, which is explicitly designed to take
into account the uncertainty in the data.

As for the second question, merging the hypothesis pro-
posals into a coherent result can be very challenging, es-
pecially in the cases where the unseen surface area is large
compared to (or even larger than) the visible surface. In
such cases we obtain a large number of hypotheses, which
are typically inconsistent with each other and might not
even completely ‘cover’ the unseen surface area. We there-
fore search for a surface that interpolates between the vis-
ible surface areas, in a way that agrees with as many hy-
potheses as possible and which produces a smooth as possi-



ble surface. This idea is formulated as a binary optimization
problem on a 3D raster.

3.1. Volume Representation

Let S : R3 7→ {0, 1} denote the generally unknown
binary indicator function of a scene (which equals to 1
in the interior). The scene surface is represented by a
binary indicator function ∂S, the 1

2 -sub-level set of S.
The truncated-signed-distance-transform (TSDF) represen-
tation of S, with truncation parameter k, is given by:

A = (−1)S ·min{k,DT (∂S)} (1)

where DT (·) is the standard (non-signed) Euclidean Dis-
tance Transform. The three representations S, ∂S and A
are equivalent and one can switch between them easily, but
unfortunately, they are not known to us.

On the other hand, we have access to the binary indica-
tor function V of the visible-volume that equals 1 in non-
occluded areas (i.e. free-space areas and the visible part of
the surface ∂S). Knowing V is equivalent to knowing the
visibility-boundary, represented by a binary indicator func-
tion ∂V , the 1

2 -sub-level set of V , which is the ’boundary’
between the visible volume and the occluded area.

Our goal is to reconstruct the unknown scene S (or sur-
face ∂S). As mentioned before, we do this by finding corre-
spondences between sections of the volume, some of which
we have partial information about. The most standard way
of scoring a mapping of a sub-volume X under a transfor-
mation T is by the symmetric difference between the source
and target areas of the mapping. Formally:

Score =

∫
X

|S(x)− S(T (x))|dx (2)

Distance-transform representations (signed and/or trun-
cated) have been shown in the past to be suitable for regis-
tering and fusing depth images. They were introduced in [2]
and were later successfully used, e.g., in the Kinect-Fusion
system [13]. Particular advantages are their probabilistic
interpretations [5] and the ease of extracting an explicit sur-
face, through the their zero-crossing.

In this work, we build on the Fast-Match method [10]
for efficient matching of image templates, generalizing it
to handle 3D volumetric templates. The method’s run-
time complexity (see [10]) depends on the total-variation
(or smoothness) of the template representation and it is well
known that TSDF representations lead to smoother tem-
plates, compared to indicator representations.

These facts motivate us to replace the binary shape rep-
resentation S from Equation (2) using the TSDF represen-
tation A from Equation (1) and hence we obtain:

Score =

∫
X

|A(x)−A(T (x))|dx (3)

(a) scene S (b) visibility V (c) the TSDFA

(d) upper bound U (e) lower bound L (f) Uncertainty U -L

Figure 2. Upper and Lower bounds: (a) An unknown 200× 200
2D scene S, where the camera is located above the top side at
(100,−100) looking down. The interior (gray) and surface (red).
(b) The known visibility V (gray), the visible surface V ·S (green),
the visibility boundary ∂V (the boundary between gray and black)
and the unknown occluded surface (red). (c) The unknown TSDF
A. (d) The known upper bound U . (e) The known lower bound L.
(f) The uncertainty of the TSDF A, given by U − L. It is evident
in (c)-(e) that L ≤ A ≤ U , and equality holds (bounds are tight),
where the uncertainty is zero (pale blue) in (f). Notice that there is
some uncertainty even in visible areas.

3.2. Template Matching in 3D

Unfortunately, the values of A are generally not known
for the entire volume. They can be determined exactly in
areas that are far enough from occluded areas, but they are
not known in occluded areas, where the existence of a shape
surface is totally unknown, or even in visible areas that are
close to occluded ones. This implies that we cannot com-
pute Score from equation (3). Nevertheless, we show that
the TSDF values can be bounded, from above and below,
based on the partial depth information. Let us define U and
L to be the tightest possible upper and lower bounds on the
unknown TSDF function A. Figure 2 illustrates the mean-
ing of S, V , U and L in flatland and the following claim
specifies how the bounds can be computed from the input.

