
What Designers Want:

Needs of Interactive Application Designers

Valentina Grigoreanu
1
, Roland Fernandez

2
, Kori Inkpen

2
, George Robertson

2

 Oregon State University
1
, Microsoft Research

2

grigorev@eecs.oregonstate.edu; {rfernand, kori, ggr}@microsoft.com

Abstract

Designers’ extensive software needs have not been

adequately documented in the research literature, and

are poorly supported by software. Without appropriate

tools to support their needs, designers have difficulty

knowing the best way to evolve the look and feel of

interactive applications they are designing.

In order to inform the design of new tools for

interactive application design, we used a grounded

theory approach to find out what designers’ needs are

when designing such applications. This paper reports

our findings (20 designer needs) from content analysis

of five types of artifacts: surveys, Blend discussion list

emails, Dreamweaver forum entries, Flash forum

entries, and interviews with ten designers. These 20

needs were then validated in follow-up interviews and

focus group sessions. The results of this work revealed

trends regarding the importance of each need and

show that flow is one of the most important needs.

1. Introduction

With the advent of tools such as Adobe

Dreamweaver and Microsoft Expression Blend,

designers are acquiring increased control in creating

both the look and feel of interactive desktop and web

applications. While much work exists on designers’

processes and tools, we know little about the extent of

the problems designers encounter with this software,

and how design tools can support those needs. In this

paper, we describe two grounded theory studies

conducted to explore interactive application designers’

needs and to validate our findings.

Jeanette Wing states “Computational methods and

models give us the courage to solve problems and

design systems that no one of us would be able of

tackling alone” [16]. The power of computers allows

designers to offload some of the computational

complexity of the design process onto the computer.

We believe that there is much room for improvement

in software support of designer’s tasks. These tasks

might involve acquiring and reusing earlier work for a

new purpose, or optimizing users’ interactions.

Consistent with the research method of grounded

theory [7], we conducted content analysis of data from

several sources to identify these needs: (1) a small

open-ended qualitative survey, (2) emails to a Blend

discussion list, (3) posts to a Dreamweaver forum, (4)

posts to a Flash forum, and (5) 1.5-hour interviews

with ten designers. This study helped us better

understand designers’ needs.

Our resulting theory is a set of 20 needs

experienced by designers while creating, iterating, and

communicating their designs. We validated our

findings through an interview with two experienced

design managers and two focus group sessions with

nine designers. The results demonstrate that designers

have many unsupported needs. Each need is a starting

point for the creation of better design tools. We also

report which needs are likely to appear together, as

well as the relative importance of each need.

2. Related Work

A designer is a professional who creates plans to be

used in making something [6] (in our case, interactive

software applications). Research on the design process

suggests that many designers start out with sketches

and continue with intermediate representations (e.g.,

maps, storyboards, schematics, prototypes, mock-ups,

and specifications) [11]. We also know that designers

find behavior more complicated to design than visual

aspects of applications, and that communication plays

a vital role in the design process [10]. However, we do

not have an overarching view of the kinds of needs

these designers have, which software should address.

Since the two most popular interactive application

design tools are Dreamweaver and Flash [10], it is not

surprising that much of our knowledge of interaction

design stems from the web world. Interactive websites

include online forms, surveys, and databases, and their

design often requires end-user programming when they

are not created by professional programmers (e.g., [13]

and [10]). Early work in this area found that end-user

web developers understood the roles of visible

components (such as fields and buttons), and used

technical terms (such as “file”, “database”, “page link”,

and “member”) [13]. However, they were vague in the

implementation of these terms, did not understand how

hidden operations worked, and did not mention

constructs such as “variables” or “loops.”

Designers use a variety of tools for different phases

of the design, including (from most to least popular):

Adobe Photoshop, Adobe Dreamweaver, Microsoft

PowerPoint, Adobe Illustrator, Adobe Flash, Microsoft

Visio, Adobe InDesign, Omni Group’s Omnigraffle,

Microsoft Visual Studio, Adobe Fireworks, Adobe

Director, Microsoft FrontPage, Adobe After Effects,

Axure RP, Adobe Flex, Adobe GoLive, and Microsoft

Expression Blend [10]. Research platforms for web

designers include: CLICK [13], WebFormulate [1],

FAR [3], DENIM [12], and WebSheets [-

1125383474]. Even with this multitude of tools, a

designer trying to create an interactive web or desktop

application still faces many challenges. We believe a

possible reason for this is that little is known about the

overall extent of designer needs and their relative

importance, to be explicitly addressed in design tools.

