
DiversiFi: Robust Multi-Link Interactive Streaming

Rajat Kateja†, Nimantha Baranasuriya‡, Vishnu Navda†, Venkata N. Padmanabhan†
†Microsoft Research India ‡National University of Singapore

ABSTRACT
Real-time, interactive streaming for applications such as au-
dio-video conferencing (e.g., Skype) and cloud-based gam-
ing depends critically on the network providing low latency,
jitter, and packet loss, much more so than on-demand stream-
ing (e.g., YouTube) does. However, WiFi networks pose a
challenge; our analysis of data from a large VoIP provider
and from our own measurements shows that the WiFi access
link is a significant cause of poor streaming experience.

To improve streaming quality over WiFi, we present Di-
versiFi, which takes advantage of the diversity of WiFi links
available in the vicinity, even when the individual links are
poor. Leveraging such cross-link spatial and channel di-
versity outperforms both traditional link selection and the
temporal diversity arising from retransmissions on the same
link. It also provides significant gains over and above the
PHY-layer spatial diversity provided by MIMO. Our exper-
imental evaluation shows that, for a client with two NICs,
enabling replication across two WiFi links helps cut down
the poor call rate (PCR) for VoIP by 2.24x.

Finally, we present the design and implementation of Di-
versiFi, which enables it to operate with single-NIC clients,
and with either minimally modified APs or unmodified APs
augmented with a middlebox. Over 61 runs, where the base-
line average PCR is 4.9%, DiversiFi running with a single
NIC, switching between two links, helps cut the PCR down
to 0%, while duplicating wastefully only 0.62% of the pack-
ets and impacting competing TCP throughput by only 2.5%.
Thus, DiversiFi provides the benefit of multi-link diversity
for real-time interactive streaming in a manner that is de-
ployable and imposes little overhead, thereby ensuring co-
existence with other applications.

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

CoNEXT ’15, December 01-04, 2015, Heidelberg, Germany
c© 2015 ACM. ISBN 978-1-4503-3412-9/15/12. . . $15.00

DOI: http://dx.doi.org/10.1145/2716281.2836120

CCS Concepts
•Networks → Network layer protocols; Wireless local
area networks;

Keywords
Real-time Streaming, Wi-Fi, Multi-path, VoIP

1. INTRODUCTION
WiFi networks have been patterned after Ethernet that pre-

ceded them. Just as a host plugs into an Ethernet port, a
WiFi client “plugs into” a single access point in its vicinity
through the process of association, and remains associated
with it until the link is broken, say due to mobility.

We argue that this approach, inspired by the wired world,
is suboptimal and needs to be revisited. At any point, the
client typically has a choice of multiple WiFi links — not
merely WiFi access points within range but in fact ones that
the client has the credentials to connect to. This is especially
so in settings such as enterprises, schools, airports, hotels,
malls, etc. where there is often a single entity that has de-
ployed a large number of access points.

The quality of a wireless link varies frequently, causing
sporadic bursts of packet loss, which can severely impact
real-time streaming due to its sensitivity to packet loss, de-
lay, and jitter. Therefore, rather than performing selection,
i.e., picking one “best” link to connect over, we argue that
the client would be better off hedging, i.e., connecting over
multiple links simultaneously. If the client’s traffic were then
replicated across these links, the client would then enjoy the
performance offered by the best link, even as which link is
the best changes frequently.

However, replicating traffic over multiple links would me-
an a substantial overhead. To address this challenge, we
present DiversiFi, which leverages network-side buffering,
whether at existing WiFi APs or at a separate middlebox, to
provide much of the benefit of diversity through replication
but with little of its overhead. This combination of benefit
without the overhead is a key novel contribution.

Specifically, to make the case for DiversiFi, we focus on
real-time, interactive streaming (e.g., voice-over-IP (VoIP)) 1,
1As noted in Section 5, we focus here on the downlink.

which places stringent demands on the network in terms of
end-to-end latency, jitter, and packet loss rate, much more
so than on-demand streaming (e.g., YouTube), which has the
luxury of a large playout delay. For instance, the round-trip
latency must be under 300 ms for VoIP [6] and under 100 ms
for interactive games [25], for otherwise the user would no-
tice a lag. Also, the packet loss rate for VoIP should ideally
be under 1% [34], although burst losses can cause noticeable
artifacts even at lower loss rates.

We start by presenting experimental data to show that the
WiFi last hop is a significant factor in poor streaming qual-
ity. Our analysis draws on both a year’s data from a large
VoIP provider that serves hundreds of millions of users, and
also our own experiments with the participation of 274 users
across 22 countries and involving 9224 simulated VoIP calls
over a 2-month period. From our experiments, we find that
the overall poor call rate (PCR) is over 10%. Further, for
both the VoIP provider data set and ours, the relative differ-
ence in PCR between WiFi and wired clients is 40-50%.

Thereafter, we focus specifically on the WiFi last hop and
make the case for leveraging link diversity to improve real-
time streaming performance. We argue that clients often
have more than one AP within range that they could con-
nect to. Furthermore, the performance of the links to these
multiple APs is only weakly correlated, say in terms of the
pattern of packet loss. Thus, replicating real-time traffic over
multiple links — we focus on doing so over two links, a pri-
mary and a secondary — yields significant benefits. We term
this approach cross-link replication. We show that the di-
versity benefit of such cross-link replication dominates both
fine-grained link selection and also temporal replication (i.e.,
retransmission with an offset) over a single link. It also pro-
vides significant benefits over and above PHY-layer spatial
diversity in MIMO systems such as 802.11ac. Our experi-
ments with a client equipped with two WiFi NICs show that
cross-link diversity helps cut down the poor call rate (PCR)
for VoIP by 2.24x relative to single-link transmission.