Claim 1. The TSDF upper and lower bounds are given by:

U = DT (S · V) and L = (−1)(1−V) ·DT (∂V) (4)

Proof. The bounds follow from looking at the limits of the
extent of the unknown shape S. On one hand, S surely
contains the visible surface V · S (and equality is possible)
and in this extreme case the TSDF A is simply the distance
from V · S and the upper bound follows. For the lower
bound, similarly, the unknown shape S is surely contained
in V̄ ∪ (V · S) (which is the union of the occluded area with
the visible surface) and here too - equality is possible. The
boundary of the set V̄ ∪ (V · S) is just ∂V and therefore, in
this case, the TSDF A is the signed distance from ∂V .

Given these bounds, we attempt replacing the full Score
(3) with a complementary one. Each point x now has an



(a) Shape (gray), (b) High support (c) High consistency (d) High support and

map source (red) (but low consistency) (but low support) high consistency

Figure 3. Score considerations: the consistency-support trade-
off. (a) The gray shape is seen from above. Its two top edges
(solid black) are visible, while the bottom edges (dotted black) are
occluded. A surface red area is mapped to 3 different locations in
(b), (c), and (d). The green areas are the rest of the visible surface,
which is mapped with the source red area as part of a hypothesis.
(b) optimizing for support only - results in an inconsistent exten-
sion; (c) optimizing for consistency only - results in an unreliable
extension; (d) optimizing for both gives a desirable extension.

interval of values [L(x),U(x)], rather than a single value
A(x). For a point x and a transformation T , if we denote
y = T (x), then the cost of matching x to y in the original
score can be written as:

cost(x) = |A(x)−A(y)| (5)

By definition, A(x) and A(y) can take any value in
the respective intervals [L(x),U(x)] and [L(y),U(y)] and
therefore, if we define:

∆1(x) = L(x)−U(y) and ∆2(x) = L(y)−U(x) (6)

it is easy to verify that:

costL(x) ≤ cost(x) ≤ costU (x) (7)

where:
costL(x) = max(0,∆1(x),∆2(x)) (8)
costU (x) = max(|∆1(x)|, |∆2(x)|) (9)

and notice that costL and costU are tightest possible bounds
on cost, following from the tightness of L and U .

Looking at Equation (7), these measures have a clear in-
terpretation. A large costL(x) implies a large cost(x) and
therefore the point x is surely mapped inconsistently by T
(this happens when a fully visible point is mapped incor-
rectly to a fully visible point). On the other hand, a large
costU (x) means that the value of cost(x) is largely un-
known (this happens, e.g., when a visible point is mapped
to a totally occluded point) and in this case x does not pro-
vide any information regarding the mapping quality. When
summing over x ∈ X , costL quantifies the mapping incon-
sistency, while costU quantifies the mapping support.

Clearly, one would prefer mappings with low inconsis-
tency and high support, but there is an inherent tradeoff be-
tween the two. On one hand, insisting on minimal incon-
sistency will favor mappings that map mostly into unknown
areas and these have very low support (few points that ac-
tually prove the map consistency) and can not be reliable

enough for producing hypotheses. On the other hand, insist-
ing on maximal support could come at the cost of imperfect
consistency and might limit the potential matches to fully
visible areas, but these would not be likely to extend into
the unknown regions, which we wish to complete. Figure 3
illustrates the tension between consistency and support.

We therefore define the score for T as a linear combina-
tion of two scores:

Score(T ) = α · ScoreL + (1− α) · ScoreU (10)

where:
ScoreL =

∫
X

(
1− e−

cost2L(x)

2σ2L

)
dx (11)

ScoreU =

∫
X

(
1− e−

cost2U (x)

2σ2U

)
dx (12)

Note that σL and σU control the degradation rates of each
of the scores and α controls the tradeoff between them.

3.3. Generating Completion Hypotheses

We are now ready to describe the entire process that leads
to the generation of completion hypotheses, which are the
input to our optimization. The starting point is a seed loca-
tion on the visible surface, around which we take an axis-
aligned sub-volume X and search for a transformation T ∗

that minimizes Score(T ).
Using the Fast-Match algorithm [10], the minimization

consists of efficiently sampling the combined space (6 de-
grees of freedom) of all 3D rotations, translations and re-
flections, evaluating each transformation and returning the
best one found. A couple of comments are in order here.
First, the sampling density of the transformation space is
inversely proportional to the total variation (smoothness) of
X (see [10]) and these volumes are rather smooth due to
the TSDF representation. Second, as is done in [10] we fol-
low a branch-and-bound scheme, where the transformation
space is first sampled sparsely and then, regions with high
scores are discarded and a denser sampling is performed in
the remaining regions.