The design task has been defined as a “knowledge-

based problem-solving activity” by some researchers,

specified by a set of functions (constraints stated by the

intended users of the design and the domain itself) and

a technology (the components available for design

creation and the relationships between them) [4].

Chandrasekaran [4] reviews existing literature on

designers to get a better understanding of the steps

involved in the problem-solving task of design, and

proposes the following task structure: design, verify,

critique, and modify. Smith and Browne [15] break up

the design problem into five elements: goals,

constraints, alternatives, representations, and solutions.

Unlike these two works, we take a grounded theory

approach to determining designers’ needs. Relying on

literature alone in determining designers’ needs might

lead to overlooking facets particular to designers’

tasks. This paper therefore generates theory from the

ground up, augmenting knowledge from related

literature by collecting and analyzing designers’

anecdotal evidence. In doing so, we focus on informing

the design of tools for designers.

3. Grounded Theory Study Setup

3.1. Methods

We used the objectivist grounded theory

methodology [7] to identify designers’ needs, since it

allowed us to reduce the bias of our previous

experience. Our methodology was also highly

influenced by Charmaz’ [5] constructivist grounded

theory approach. Unlike objectivists, constructivist

grounded theorists pay special attention to the context

of the research (the participants’ and researchers’

assumptions, implicit meanings, and tacit rules).

We triangulated our data and analyses on several

fronts. First, since particular data sources could be

biased toward revealing particular needs, we collected

data (282 artifacts) from five different sources which

are described in further detail in the next section.

Second, since one researcher might notice different

needs from another, we made sure that two

interviewers were present at three of the twelve

interviews. Finally, since bias may affect the results

derived from the collected data, two researchers coded

40% of the data together (reaching an inter-coder

reliability of 81%), before individually coding the rest.

While collecting data, we also iteratively analyzed

them. Unlike traditional methods for generating theory,

grounded theory calls for emerging theory to be

integrated with further data collection and data analysis

[8]. It also calls for the researcher to remove

preconceived ideas in the early data collection phases.

We therefore started with very open-ended survey and

interview questions, generally asking about designers’

troubleshooting, problem solving, and how they find

and fix errors in designs. Our questions became more

focused with every iteration thereafter, culminating in

one last interview with two experienced designers

which was structured around our final 20 needs, to

verify and learn more about our emerging results.

3.2. Procedures and Participants

In grounded theory, data collection and data

analysis are a part of the same iterative process. We

describe all of the data collection methods here, and

present our results in the next section.

Survey. We began with a small open-ended survey

to determine designers’ needs. The survey asked four

open-ended questions: what tools they used, the type of

design they did (visual, interaction, etc.), problem-

solving or troubleshooting needs they had, and their

prior experience with creating functional prototypes.

Six designers (three females) on a user experience

team at Microsoft completed the survey. All six of the

participants designed both the look and feel of the

applications they worked on. Also, all but one had end-

user programming experience: developing at least a

website using languages such as JavaScript and Flash.

The software used by this small group of designers

varied widely, but was consistent with findings from

larger surveys of designer populations [10].

Blend Distribution List. We next harvested

questions from a mailing list where designers

discussed design issues. Starting with 7524 emails, we

narrowed the scope down to 236 by counting only

initial inquiries, not the replies, and by only including

emails that contained the word “designer.” Finally,

from that set, we analyzed the 25 emails sent within the

past year, related to problems designers were having.

Dreamweaver and Flash Forums. We also

harvested questions asked by designers on the Adobe

public web forums for Dreamweaver and Flash, the

two most frequently used interactive design application

tools [10]. All forum entries were original design

inquiries. We took the 25 most recent such entries from

each forum, to match the number of artifacts we had

collected from the Blend distribution list.

Formative Interviews. Informed by what we had

learned thus far, we conducted ten qualitative

interviews with designers across several product teams

(four females). Interviews lasted 1.5 hours each, and

participants received a lunch voucher for participating.

To encourage participants to show examples of

designs they had created and problems they had

encountered, the interviews were conducted at the

designer’s desk when possible (for eight of the ten

interviews). The two others were conducted in a

cafeteria and the interviewees sketched in a notebook

to clarify the anecdotes they were giving.