Having established the benefits of cross-link replication,
we turn to how this could be realized in practice, without
requiring two NICs, incurring the overhead of duplicated
traffic or, importantly, impacting other, non-realtime appli-
cations. Our general approach involves confining cross-link
replication to real-time flows, with non-real-time traffic con-
tinuing to flow over a single, default link, as it would have in
the absence of DiversiFi. Further, the replicated packets are
held in network-side buffers, close to the client but yet not
being transmitted over the air unless the need arises (i.e., a
packet is lost on the primary link). We show how a simple
change to make the AP’s queuing policy head-drop instead
of the usual tail-drop, coupled with a shortening of the queue
length, enables an efficient realization of DiversiFi. We also
present an alternate approach, which leaves the APs unmod-
ified and moves the buffering into a network middlebox. The
introduction of the middlebox also helps avoid the overhead
of duplicating the stream over the WAN.

Our experimental results confirm that DiversiFi provides
the benefit of replication for real-time flows (e.g., a reduc-
tion in PCR from 4.9% down to 0% over 61 runs), with
minimal overhead (only 0.62% of the packets being dupli-
cated wastefully compared to nearly 100% with naive dupli-
cation). Importantly, a competing TCP flow, which is obliv-
ious to DiversiFi being used for the real-time flows, only
suffers a throughput degradation of 2.5%.

Thus, DiversiFi imposes a minimal duplication overhead
and ensures coexistence with competing, non-real-time ap-
plications, which remain oblivious to the use of DiversiFi for
improving the performance of real-time flows.

In summary, our contributions in this paper include:

• A study based on data from a large VoIP provider and
our own experiments, to show that WiFi has a signifi-
cant bearing on real-time streaming performance.

• An empirical analysis to show the significant benefits
of cross-link replication.

• An architecture and implementation to gain the bene-
fits of cross-link diversity without its overhead.

2. RELATED WORK
Network support for real-time flows has received a lot of

attention over the years, and has even led to the creation of
standards such as DiffServ [17] and 802.11e [3], which pro-
vide prioritized service to packets based on the type of ser-
vice (ToS) bits carried in the header. The ToS bits, however,
are typically not preserved across administrative boundaries
on an end-to-end path. More importantly, in the context of
our focus here, such prioritization is aimed at congestion
and is of little use in the face of wireless packet loss.

Having clients connect to and maintain multiple links si-
multaneously has been explored in several pieces of prior
work. Some of this work has considered links spanning
heterogeneous technologies such as WiFi and cellular [16,
20] while other work has focused on links over a homoge-
neous technology such as WiFi (e.g., [18] enables multiple
WiFi associations by virtualizing a single WiFi NIC in soft-
ware). One motivation for combining links is to enhance
performance through bandwidth aggregation, especially in
the backhaul [14, 24]. A different motivation is to enable
seamless handoffs through a make-before-break strategy for
managing connections to multiple APs [19], with multi-path
TCP [30] providing the glue. In contrast, our goal is to
leverage the diversity of multiple WiFi links to improve re-
liability, hence our focus on real-time streaming rather than
TCP flows.

Improving reliability through link diversity has also been
considered in prior work. Multi-radio diversity (MRD) [27]
uses multiple radios to simultaneously receive the same trans-
mission and then combines the individual copies, which may
each be errored, to try and reconstruct the transmitted packet.
Leveraging such receiver diversity would require the radios

to expose the raw decoded bits to the upper layers, which is
a departure from the currently-deployed WiFi hardware and
firmware. Complementary work such as Source-Sync [29]
on sender diversity involves synchronized transmissions from
multiple APs to a receiver to improve reliability and through-
put. Again, this would be hard to accomplish with the exist-
ing WiFi hardware.

[36] also exploits the diversity of multiple links, either us-
ing multiple WiFi NICs or using a single one but switching it
between links, but without requiring any changes to the ex-
iting WiFi hardware. This work focuses on the uplink, and
employs a static switching strategy that cycles through the
available links in a round-robin fashion and furthermore em-
ploys coding to recover from (non-bursty) packet loss. Other
work [35] has assumed knowledge of the statistical models
of the packet loss for each link and has accordingly derived
the optimal switching strategy.

In contrast to the above, DiversiFi is a software-only so-
lution that does not depend on any new hardware capability,
does not perform proactive switching, and also addresses the
downlink direction. DiversiFi actually observes packet loss
on a link and then switches to a different link reactively.

There has also been work on multipath streaming over
WAN paths [21, 15, 37], with a coded or duplicated stream
of packets being spread across multiple paths. Coding and
duplication imposes an overhead over the source stream and
furthermore it is assumed that the receiver would be able to
receive the streams sent on the multiple paths concurrently.
Our focus on the WiFi last hop is complementary to this
body of work. Furthermore, DiversiFi takes advantage of
the diversity provided by multiple paths, without incurring
the overhead of switching between links or duplicated trans-
mission, unless there is actually a packet loss.