We now use each high quality mapping T ∗ in order to
’copy’ the visible surface around the source location into
the occluded areas. At this stage we discard the original
sub-volume X , that was used for finding the local similar-
ity and instead we choose a (visible) surface area XT∗ that
will be mapped to form a hypothesis. To do so, we apply the
transformation T ∗ on the entire volume and take the largest
possible region, around the source location, that adheres to
the transformation T ∗. This region typically includes most
of the surface region from within the original sub-volume
(but not necessarily all), as well as surface areas from out-
side the original volume X . More specifically, we perform
a hysteresis process to determine the exact region, where the
intuition is to take areas that are not known to be inconsis-
tent (low costL(x)), and which are not far (geometrically)



(a) a depth image (b) seed locations and a template X

(c) detected transformation T∗ (d) 3D hypothesisHT∗

Figure 4. Stages of hypothesis generation (a) An example depth
map. (b) The visible surface (red), with the automatically detected
seed locations and an example template X around one of them. (c)
A detected transformation T ∗, mapping the sub-volume X (blue)
to T ∗(X) (green). (d) The resulting 3D hypothesisHT∗ (green).

from areas that are known to be consistent (low costU (x)).
Formally, we define:

XT∗ = [DT (costU (x) < tU ) < ε]·[costL(x) < tL]·(V ·S)
(13)

where [·] is 1 if the condition inside the square brackets is
true and 0 otherwise. The constants tU , tL are score thresh-
olds and ε is a (Euclidean) distance threshold. Note that
the multiplications are between indicator matrices (the third
one being the visible surface) and therefore stand for inter-
sections between the relevant sets. Finally, the resulting 3D
hypothesis, denoted byHT∗ is defined by

HT∗ = T ∗(XT∗) (14)

Figure 4 summarizes the entire hypothesis generation
process. Given a single depth map (a), we use seed loca-
tions on the visible surface and define a small sub-volume
around each of them (b). We run our 3D template matcher
to detect a potential candidate (c) and use the transforma-
tion between the template and target to map a larger region
of the scene, which serves as our 3D hypothesis (d) the final
input to the optimization.

3.4. Optimization in 3D

Our goal now is to merge all hypotheses together with
the original surface evidence in a consistent manner. In a
similar fashion to what is done in 2D image completion
(see e.g. [4]), this can be posed as a discrete optimization
problem on a 3D raster where each voxel is assigned a label
and labels denote different hypotheses. This optimization
is challenging because the domain (volume) and the label
space (number of hypothesis) are very large. Moreover, un-
like the case of image completion, neighboring voxels with
labels originating from different hypotheses may cause in-
consistencies in the solution, in the form of incomplete sur-
faces or surfaces with undesirable topology.

(a) input and hypotheses (b) input and solution

Figure 5. From multiple hypotheses to a coherent solution. In
this example, the input is a frontal scan of a child (bright red sur-
face) captured by a Kinect sensor. (a) The input scan and 51 gen-
erated hypotheses. (b) The input scan and our completion, which
is encouraged to coincide with hypotheses (green areas), but can
deviate from them (blue areas) in order to create a smooth com-
pletion. Looking from above (shown sliced) - the contours of the
hypotheses can be seen to contain noise and outliers. The solution
(blue and green contour) manages to create a consistent boundary.

Instead, we formulate a binary optimization problem on
the 3D raster, where each voxel x is classified to be either
in the interior (L(x) = −1) or the exterior (L(x) = 1) of
the scene. The solution is driven to be coherent with the
hypotheses by a carefully designed energy term. This ap-
proach enables modeling scenes with more complex surface
topologies and has the advantage that the resulting solution
allows for a clear interpretation of the scene surface. Refer
to Figure 5 for an example result of applying our optimiza-
tion method on the input (which is the visible surface and
3D hypotheses) producing a valid completion. As can be
seen, we obtain from the previous stage a large number of
hypotheses, which are typically inconsistent with each other
and do not completely ‘cover’ the unseen surface area.