The qualitative interviews provided us with an

open-ended, yet in-depth, exploration of a topic of

interest to the interviewees. As Charmaz [5] points out,

many grounded theory studies use a one-shot

interviewing approach, when sequential interviews

provide interviewers with the ability to follow up on

earlier leads. To collect a richer understanding of our

designers’ needs, we invited the survey respondents to

also be interviewed (we interviewed all three males

and one of the females). We also interviewed six

designers who were new to our research to get a fresh

perspective on our emerging results.

4. Grounded Theory Results

4.1. Do Designers Need Tool Support?

Responses from the survey showed that our

designers did indeed need interactive application

design tools to better support their problem-solving

activities. This lack of support sometimes had a

negative impact on the designs they created. (For all

the quotes in this paper: F=female, M=male,

U=unknown, S=survey, O=forums, and I=Interviews.)

FS: Not having tools for the kind of visual debugging

help I was looking for changed my design in a negative

way; finding tweaks, workarounds, giving up…

While some environments offer some support for

one type of design problem solving (end-user

debugging and troubleshooting), those tools are often

only about the underlying code, and are based on

debugging tools used by professional developers:

MS: When I am in Blend/Visual Studio, I use the code

debugging tools, though there is no such thing as

something that helps me find out why something is

showing up two pixels off.

Designers need problem-solving tools to support

their design activities at a higher level than the code

(i.e., at the same level of abstraction as their design

representations), and even the code features needed to

be geared toward designers themselves.

Designers encounter many problems which

software environments could support. We identified 20

non-orthogonal needs through content analysis of the

artifacts (see Table 1), as well as the relationships

between them (see Figure 1). Each need is a starting

point, rather than an endpoint. The edges between two

codes give a sense of the frequency with which the

needs appeared together (the more often they appear

together, the shorter and thicker the edge between them

is). Generally, the problems fell into three categories:

problems in creating the first version of the design, in

iterating on it, and in communicating it.

4.2. Designers’ Creation Needs

The codes which strongly related to “creating the

first design” (and therefore perhaps also to creativity)

were propose (and its neighbors: look, feel, and

training) and reuse (and its neighbors: extend, themes,

and flow). Some of these needs also came up during the

iteration and communication steps.

Propose. Designers need tools to support proposing

a design, since they sometimes need help coming up

with that first design idea; “the right representation.”

FI: How do you show that some items in the list are

different from the other ones?

Look. This was a very general category

encompassing all needs that were about the look of the

designed application. Designers need to be able to

problem solve the look of an application, when the

desired visual aspects are not achieved or could be

better. The look that a designer might have in mind is

not always easy to create an artifact around.

MI: Developers often don't get the colors right, so it

takes the detailed eye of a designer to make sure the

design's right (generating bits of code helps with this).

Feel. Proposing the initial feel of an application is

also hard. Like look, this was a very general need,

referring to a wide range of problems having to do with

a design flaw in the behavior. Examples included

navigations and other interactions that did not behave

as intended, or communicating the feel of an

application to other team members.

MI: Designers have to make sure to always show some

kind of feedback when the program's doing something.

 Flow. Designers need to create, iterate on, and

communicate the flow of data, events, and other

resources through the application they are designing

(dataflow, event flow, workflow, timelines). Flow

involves designing the structure of an application using

a diagrammatic representation. Terms used by

designers to refer to this view included: schematics,

information architecture, wireframes, Visio documents,

tree diagrams, timelines, etc. As shown by the strong

link between feel and flow in Figure 1, one common

way of representing feel is in a flow diagram.

FI: I usually use PowerPoint by creating hyperlinks

between slides, but there’s no way to tell what slides

connect to which other slides. I would love a way to

visualize storyboard trees like that.

Training. Designers need training resources

(classes, online training, etc.) and other help. All of the

Table 1. Designers’ needs and their definitions

(entries are alphabetized).

Automation Automating redundant steps of design by

applying one action to many parts of the

design.

Bugs Creating bug-free code by getting help in

fixing bugs, or by generating correct code.

Cleanup Having to clean up code or take out

unused generated code.

Communication Communicating the design to developers

and others through sketches, speech,

prototypes, etc.

Compatibility Ensuring that the same application works

in multiple environments.

External

Constraints

Keeping track of design constraints, and

helping ensure that the constraints are

met.

Extensibility Extending or customizing the

functionality of the design environment.

Feel Ensuring that the feel of the design is

correct.

Flow Representing how data, events, and other

resources flow through the design.