Finally, fine-grained link selection, wherein a client swit-
ches rapidly from one link/channel to another, has also been
studied [28, 22]. Our work derives from this work in that
we also advocate switching between links/channels rapidly.
However, our focus is on diversity rather than selection,
in that the client derives the benefit of multiple links. Di-
versity means that, for example, if the client does not re-
ceive a packet over one link, it can still receive the missed
packet over another link (by taking advantage of network-
side buffering), thus achieving significantly better loss re-
covery (as described in Section 4.1). In contrast, switching
links based on a link selection strategy could only possibly
help in the delivery of future packets.

3. WIFI STREAMING PROBLEMS
We often hear anecdotes of users facing poor VoIP call

quality when connected over a WiFi link. In this section,
we seek to quantify the problem and a potential solution, by
answering the following questions: (a) in real-world deploy-
ments, do WiFi-connected clients encounter worse perfor-
mance than wired clients?, and (b) are there opportunities to
exploit diversity by connecting to other APs in the vicinity?

Table 1: Change in PCR relative to the baseline. ’+’ denotes
a better (lower) PCR while ’-’ denotes a worse (higher) PCR.

Subset EE EW WW
1 All +27.7% +1.6% -18.4%
2 /24s with #E≥#W +31.9% +6.3% -11.9%
3 PC +34.2% +12.9% -5.4%
4 /24s with #E≥#W +36.6% +15.1% -3.1%

3.1 Analysis of a Large VoIP Service
We begin by analyzing a year’s worth of data from a large

VoIP service, which serves hundreds of millions of users and
carries over a billion talktime minutes each day. The service
uses a proprietary peer-to-peer protocol for calls, and sup-
ports a suite of audio codecs, including the SILK codec with
FEC support. Our analysis focuses solely on the question of
whether the WiFi link is a significant contributor to poor call
quality. We do not consider any other aspect of the service.

At the end of each call in the VoIP service, the user is
invited at random to rate their call experience on a 5-point
scale. If the user actually chooses to respond, the rating pro-
vided is recorded. We define the two lowest ratings on the
5-point scale as “poor” and accordingly calculate the poor
call rate (PCR) as the fraction of calls that are rated as poor.
For the reasons noted above and also because there may be a
bias in when users choose to provide a rating (e.g., they may
be more likely to do so when they have a poor call experi-
ence), we do not focus on the PCR itself but instead examine
how factors such as WiFi connectivity impact the PCR.

As the baseline, we first compute PCRall based on all
user-rated calls during 2014. We then compute the rela-
tive difference between PCRall and PCRX , for a subset,
X , of the calls, as PCR∆

all,X = PCRall−PCRX

PCRall
∗ 100%.

For example, if PCRall = 10%, and PCRX = 8% and
PCRY = 15% for subsets X and Y , respectively, then we
would compute PCR∆

all,X = 10−8
10 ∗ 100 = +20% and

PCR∆
all,Y = 10−15

10 ∗ 100 = −50%. In other words, the
PCR for subset X is 20% better than the baseline whereas
that for Y is 50% worse.

Given our interest in analyzing the impact of the WiFi link
on the PCR, we separate out the calls based on the type of
last-hop connectivity of the communicating peers, and fo-
cus on the two dominant types: WiFi and Ethernet. We then
compute the PCR when both peers are on Ethernet (labeled
“EE”), both are on WiFi (“WW”), and one is on Ethernet
and the other on WiFi (“EW”). As shown in row #1 of Ta-
ble 1, relative to the baseline, PCR∆

all,EE = +27.7% and
PCR∆

all,WW = −18.4%, while PCR∆
all,EW = +1.6% lies

in the middle. In other words, having Ethernet clients at both
ends yields the best (lowest) PCR, WiFi clients at both ends
the worst (highest) PCR, and Ethernet on one end and WiFi
on the other end an intermediate PCR.

Although the significantly higher PCR for WiFi-connected
peers compared to Ethernet-connected ones points to WiFi

being a contributing factor, there are a couple of concerns
with drawing this conclusion.

The first concern is that since clients on WiFi tend to be
mobile, they would likely connect from a much more di-
verse set of locations than those on Ethernet. For instance,
while the latter might be largely confined to well-connected
locations such as enterprises and homes, the former would
include more challenging enviornments such as airports and
malls, where the backhaul connection itself might be con-
strained. To mitigate any consequent bias, we only consider
pairs of /24 subnets (corresponding to the two communicat-
ing peers) for which there are at least as many data points
(i.e., user-rated calls) for EE as there are for WW. Thus, sub-
nets that primarily or overwhelmingly host only WiFi clients
are excluded, thereby avoiding the concern noted above. As
shown in row #2 of Table 1, when only such (presumably
better-connected) subnets are considered, the PCR improves
across the board (i.e., for both Ethernet- and WiFi-connected
clients) relative to the full set reported in row #1. However,
there is still a significant difference between the PCR for
Ethernet-connected clients and WiFi-connected ones.

A second concern is that many WiFi clients would be in-
expensive, low-end smartphones and tablets that might suf-
fer from deficiencies in hardware (e.g., under-powered CPUs,
low-quality microphones and speakers) that could negatively
impact user-perceived call quality. Such poor calls would
then be mistakenly attributed to WiFi as the underlying cause.
To mitigate this concern, we consider the subset of PC-class
devices, which includes a mix of Ethernet and WiFi con-
nected desktops and laptops. As shown in rows #3 and #4 of
Table 1, the PCR for the PC-class devices is better (lower)
across the board than that for the overall population, more
so when we consider just the (presumably better-connected)
subnets noted above. However, there is still a significant
difference in PCR, of about 40% relative to the baseline, be-
tween Ethernet- and WiFi-connected clients.