The solution we propose searches for a surface that ‘in-
terpolates’ between the visible surface areas. Following the
work of Lempitsky and Boykov [11] we derive a binary
MRF, which is minimized using graph-cuts [1]. Our energy
term, however, is more related to the TV-L1 energy of Zach
et al. [20], even though they optimize for a complete field,
rather than for a binary partition of the space. It is given by:

E =
∑
x

ED(L(x)) + λ
∑
(x,x′)

ES(L(x), L(x′)) (15)

where the summations are over all voxels x in the volume
and all pairs (x,x′) of neighboring voxels. The data fidelity
term ED, that is defined at each voxel x by

ED(L(x)) = L(x) ·
∑
H
DTK
H (x) (16)

measures the average agreement of the labeling L(x), with
the set of hypotheses H. This average is weighted by the
truncated signed distance transform DTK

H (x), which mea-
sures the distance of the voxel x from the hypothesis H,
truncated to the interval [−K,K] for robustness. DTK

H is
positive on the inner side of the hypothesized surface and
negative outside.



Algorithm 1 Depth Extension
Input: the visible-surface S · V (in raster representation)
Output: the full scene S (in raster representation)

Volume Representation (see Secs. 3.1 and 3.2)

1. Compute visible-volume V and visibility-boundary ∂V

2. Compute the TSDF bounds L and U (as in Claim 1)

Hypothesis Generation (see Sec. 3.3)

1. Select a set X of interest sub-volumes (seed locations)

2. For each sub-volume X ∈ X :

(a) Run the 3D variant of Fast-Match, using the
L and U volume representation, to find match-
ing sub-volumes {Ti(X)}, under transforma-
tions {Ti}, whose matching scores {Score(Ti)}
are below a threshold t.

3. For each T ∈ T (T is the set of discovered mappings):

(a) Compute the source areaXT and the 3D hypoth-
esis HT = T (XT )

Scene Reconstruction Optimization (see Sec. 3.4)

1. Construct the energy terms ED and ES as in Eq. (15)

2. Solve for the scene S using Graph-Cuts [1]

The pairwise smoothness term ES , which is a location-
dependent Potts model, is given by:

ES(L(x), L(x′)) = Wx,x′ · [L(x) 6= L(x′)] (17)

where [·] is the indicator function. This term is a Total-
Variation regularizer, that measures the area of the bound-
ary. As can be seen in Figure 5(b), the surface (boundary)
in our solution is divided into three kinds. Red surface re-
gions are the input visible surface; green regions are ones
that coincide with some completion hypothesis; and blue
ones are the rest. The location-dependent Wx,x′ takes three
different values, depending on which of the three types does
the boundary edge (x,x′) belong to, allowing to weight the
boundary areas of each type differently. Passing through the
input surface is obligatory and therefore W = 0 over S · V .
Regarding non-input voxels - passing through hypothesis
voxels is preferable and therefore we set W = 1 compared
to W = 2 in non-hypothesis locations. Algorithm 1 sum-
marizes the main steps of our method.

4. Results
Implementation Details The input partial visible surface
(S · V ) is represented by a 2563 voxel grid (raster). For
each scene we use a fixed radius r (i.e. half the dimension)
of the axis-parallel cubes that form the source search sub-
volumes. It is chosen manually according to the general

Figure 6. Statistics on SHREC [6] shape completions: We gen-
erated 6 completion instances for each of the 6 SHREC shapes.
x-axis: the percent of shape surface that is occluded, representing
the instance difficulty. y-axis: reconstruction error. Up to an oc-
clusion rate of∼50% the algorithm performs well (see Figure 7 for
visual comparisons with the original shapes). The performance de-
teriorates at higher occlusion levels (see Figure 8 for such cases).

scale of the scene. The seed voxels are taken as r-separated
uniform cover of the visible surface. Each seed point is
potentially discarded if the surface voxels in its vicinity are
too few or if they approximately lie on a plane (determined
by a coordinate eigen-decomposition) - cases in which the
respective subvolume is not sufficiently discriminative.