Granularity Switching between levels of abstraction of

the application's design.

Jargon Understanding jargon.

Look Ensuring that the look of the design is

right.

Optimization Optimizing either the look or feel of the

application.

Propose Proposing the first version of a design.

Reuse Reusing someone else’s or one’s own

code and designs.

Settings Identifying incorrect or inexistent

software, hardware, or other settings

external to the design.

Testing Evaluating the design’s correctness for

different situations.

Themes Creating a design theme or to applying a

theme from somewhere else.

Training Getting training resources or other help.

Usability Evaluating usability issues in a design.

Figure 1. A constellation graph showing the

relationships between the codes: the thicker and

shorter an edge, the more artifacts those two codes

(end-points of the edge) appeared together for.

emails and forum entries analyzed were coded as

training since they asked for help with a particular

problem. Training topics ranged across a variety of

issues including bugs in the code, external settings, and

asking about courses on particular software.

Sometimes, training was needed to overcome a

selection barrier [9]:

MI: Sometimes you don't know if it's a lack in your own

knowledge, or something the software can't do. […] It

costs knowledge and time to figure it out.

Reuse. One way in which designers first create their

designs, or inspire themselves, is through reuse.

Designers need tools to help support reuse their own

(or others’) code, image files, PowerPoint

presentations, look, feel, etc., in creating a design.

MI: Snippet libraries to build your own code by taking

code as is and using it as a Lego piece would be nice.

Designers also need to sometimes recreate a look or

feel seen elsewhere, such as “recreate the flash effect

on this banner” [UO].

 Themes. One need related to reuse, though not

always overlapping with it, was themes. When themes

and reuse overlapped, designers wanted to apply

previously-created themes to their own designs.

FI: Just like PowerPoint has deck templates, Blend

should have application templates (Office, web, etc.).

Other times, creating a theme from their designs was in

expectation of reuse.

 Extensibility. Designers need to extend (and

customize) software components, behaviors, and

capabilities for their own needs and preferences.

FI: I would like better text control for making new

fonts. Some software uses this squishing thing, rather

than ultra-condensed weight.

Sometimes, extensibility overlapped with themes and

reuse. One designer wanted to extend her software’s

functionality by reusing someone’s code for testing

different WPF themes and skins [FO].

4.3. Designers’ Iteration Needs

Once the initial version of one or more designs has

been created, designers iterate on them. Since design

verification often sparked new iterations, the codes we

address in this section are: usability (and its neighbors

external constraints and granularity) and testing (and

its neighbors automation, optimization, bugs, settings,

and compatibility).

Usability. Designers need tool support for

evaluating usability issues in their design. These

evaluations often result in further design alterations

(e.g., “creating multiple prototypes and have the users

pick the one they like best” [FO]). Another way of

evaluating the usability of a design was by seeing how

well it followed standard design rules.

MI: A tool would be nice where all of the usability

rules you needed to follow were given in a table; to

make sure you haven't overlooked any of them.

As this last quote shows, usability sometimes overlaps

with fixed external constraints.

 External Constraints. Designers need to keep

track of external constraints that limit the design:

specifications for the design, the schedule, the size of

the files, the performance of the application, additional

software that needs to be downloaded before the

application can be run, and the memory footprint of the

application that is being designed. With design, some

of the constraints are highly subjective, but the

software could give recommended outputs.
FI: The design has to meet certain guidelines (spacing

around images, contrast ratio, location, etc.). Maybe

software could help make sure that these are met.

Granularity. To more easily evaluate the usability

of their prototypes, designers need to easily switch

levels of granularity: moving from high-level

schematics, to a detailed view of each screenshot, to

the code behind the application, to the preview of the

application, and back.

MI: I do a lot of switches like that (high level to lower

levels) to find and fix errors.

Testing. Testing, in its purest form, means to

evaluate whether the design gives the correct output for

particular inputs. Testing is an important need since

interactive application designs are often highly

complex and data-dependent.

MI: Tools should provide a mock service to generate

data to hook up to the designed application. It's very

hard to design a data-centric application without data.

As Figure 1 shows, the two most highly related

needs were testing and flow: seeing how an output

resulted from the flow of elements through the design.

This is a concept similar to slicing, which has been

found to be useful in end-user programming

environments (e.g., [14]). Such tools should not be

limited to code, but also lower-fidelity prototypes.