We conclude that the WiFi link is a significant contributor
to poor call quality, so it is worthwhile exploring how WiFi
can be made more reliable, which is our focus in this paper.

3.2 Distributed Testbed Measurements
Our analysis of data from large scale VoIP provider in

the previous section did not allow us to control the call-
ing pattern or report the absolute PCR. To overcome these
limitations, we conducted a distributed measurement study,
wherein we recruited 274 users2 across 22 countries to in-
stall on their WiFi-connected Windows PC/laptop a simple
measurement tool called NetTest that we developed. In ad-
dition, we install NetTest on 10 well-connected machines
distributed across Microsoft Azure’s datacenters worldwide.
NetTest ran VoIP-like streams (64 Kbps, 20 ms interpacket
spacing, 2 min duration) between various pairs of the par-
ticipating clients. We orchestrated the pattern of these calls,
for instance, to have a particular WiFi-connected client con-

2We obtained approval from our institution for this study.

Table 2: Poor Call Rates for different call categories.

Call Type Total Calls Poor Call Rate (%)
EW 6953 5.22
WW 1240 7.98
EW-Relayed 798 42.11
WW-Relayed 233 62.66
Total 9224 10.23

nect, in turn, to another WiFi connected client or to a well-
connected node on Azure, with these connections happening
either directly or through a relay in the cloud. This pattern
of connections is designed to mimic typical connectivity pat-
terns in a VoIP service.

Based on our dataset of 9224 simulated calls, we analyze
the voice quality of these calls by running the packet traces
through a G711 codec, and using the degree of interpola-
tion and extrapolation of voice samples to estimate Poor Call
Rate (PCR), in accordance with well established models [10,
11]. We found the overall PCR, in absolute terms, to be
10.23%. Table 2 shows a breakdown of PCR across different
call categories. Consistent with our above analysis on data
from a large VoIP service, we find that calls from a (WiFi-
connected) NetTest node to another WiFi-connected NetTest
node have a higher PCR than those to a well-connected Azure
node (7.98% vs. 5.22%, which corresponds to a 50% rela-
tive difference). In terms of spatial distribution, we find that
while 57.9% of the users experience at least one poor call,
16.3% suffered a poor call rate of 20% or higher, imply-
ing that the problem of poor streaming quality is widespread
and, in fact, quite severe for a sizable fraction of users.

Note that the much higher PCR for the relayed calls was
an artifact of the overloading of the relay nodes. Neverthe-
less, the negative impact of WiFi connectivity vis-a-vis Eth-
ernet connectivity manifests itself.

3.3 Availability of Multiple WiFi Links
Finally, we look at availability of multiple WiFi APs that

a user could potentially connect to. We went to various en-
terprise and public locations, such as offices, campuses, ser-
viced apartments, hotels, malls, etc., across 3 cities — Ben-
galuru, Seattle, and Singapore — in different countries and
determined how many BSSIDs were within range on the net-
works that our client could connect to. Figure 1 presents the
results. We see that the number of BSSIDs available was 6
at the median, with at least 2 across all locations and up to
13 in some locations. Even on an in-flight WiFi network the
client had a choice of 6 BSSIDs! Even if we only count the
number of distinct channels corresponding to the BSSIDs
seen (marked by the bold dashes in Figure 1), to discount
the possibility of virtual APs, the median count is 4, with the
range spanning 2 to 9. We conclude, therefore, that there is
amble scope for DiversiFi to operate in such locations.

The situation, however, is less rosy in residential loca-

#
 B

S
S

ID
s

Figure 1: The number of BSSIDs (bars) and distinct chan-
nels (dashes) the client could connect to at various locations.

tions. Indeed, in our NetTest dataset discussed above, which
is skewed towards residential locations, we found that in
only 30% of the cases did the client device have more than
one BSSID that it could connect to. Nevertheless, we note
that even in such locations, the incipient trend towards multi-
band APs would make multiple WiFi links available to clients.

Although the availability of multiple WiFi links does not
by itself indicate the performance of these links, the results
presented in Section 4.1 show that even a weak secondary
link could be very beneficial.

4. LEVERAGING LINK DIVERSITY
To make the case for leveraging link diversity through

replication in DiversiFi, we consider several questions:

1. How does replication for diversity compare with fine-
grained link selection proposed previously (e.g., [28])?

2. How does the diversity arising from cross-link replica-
tion (in particular, the duplication of a stream concur-
rently over two links) compare with that from temporal
replication over a single link?

3. Does cross-link replication provide benefits over PHY-
layer spatial diversity in MIMO?

Our analysis in this section focuses solely on the benefits
of diversity through replication. Later, in Section 5, we ex-
plain how this benefit can be had without the overhead of
duplicating traffic or requiring clients to have two NICs.

Unless stated otherwise, the data presented in the sub-
sections that follow is based on experiments conducted with
G.711-like UDP data streams, with a data rate of 64 Kbps,
160-byte packets, and a 20ms inter-packet spacing. We used
a Lenovo W520 ThinkPad laptop as the client, with an In-
tel Centrino Ultimate-N 6300 AGN internal WiFi NIC and
a TP-Link TL-WDN3200 dual-band ABGN USB adapter.
Each experiment comprised a 2-minute simulated call dur-
ing which a copy of the G.711-like stream was sent to each

NIC of the client. With this setup, we gathered data for 458
such simulated calls, at a variety of locations, including of-
fices, serviced apartments, downtown areas, and a confer-
ence setting in Bengaluru and Singapore. The data set in-
cludes traces corresponding to various challenging situation
such as a weak link, client mobility, external interference
from a microwave oven, and network congestion.