In the template matching stage, we run a 3D version of
Fast-Match [10], where we collect the 3 best possible map-
pings per seed location and discard those with Score > t,
for t = 0.035. The parameters in Score (10) are fixed
throughout our experiments: α = 0.5, σU = 3 and σL = 1.
Regarding the computation of the source area XT that ad-
heres to the transformation T (Equation (13)), we take hys-
teresis thresholds tU and tL to be the 40th and 70th per-
centiles, respectively, of the original sub-volume costU and
costL distributions. The hysteresis parameter ε was taken
to be twice the radius r of the original sub-volume.

4.1. Reconstruction of 3D shapes

In this experiment, we create controlled surface com-
pletion tasks by removing surface parts from 3D modeled
shapes and then attempting to reconstruct the entire surface.
Unlike the more realistic scenario of completion from par-
tial scans, this scenario lets us compare our results to the
original shape both quantitatively and qualitatively.

The data For this experiment we use the SHREC07 data-
set [6] which consists of a variety of closed triangulated
meshes of CAD models. We chose in particular six shapes,
which are especially challenging, since they include several
models in a variety of different poses, with complex sur-
faces. This is to emphasize that our method works without
knowledge of the shape class, surface primitives or global
symmetry assumptions. We use shapes 288, 291, 283, 14,
8 and 386 which we term ’armadillo 1’, ’armadillo 2’, ’ar-
madillo 3’, ’woman 1’,’woman 2’ and ’bull 1’ respectively.

We then randomly generated multiple completion tasks
(instances) of varying levels of difficulty for each of the six
shapes. In each instance, the partial surface is generated in
one of three ways: ’single view’, where we keep only sur-



shape: ‘SHREC woman 1’
unseen area: 17.6%
Reconstruction Errors:

Ours: 15% Poisson: 6%

shape: ‘SHREC bull 1’
unseen area: 27.3%
Reconstruction Errors:

Ours: 15% Poisson: 21%

shape: ‘SHREC armadilo 1’
unseen area: 37.8%
Reconstruction Errors:

Ours: 24% Poisson: 47%

shape: ‘SHREC armadilo 3’
unseen area: 43.4%
Reconstruction Errors:

Ours: 30% Poisson: 151%
(a) Ours (b) True (c) Poisson (d) Ours (e) True (f) Poisson

Figure 7. Shape completion examples (with unseen area < 50%): Each row shows a completion instance generated from the SHREC
dataset. These are 4 out of the 36 instances (additional examples are provided in Supplementary Materials) that we generated randomly (see
text), resulting in a partial view of the shape (shown in red). In each example, reconstructions are shown from 2 different viewpoints: (a-c)
and (d-f). Our surface completion is shown in (a) and (d), where completed areas are colored in green if they originate from a completion
hypothesis or blue otherwise. For reference, the true completion is shown in green from the same views in (b) and (d) and the Poisson
Reconstruction in (c) and (f). In addition, we report reconstruction errors on the left. Note: details are best seen when viewed in zoom.

face areas visible from a single randomly chosen viewing
direction (at a fixed distance). This option creates the hard-
est instances where typically over 40% of the shape surface
is unseen; ’two-view-orthogonal’, where we keep only sur-
face areas visible from either one of a random pair of view-
points, which are 90◦ apart. Here, typically 20%− 50% of
the surface is unseen; ’two-view-opposite’, where we use
random opposite viewpoints, with unseen area in the range
10%− 30%. In all cases, the shape surface is rastered in an
orthogonal 2563 volume centered at the shape’s center of
gravity. Overall, we created 6 instances for each shape (2 of
each option) resulting in a total of 36 instances. The distri-
bution of their degree of difficulty (unseen surface area) can
be seen by looking at the x−axis of the chart in Figure 6.

shape: ‘SHREC woman 1’

unseen area: 54.5%

Reconstruction Err: 30%

shape: ‘SHREC armad 2’

unseen area: 69.1%

Reconstruction Err: 78%
(a) Ours (b) True

Figure 8. Shape completion hard examples (unseen area
> 50%): See Figure 7 for explanations and text for interpretation.

Results The completed shapes are evaluated by the re-
construction error, which is the volume of the symmetric
difference between original and reconstructed shapes, as a
% of the original shape volume. In the Supplemental Ma-
terials we consider a related measure - the area prediction
error for which we draw similar conclusions. The chart in
Figure 6 shows some statistics of this experiment, showing
that the algorithm performs well when the occluded surface
area is up to ∼50% of the entire surface and beyond that
the performance degrades rather rapidly. Figure 7 shows
four examples, each from 2 different viewpoints, of our re-
constructions in which the unseen area is below 50%. In
these examples (ordered by increasing difficulty) our com-
pleted surfaces fit nicely to the input (red) surface and sug-
gest overall plausible completions. Notice that most of the
completion is based directly on the generated hypotheses
(green surface areas), while the remaining areas (blue) are
obtained due to the total-variation regularization in our 3D
optimization. In the Supplementary Materials, we provide
visualizations for many other instances of this experiment.