Automation. Designers need automation tools in

order to quickly perform one action on many different

parts of the design, or to otherwise automate (record

and replay) redundant steps of the design process.

MI: If the computer could create a style-guide-in-a-box

specification template, you could just define what you'd

like your specifications to look like, and the software

would spit them out for a designed application.

Optimization. Some designers wanted automation

capabilities to quickly optimize the look or feel of the

design. Optimization did not come up often, but was

reported to be a very hard problem to solve. In

perfecting visual aspects of the application:

MI: One way of quickly visualizing the best option is to

generate sample previews of what the image would

look like with the different number of colors.

Another commented about optimizing the user’s

interaction with the application:

MI: Workflows with fairly detailed screenshots are

useful for making decisions about unnecessary pages.

Bugs. Designers need debugging tools to help them

fix bugs. Bugs addressed by the users were sometimes

specific errors in their code, and sometimes more

general pain points. Some of the bugs were usability

bugs, while others were just incompatible software.

MI: Things like case-sensitivity and overwrites are

tough bugs to avoid and fix.

Settings. Incorrect output was sometimes not

caused by a bug, but instead by incorrect settings on

the designers’ computer. These two instances were

hard for designers to discern. Even when they were

distinguishable, figuring out the wrong setting or

missing software to download was a daunting task.

MO: Images that are posted live online appear as

broken images in the design mode. [...] I've seen this

crop up a few times on these boards, but still can't

seem to figure out what settings I'm missing on my end.

Compatibility. Problems related to settings are

exacerbated by the amount of switching designers do

between different environments in both creating their

designs (e.g., Visual Studio and Blend), and predicting

environments used by the consumers (e.g. Internet

Explorer and Firefox). Software compatibility tools are

needed to help when a design is working in one

environment, but not in another.

MI: It would be nice to render one web page in three

different browsers with one click.

4.4. Designers’ Communication Needs

Designs are boundary objects, shared by designers,

developers, users, testers, and usability researchers,

among others. It is therefore not surprising that many

have considered communication the ultimate goal of

design (e.g., [10]). Jargon and clean code are related.

Communication. Designers need communication

tools to help them report their detailed vision of the

design to developers, program managers, and others.

Without them, the wrong look or feel can be

introduced into the design by those who create the

working code. As we mentioned earlier, a flow

diagram was often used to design the application’s

interaction. It was also the representation of choice for

communicating that interaction,

FI: Another thing that the diagram view helps with is

that sometimes developers won't see the forest for the

trees, and will focus on the details. If the interface is

instead explored at a step above the screenshots, then

the presentation and the design meeting become more

straightforward and focused on the interaction.

It is also important to provide communication from

developers back to designers.

FI: Designers should sometimes be given guidance on

what controls to use by the developers.

Jargon. Unfortunately, when interacting with

developers and with code, designers need to

understand or somehow translate developer jargon

(written or verbal) they encounter from discussions,

error messages, warnings, etc. While sometimes error

messages are useful, other times, they are not:

UO: **Error** Scene=Scene 1, layer=Actions,

frame=3:Line 3: Syntax error. function () {

Cleanup. Some tools automatically generate code;

however, in those situations, designers need code

cleanup tools to remove unused (filler) code.

When generating code, a lot of ‘junk code’ is produced

that developers complain about. If there is an error in

the code, the designer then needs to do a code review

and strip the unnecessary parts, which is hard!

5. Validating Needs: A Focus on Flow

To validate our grounded theory work (the 20 needs

presented in the previous section), we conducted an

interview with two senior designers and two focus

group sessions with nine designers. Our goals during

those sessions were to: (1) get designers’ opinions on

whether the needs we found are indeed real to their

work, and (2) gauge the relative importance of each

need for the creation of tools to support designers.

The first validation session was a two-hour

unstructured interview with two senior designers (one

female). Both designers received a lunch voucher for

their participation. These designers were managers, so

their anecdotes about designer needs not only spanned

their own experiences, but also those of less

experienced designers on their team. When asked to

describe the top five needs that should be supported

through software, one of the designers yelled “Flow!”

and the other agreed. Having a hard time narrowing the

list down to five needs, they mentioned their top eight:

flow, training, testing, reuse, communication, usability,

external constraints, and optimization.

The second and third validation sessions were each

a two-hour lunch-time focus group session. Pizza was

provided for the session and each participant received a

lunch voucher. Nine designers (two females), from

eight product teams, attended the sessions. The types

of designers included: interaction designers, graphic

designers, web designers, design lead/managers,

systems designers, and motions designers.