In terms of the metrics, we consider both network-level
ones such as the packet loss rate and the one-way delay jit-
ter, and also a voice call metric, the poor call rate (PCR).
For the network-level metrics, we divide the simulated call
into 5-second periods and focus on the worst such period,
for there is evidence that worst degradation in a (short) call
is a significant determinant of the overall user-perceived call
quality [38]. For voice call metrics, we run the network trace
through the G.711 codec, and use the degree of interpola-
tion and extrapolation of voice samples to estimate PCR,
in accordance with well-established models [10, 11]. Note
that the trace captures all network-related impairments that
a stream may suffer, including packet delay, jitter, and loss.

4.1 Cross-Link Replication vs. Link
Selection

In the presence of multiple WiFi APs in the vicinity, se-
lection, i.e., picking the one “best” link out of many choices,
is what OSes typically do today. The question is how repli-
cation compares with this simple strategy of selection. To
evaluate this question, we have the two client NICs connect
to the two strongest APs, and then implement two selection
strategies: stronger, which picks the stronger of the two
links based on the RSSI (as is typically done in OSes), and
better, which samples both links for the first 5 seconds
and settles on the one that performs better during this trial
period for the rest of the call. We compare these strategies
to cross-link, which replicates the stream on both links.

Figure 2a shows the CDF of the packet loss rate during the
worst 5-second period for the three strategies noted above.
The figure shows that cross-link dominates both selec-
tion strategies, especially in the tail. For example, while the
90th%tile packet loss rate is 37% and 84%, respectively, for
the stronger and better selection strategies, it is only
4.4% for the cross-link replication strategies.

There has also been work on fine-grained link selection,
wherein a fresh selection is made and the link switched, fre-
quently. Divert [28] is an example of such a strategy. We
evaluate this strategy, Divert, where a link switch is trig-
gered if the number of frames lost exceeds a threshold T
within a window H frames. We use a setting of H = 1 and
T = 1, as in [28]. Figure 2b shows the CDF of packet loss
rate for the worst 5-second period. We see that Divert per-
forms worse than cross-link, with the 90th%tile packet
loss rate being 10.5% for Divert compared to 4.4% for
cross-link. The key observation is that while the switch-
ing of links in Divert is triggered by one or more packet
losses, the switching is only in the hope of improved likeli-

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 20 40 60 80 100

Fr
ac

tio
n

of
 D

at
a

St
re

am
s

Loss Percentage

Cross-Link

Stronger

Better

(a)

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 5 10 15 20 25 30 35 40

Fr
ac

tio
n

of
 D

at
a

St
re

am
s

Loss Percentage

Cross-Link

Divert

(b)

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 2 4 6 8 10 12 14

F
ra

ct
io

n
of

 D
at

a
S

tr
ea

m
s

Loss Percentage

Cross-Link
Temporal (∆ = 100 ms)

Temporal (∆ = 0 ms)
Baseline

(c)

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 20 40 60 80 100

Fr
ac

tio
n

of
 D

at
a

St
re

am
s

Loss Percentage

MIMO + Cross-Link

MIMO + Stronger

MIMO + Better

(d)

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 20 40 60 80 100

Fr
ac

tio
n

of
 D

at
a

St
re

am
s

Loss Percentage

Cross-Link

Stronger

Better

(e)

Figure 2: CDF of loss rate over worst 5-second period, com-
paring cross-link replication to (a) link selection based
on stronger and better, (b) fine-grained link selection
(Divert), (c) temporal replication, (d) 802.11ac with
MIMO, and (e) for high-rate 5 Mbps streams.

Figure 3: An example trace showing how cross-link replica-
tion over a weak link A (loss rate: 4.3%) and an even weaker
link B (loss rate: 15.4%) yields a much lower loss rate of
0.88% (losses are shown as black dots along the bottom of
each plot) and also a lower delay jitter (plotted on the y axis).

hood of reception for future packets. The packets that were
lost before the switch are themselves not recovered. On the
other hand, in cross-link, the receiver has the benefit of
reception on both links, so packets that are lost on one link
will likely be received on the other.

As a final illustration of how cross-link replication is qual-
itatively different from link selection, we show, in Figure 3,
the case of two weak links, link A with an overall packet loss
rate (i.e., for the entire 2-minute simulated call, not just the
worst 5-second period) of 4.3% and link B with an overall
packet loss rate of 15.4%. With traditional link selection,
link A would clearly dominate B, so the client would be bet-
ter off just sticking to A. However, with cross-link replica-
tion across A and B, the overall packet loss rate drops to
0.88%. In other words, the better of the two links (link A)
benefits from replication over a significantly worse link (link
B), showing the benefit of diversity.

4.2 Cross-Link vs. Temporal Replication
If replication is the key to improving performance, a natu-

ral question is why do cross-link replication. Would tempo-
ral replication, i.e., sending multiple copies of each packet
spaced over time, on the same link offer the same bene-
fits? Note that any such replication would be over and above
link-layer retransmissions that already happen in the 802.11
MAC layer. However, unlike the latter, which would tend to
happen on a very fine timescale (tens of µs), the temporal
replication (temporal) would happen over a much longer
timescale. The benefit of a larger temporal spacing is the
greater diversity in the channel conditions across the multi-
ple transmissions. However, the temporal spacing would be
constrained by the deadline for the real-time stream.