Lacking a suitable alternative method for completing
large, out-of-viewpoint holes, we compare to Poisson Re-
construction [7, 8] as a baseline. Poisson Reconstruction
is known to produce high quality surfaces in visible parts
of a scene. However, as the unseen regions get larger it



Figure 9. New viewpoint
depth synthesis. Results
are shown for the ’Robots’,
’Cups’, and ’Child’ data-sets.
(a) RGB image, shown for
reference. (b) The input - a
single-view depth-map. (c)
A new viewpoint depth-map,
computed from the input
depth-map (b). (d) Our com-
pleted depth-map. See Fig. 1
for the ’Spray’ example and
the text for details.

(a) RGB (not used) (b) depth map (c) New view (d) Our completion

interpolates extremely smooth continuations of the occlu-
sion boundaries which typically do not resemble the orig-
inal shape, as can be seen in Figure 7. To provide it with
ideal conditions, we calculate normals on the full shape and
transfer them to the partial shape, to avoid artifacts around
occlusion boundaries and areas with low point density.

Figure 8 shows some limitations of our method, through
2 cases where the unseen area is over 50%. The woman
example was reconstructed as two 3D objects (the left leg
is separated from the body), due to the lack of evidence
in the existing view for the connection between the parts.
In a similar fashion, the Armadillo reconstruction example
(with only 30% visible surface) preferred to generate a ge-
ometry where the surface area is minimal, as long as it can
be explained by existing hypotheses. The addition of prior
knowledge of body shape, or the usage of additional as-
sumptions (such as the need of the recovered geometry to
be stable relative to gravity) could possibly be incorporated
to improve reconstructions in such cases, which are extreme
for methods that do not assume such prior knowledge.

4.2. Synthesizing new viewpoint depth-maps
In this experiment we complete an entire scene, under se-

vere occlusion, given a single depth image. Many methods
deal with filling holes in depth maps that are due to acqui-
sition faults or due to slight viewpoint changes. In contrast,
our method is capable of completing large unseen surface
regions and this is demonstrated here through the applica-
tion of novel viewpoint depth-map synthesis.

The data For this set of experiments, we collected data
using a Kinect sensor. Since our focus is on the task of
completing surface areas that are not visible from the sin-
gle viewpoint, we wish to avoid dealing with the typical
missing values or noisy ones, especially around depth dis-
continuities. We therefore collected our data examples us-

ing the Kinect Fusion [13] system, making slight view-
point changes during the scan. We then projected the out-
put point-cloud to a single viewpoint, resulting in a single
depth-map, which is the only input to our algorithm.

Results We created depth maps of 4 scenes (’Spray’,
’Robots’, ’Cups’ and ’Child’), as described above. Our
new-view depth synthesis results can be seen in Figures 1
and 9. The first two examples in Figure 9 are extremely
challenging as we generate new views that are 180◦ from
the input view point. Despite the drastic view change,
the algorithm fills the holes nicely and reasons about the
depth relationships between the robots, the cubes and the
table surface. Similarly, the algorithm performs well on the
’Cups’ example, whose input depth-map has many artifacts.
The last row of Figure 9 shows the case of generating a view
point of a head that is orthogonal to the original viewing an-
gle, for which the algorithm produces a plausible solution.

5. Conclusions
We proposed an algorithm for depth extension from a

single depth image. The algorithm detects repetitive 3D
structures and uses them to generate a set of hypotheses,
which are merged in a coherent manner using 3D discrete
optimization. The method was shown to be able to complete
a variety of scenes and we believe it could be extended to
solve more complex task-specific challenges, by incorporat-
ing shape priors or physical based assumptions.

Such a capability can enable applications that expect
full geometry, such as robot path planning or simulation of
lighting and audio, that have access to a scene from a lim-
ited range of view points. The ‘peeking’ template matching,
proposed in this work, offers a new formulation of template
matching in the presence of uncertainty.
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