Focus group participants were first asked to go

through the list of 20 needs individually and mark the

needs which they had personally encountered in their

design work. Table 2 shows the number of designers

who experienced each need (one participant forgot to

answer this part of the question). Even with this small

sample, we can see that every need was experienced by

at least one designer and 12 of the needs were

experienced by more than half of the designers.

The participants were then asked to rank the top

five most important needs in their own work. As

Figure 2 shows, flow and feel were mentioned as being

the most important needs. Flow involves creating,

iterating on, and communicating the higher level

structure of the application. Feel involves creating,

iterating on, and communicating the users’ interaction

with the application. Additionally, all of the designers

ranked flow as being one of the top five needs.

Both interview and focus group sessions validated

the needs we derived through our grounded theory

work as indeed being needs that designers encounter in

their everyday work. Furthermore, even with this small

number of participants, clear patterns emerged: (1)

Each of the eight top needs the interviewed designers

wanted tool support for was a top-five need for at least

one of the nine focus group designers, and (2) Flow

was identified as being the top need from both the

interview and the focus group sessions.

6. From Needs to the Design of Tools

The list of 20 needs, and each need’s tie to other

needs, acted as a useful discussion facilitator which led

to the design of several unique software tools.

Designers’ initial survey, email, forum, and interview

tool requests were often incremental improvements to

existing software. However, during the focus group

sessions, several completely new designs for designer

tools arose. Two examples are briefly described here.

 (1) A “design-centric versioning system” that

allows designers to 1-keep track of alternate latest

design versions, 2-show the hierarchical ties between

designs, and 3-keep a list of design decisions as a part

of the versioning system (e.g., attaching the scenario

which led to the decision).

(2) A “multi-view software development

environment based on team members’ role” to provide

all software professionals a common artifact to work

on, where each view would be a different facet of the

software, directly connected to all the others.

Thus, the results presented here can be used to help

in brainstorming about new design tools in addition to

incremental improvements to existing software.

7. Discussion and Conclusion

This paper presents grounded theory findings from

two studies to determine interactive application

Table 2. Number of designers who reported

experiencing each need.

Flow 8 Propose 6 External

Constraints

4

 Look 8 Communication 6

Feel 7 Reuse 6 Automation 3

Optimize 7 Extensibility 5 Settings 2

Testing 7 Compatibility 5 Jargon 2

Themes 7 Granularity 4 Cleanup 1

Usability 6 Training 4 Bugs 1

Figure 2. Importance rating (x-axis) for each need

(y-axis). Ratings were calculated by summing the

ranks assigned by each designer (rank 1: 5 points, 2:

4 points, etc.). The number in parentheses indicates

how many designers ranked this need in the top 5.

0 10 20 30 40

Bugs (0)

Cleanup (0)

Compatibility (0)

Jargon (0)

Propose (0)

Settings (0)

Automation (1)

Extensibility (2)

External Constraints (1)

Granularity (1)

Optimization (2)

Themes (2)

Training (2)

Communication (2)

Testing (4)

Reuse (4)

Look (5)

Usability (6)

Feel (6)

Flow (9)

designers’ needs. A content analysis of 282 designers’

artifacts identified 20 design creation, iteration, and

communication needs (in order of importance): flow,

feel, look, usability, reuse, testing, communication,

themes, training, optimization, external factors,

granularity, automation, extensibility, bugs, cleanup,

compatibility, jargon, propose, and settings.

Follow-up interview and focus group sessions

validated these needs and further explored the

importance of each. All of the needs were validated by

at least one of the focus group participants, with flow

and feel being the most commonly reported. Flow was

ranked as being the most important need.

Our data collection and analysis processes were

strongly triangulated, to reduce bias. The fruits of

triangulating were evident. For example, collecting

artifacts only from online sources (emails and forums)

would have biased our findings toward “training” and

“bugs,” since the majority of those artifacts contained a

question about why their code did not work. However,

collecting data from several other sources (such as the

survey and interviews), helped identify and avoid this

bias. A possible limitation of our study was that the

validations were based on Microsoft employees’

feedback alone, and therefore may not generalize to

other designer populations. However, our population

was diverse within the company, spanning several

types of designers on thirteen different product teams.