We consider temporal with two copies of each packet

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 5 10 15 20

Co
rr

el
at

io
n

Co
ef

fic
ie

nt

Temporal Offset (# Packets)

Auto Correlation

Cross Correlation

Figure 4: Auto-correlation vs. cross-
correlation of the packet loss process
within a link and across two links, re-
spectively.

 0

 10

 20

 30

 40

 50

 60

1 2 3 4 5 6 7 8 9 10 >10

A
ve

ra
ge

 C
ou

nt

Burst Length (# Packets)

Stronger
Temporal (∆ = 100 ms)

Cross-Link

Figure 5: Distribution of packet loss
burst lengths for stronger link se-
lection, temporal replication, and
cross-link replication.

 0

 5

 10

 15

 20

 25

 30

Microwave Client Mobility Weak Link Wireless Congestion

Po
or

 C
al

l P
er

ce
nt

ag
e

Stronger

Cross-Link

Figure 6: The poor call rate (PCR)
with stronger link selection and
cross-link replication, broken
down by various impairments.

being transmitted, with a spacing ∆ between them of up to
100ms. (Given the 300ms limit the end-to-end round-trip
for VoIP [6], 100ms one-way on just the WiFi hop would
seem to be a reasonable limit.) Figure 2c shows the CDF
of the packet loss rate for the worst 5-second period for
temporal, with ∆ ranging from 0ms (i.e., two copies of
each packet being transmitted back-to-back) to 100ms (i.e.,
the copies being spaced apart by 100ms). We find that tem-
poral replication does improve the packet loss rate compared
to the baseline (i.e., no replication), with the improvement
being greater the larger the spacing ∆. For instance, at the
90th%tile, temporal with ∆ = 100ms has a packet loss
rate of 23.7% compared to 37.2% for the baseline. However,
temporal still underperforms cross-link, which has a
90th%tile packet loss rate of 4.4%.

Thus, it is clear that cross-link, with its spatial and
channel diversity (i.e., links to APs at different locations
and on different channels, possibly even different bands),
dominates temporal. The latter suffers from the bursty
nature of impairments on a link. We illustrate this in two
ways. First, we compute the auto-correlation of the packet
loss time series on a link and compare that with the cross-
correlation of the corresponding series across two links. Fig-
ure 4 plots the results. We see that even with a lag of 20
packets (or 400ms, given the 20ms inter-packet spacing), the
auto-correlation is greater than the cross-correlation. Sec-
ond, since packet loss bursts are particularly problematic for
real-time streams such as VoIP, we compare cross-link
and temporal in this regard. Figure 5 plots the distri-
bution of packet loss burst lengths for the baseline (which
is stronger, without any replication), temporal, and
cross-link. We see that not only does cross-link
have a lower packet loss rate than temporal, its losses also
tend to be less bursty. For instance, out of the 6000 packets
in a 2-minute simulated call, 25.6 on average were lost in
cross-link, out of which only 15.9 were in bursts of 2
or more consecutive packets. In comparison, an average of
61.9 packets were lost in temporal, with a much larger

proportion, 51.0, occuring in bursts. 3

4.3 Benefits over and above 802.11ac with
MIMO

With the advent of MIMO, WiFi provides spatial diver-
sity at the PHY layer. For example, 802.11n supports up to
4 spatial streams whereas 802.11ac supports up to 8. The
question is whether cross-link replication (cross-link)
provides any additional benefit when there already is PHY-
layer diversity through MIMO, the gains due to which have
been studied previously [33]. Since we have no control over
the APs in our experiments in the wild, we conducted experi-
ments in the lab with 6-antenna D-Link DIR-850L dual-band
802.11ac APs and 2-antenna Linksys WUSB6300 dual-band
802.11ac NICs on the client. We gathered data for 44 sim-
ulated calls and, as before, plot the CDF of the packet loss
rate for the worst 5-second period in Figure 2d. We see that
cross-link has a lower loss rate than MIMO alone.

Thus, cross-link provides benefits over and above
MIMO. Why is this? The PHY-layer diversity in MIMO arises
because the separation, on the order of the carrier wave-
length, of multiple transmit (or receive) antennas, results in
the multipath fading of the spatial streams being largely in-
dependent [26]. However, there are other link impairments
that such PHY-layer diversity does not address. For exam-
ple, with shadowing and external interference, all co-channel
spatial streams could be affected simultaneously.

4.4 Improvement in VoIP Quality
So far we have focused on packet-level metrics such as the

loss rate. However, the question remains as to how cross-
link replication would impact VoIP quality. Figure 6 plots
the estimated poor call rate (PCR) for the set of simulated
calls. We see that cross-link helps cut down the PCR
by 2.24x relative to stronger, from 12.23% to 5.45%.
While the relative improvement is even greater (3.5x) in the
cases of client mobility and wireless congestion, it is much
3These loss statistics are for the entire 2-min simulated calls
while much of the preceding analysis was for the worst 5-sec
period.

less (1.2x) in the case of microwave interference. This is
an artifact of our experimental setting wherein a majority
of the links available in the vicinity of the microwave were
impacted by the interference (there were no 5 GHz links
available). In general, greater diversity could be had from
cross-technology replication (e.g., across WiFi and 3G/4G),
but keeping the duplication overhead manageable would be
more challenging and we defer investigation of this alterna-
tive to future work.

4.5 Benefit for High Bandwidth Streams
We also experimented with real-time streams of a much

higher data rate than VoIP, as might be typical of video or
gaming. We performed 80 runs, each lasting 2 minutes,
with a 5 Mbps stream, comprising 1000-byte packets, with
a 1.6 ms inter-packet spacing. Figure 2e plots the CDF of
the packet loss rate for the worst 5-second period. Again,
we see a significant benefit from cross-link replication,
with the 90th%tile packet loss rate improving to 1.7% com-
pared to 20.5% for link selection based on stronger. This
finding, coupled with the design we present in Section 5 to
avoid the overhead of unnecessary duplication of packets on
the air, means that cross-link replication can be applied
to high-rate streams as well as to the low-rate ones.

4.6 Moving from Analysis to Design
The analysis presented above has made the case for cross-

link replication. But how do we realize this in practice? In
our experiments thus far, we have used a client with two
WiFi NICs to receive a copy of the stream on each. This is a
challenge for deployment since few clients would have two
WiFi NICs. Also, cross-link replication done naively would
mean the duplication of all packets, including the many that
are received successfully on both links. This is undesirable
not only because of the overhead on the recipient but also
because of the negative impact it could have on other clients
that share the medium, especially if the duplicated stream is
a high-bandwidth one (e.g., a video or game stream).

In the next section (Section 5), we present our design and
implementation of DiversiFi to achieve virtually all of the
benefits of full cross-link replication but with little of its
overhead.

5. DESIGN AND IMPLEMENTATION
We now present our design of DiversiFi, which centers on

cross-link stream replication for diversity, but with network-
side buffering and implicit or explicit packet selection, to
limit the actual duplication of packets in the air to just (or
close to) what is necessary. While we focus here only on
streaming in the downlink direction, which is arguably the
more challenging direction because of the lack of control
over the APs, we believe our design would apply equally in
the uplink direction and would likely be easier to implement
because the client would have direct control over what pack-
ets are sent over which link and when.

5.1 Design Requirements
For reasons of deployability, in view of the large installed

based of WiFi, we seek a solution that does not require any
changes to WiFi at the hardware layer.

For reasons of generality, we would like our solution to
be transparent to the application, be it audio/video confer-
encing [2, 7], cloud-based gaming [5, 8], or app stream-
ing [4]. We would not like to depend on any application sup-
port other than characterizing the real-time stream in terms
of the rate, deadlines, etc. (which the application would do
anyway when using protocols such as RTP [32, 31]).

For reasons of coexistence, any steps taken to improve the
quality of real-time streaming for a client should not be to
the detriment of other traffic flows, including non-real-time
ones, at that client or other clients.

5.2 Design Elements

5.2.1 Initialization
When an application initiates a real-time stream, we need

to know the stream rate, packet size, and the packet dead-
lines, so that the network stack, whether at the local host or
the remote peer, can take the appropriate actions in respect of
replication, buffering, and selection, as noted below. Since
real-time streaming applications are typically based on the
Real-Time Protocol (RTP) [32], we can use the payload type
field to look up the corresponding profile [31], without the
need for modifying applications.

5.2.2 Multi-Link Association
To enable a client with a single WiFi NIC to associate

with multiple APs, we use past work on multi-link associ-
ation (e.g., [18]). In a nutshell, the client creates multiple
virtual adapters, each with a different MAC address, and a
separate AP association. It then switches between the links,
changing channels, if necessary, and using the 802.11 power
save mode (PSM) to keep its association on a link alive even
when it has switched away to a different link.

In DiversiFi, the client creates separate virtual adapters
and links for the real-time stream. For instance, in the setup
shown in Figure 7, the client has two virtual adapters, labeled
as primary and secondary, for the real-time stream, each as-
sociated with a different AP. The primary associates with AP
chosen based on the standard OS policy (e.g., strongest AP)
and the secondary with next-best AP. In addition, it has a
default virtual adapter, DEF , used for all of the other (non-
real-time) traffic (not shown in the figure).

At any point in time, the primary real-time virtual adapter
would be associated with the same AP and on the same chan-
nel asDEF . So switching between the primary adapter used
for a real-time flow and DEF used for a non-real-time flow
would not incur any overhead.

However, switching between links on different channels,
such as the primary and secondary links for a real-time flow,
can take a non-negligable amount of time, e.g., 2.3ms in

our measurements reported in Section 6. So minimizing the
frequency of switching between the primary and secondary
links would be desirable, to minimize a negative impact on
other flows on DEF , in line with our goal of coexistence.

5.2.3 Stream Replication
Cross-link stream replication lies at the heart of DiversiFi

and the benefits reported in Section 4. The question is where
and how the packet stream is replicated.

One option is to replicate at the source, i.e., the remote
peer. However, this would not only require modification of
the source, it would also entail the overhead of duplicating
traffic over the entire end-to-end WAN path.

An alternative would be to replicate the stream close to the
receiver, for instance, at an SDN-capable switch on an enter-
prise LAN. While this would avoid the overhead of duplica-
tion on the WAN, it would require the presence of an SDN-
capable switch and also the ability for the receiver to config-
ure the switch by installing suitable match-action rules [12],
say using APIs such as [23].