The most surprising results of this work are the

number of needs expressed by designers, their ties to

each other, and their low software support. Based on

these results, it is clear that interactive application

design environments should provide explicit support

for the 20 needs presented in this paper, and especially

for flow. Recent HCI work on trajectories, such as the

conceptual framework for trajectories presented in [2]

is likely to be useful in the design of tools for

supporting flow in designers’ software.

Each of the needs reported here is a starting point

for designing one or more features of a future design

tool. Carefully designing a set of features to meet these

needs will require a deep understating of how the needs

overlap and interact with each other. This has strong

implications for future work. Figure 1 can be used in

framing the structure of future studies about the needs

and the design of software to support them. Two novel

designer tool ideas were already presented here as a

result of employing this approach.

7. Acknowledgements

We thank our studies’ participants, Gina Venolia for

help recruiting participants, and, Margaret Burnett,

Kael Rowan, and the reviewers for thoughtful input.

8. References

[1] Ambler, A. and J. Leopold, “Public Programming in a

Web World”, Visual Languages, Nova Scotia, Canada, 1998.

[2] Benford, S., Giannachi, G., Koleva, B., and Rodden, T.

2009. “From Interaction to Trajectories: Designing Coherent

Journeys through User Experiences,” Proc. CHI 2009, ACM

Press, 2009, pp. 709-718.

[3] Burnett, M., S. K. Chekka, R. Pandey, “FAR: An End

user Language to Support Cottage E-Services”, IEEE

Symposia on Human-Centric Computing Languages and

Environments, Stresa, Italy, 2001.

[4] Chandrasekaran, B., Design Problem Solving: A Task

Analysis, Artificial Intelligence Magazine, 11:59–71, 1990.

[5] Charmaz, K. “Grounded Theory: Objectivist and

Constructivist Methods,” pp. 509-35 in Handbook of

Qualitative Research, 2nd ed., edited by N. K. Denzin and Y.

S. Lincoln. Thousand Oaks, CA: Sage, 2000.

[6] designer. (n.d.), WordNet® 3.0, retrieved from

http://dictionary.reference.com/browse/designer, December

04, 2008.

[7] Glaser, B.G. and A.L. Strauss. The Discovery of

Grounded Theory: Strategies for Qualitative Research.

Chicago: Aldine, 1967.

[8] Glaser, B. G. Theoretical Sensitivity. Mill Valley, CA:

Sociology Press, 1978.

[9] Ko, A. J. Myers, B. A., and Aung, H. “Six Learning

Barriers in End-User Programming Systems”, Proc. VL/HCC

2004, pp. 199-206.

[10] Myers, B., Park, S., Nakano, Y., Mueller, G., and Ko,

A, “How Designers Design and Program Interactive

Behaviors”, Proc. VL/HCC 2008, pp. 177-184.

[11] Newman, M. and Landay, J., “Sitemaps, storyboards,

and specifications: a sketch of Web site design practice”,

Proceedings of the 3rd Conference on Designing interactive

Systems: Processes, Practices, Methods, and Techniques,

ACM Press, New York, NY, 2000, pp. 263-274.

[12] Newman, M., Lin, J., Hong, J., Landay, J., “DENIM:

An Informal Web Site Design Tool Inspired by Observations

of Practice”, Human-Computer Interaction, 2003, pp. 259-

324.

[13] Rode, J., Bhardwaj, Y., Prez-Quiones, M., Rosson, M.,

Howarth, J., “As easy as "Click": End-user web

engineering”, International Conference on Web Engineering

2005 - Lecture Notes in Computer Science 3579, Berlin:

Springer-Verlag, 2005, pp. 478-488.

[14] Rothermel, G., Burnett, M., Li, L., DuPuis, C., and

Sheretov, A., “A Methodology for Testing Spreadsheets”,

Transactions on Software Engineering and Methodology,

ACM Press, 2001, 10(1), pp. 110-147.

[15] Smith, G., and G. Browne, "Conceptual foundations of

design problem solving," IEEE Transactions on Systems,

Man and Cybernetics, 23(5), 1993, pp. 1209-1219.

[16] Wing, J., “Computational Thinking”, Communications

of the ACM, March 2006, 39(3), 33-35.

[17] Wolber, D., Su, Y., and Chiang, Y., “Designing

Dynamic Web Pages and Persistence in the WYSIWYG

Interface”, Proc. IUI’02, 2002, pp. 228-229.

http://dictionary.reference.com/browse/designer