5.2.4 Network-Side Buffering
While cross-link stream replication helps improve the qual-

ity of a real-time stream, it does so at the cost of wastefully
duplicating on the secondary link the overwhelming major-
ity of packets that are delivered successfully on the primary
link itself. Packet buffering, along with packet selection dis-
cussed next in Section 5.2.5, is key to mitigating this over-
head. The replicated packets are held in a buffer in the net-
work, close to the receiving client (to help minimize the ad-
ditional latency, should these need to be delivered), yet not
delivered over the air (on the secondary link) unless needed.

Network-side buffering could be performed at the APs
themselves, taking advantage of the power save mode (PSM),
whereby the AP would start buffering packets destined to
the client when the client sends a sleep message (Null frame
with the Power Management bit set) and would deliver the
buffered packets when the client sends a wakeup message
(Null frame with the Power Management bit cleared). How-
ever, as discussed in Section 5.3.1, this would require slight
modifications to the AP to ensure efficiency.

An alternative, which would leave the AP unmodified, is
to perform buffering at a separate middlebox, as discussed
in Section 5.3.2.

5.2.5 Packet Selection
While buffering close to the client allows the possibility of

packets being delivered with a low (additional) latency, we
need a way for the client to identify the packets of interest
and have these delivered selectively. The method used for
selection would depend on where buffering happens. If it is
in the AP as part of the standard PSM processing, the selec-
tion is done implicitly, as discussed in Section 5.3.1 below.
If it is in the middlebox, selection could be done explicitly,
using the RTP sequence number and timestamp for identifi-

cation. However, as noted in Section 5.3.2 below, our current
implementation uses a simpler alternative.

5.3 Design of DiversiFi
An “End-to-End” approach to realizing DiversiFi would

be to work with an unmodified network infrastruture, in par-
ticular, unmodified APs and no middleboxes. This is illus-
trated in Figure 7(a). As noted in Sections 5.2.4, the PSM
mechanism could be used to perform network-side buffering
on the secondary link. However, this can be quite inefficient.

The per-client buffer at the AP is typically managed as a
tail-drop queue and moreover can grow to a large size (e.g.,
the default size is 64 packets in OpenWRT, and 50-500 pack-
ets in Aruba [13]). When the client, upon missing a packet
on the primary link, switches to the secondary link and sends
a wakeup message, the AP would only deliver the missing
packet after it has delivered the possibly many packets ahead
of it in the queue. This would result in a significant overhead
due to unnecessary duplication of packets over the air. Fur-
ther, if the tail-drop queue at the secondary AP fills up, new
packets will be dropped, making these unavailable for recov-
ery should these be lost on the primary link.

5.3.1 AP with Minimal Modification
The key source of inefficiency above is that the secondary

AP’s buffer is maintained as a tail-drop queue that can grow
to a large size. What we need instead is a buffer that holds
a small number of the most recent packets. Accordingly, we
introduce two changes in how the AP’s buffer is managed:
head-drop behaviour instead of tail-drop, and a settable max-
imum queue size, as illustrated in Figure 7(b). Note that
these changes only apply to the real-time links; the default
link, DEF , would remain unaffected.

The maximum queue size should be set based on the char-
acteristics of the stream. For example, for a VoIP stream, if
we have a budget of 100ms for the WiFi hop (as noted in
Section 4.2) and the inter-packet spacing is 20ms, the max-
imum queue size should be set to 5 packets. In general, the
client could signal the desired maximum queue size to the
AP on a per virtual interface basis, using an unused informa-
tion element in the 802.11 association request frame.

With this “Customized AP” approach (the client logic for
which is shown in Algorithm 1), head-drop queuing with a
small queue size would ensure that the queue is purged of all
but a small number of the most recent packets. Therefore,
when the client switches to the secondary link to recover a
packet it has missed on the primary link, it would at most re-
ceive the small number of packets that are in the secondary’s
queue. Thus, much of the inefficiency of the “End-to-End”
approach is avoided.

As a further optimization, the client could perform im-
plicit packet selection (Section 5.2.5), by switching to the
secondary link just a little before the desired (i.e., missing)
packet reaches the head of the queue. Then, in principle, the
client should be able to receive the desired packet, and im-

Figure 7: Architectural alternatives for DiversiFi. Solid/dashed lines show the data/control flow.

mediately switch back to the primary link, thereby avoiding
any duplication. However, in practice we find that the AP
could also transmit additional queued packets, when all of
these are handed down to the hardware queue in one go. We
quantify the consequent overhead in our experiments pre-
sented in Section 6.

Note that although there would be additional delay in-
curred in retrieving a missing packet over the secondary link,
this would not impact the user-perceived quality so long as
it is less than the playout delay. The MaxTolerableDelay pa-
rameter in Algorithm 1 is set accordingly, and any packet not
retrieved within this period is deemed as lost. Hence, in our
evaluation we focus on the residual packet loss even after the
secondary link has been tapped rather than on the additional
delay.

While the “Customized AP” approach calls for changes
to the typical AP behaviour (albeit no hardware changes),
we note that head-drop queuing is gaining broader support
for other reasons (e.g., the CoDel proposal [1] to address the
bufferbloat problem) and is already supported in certain AP
implementations (e.g., OpenWRT). Ubuntu, which is used
as an embedded OS, supports both head-drop and a settable
queue size [9]. Further, we believe it would be easy for AP
vendors to implement these.

5.3.2 Unmodified APs with Middlebox
An alternative that would leave the AP unmodified is to

move the functionality of network-side buffering into a sep-
arate middlebox. An SDN-capable switch would replicate
the stream, sending one copy directly to the client via its
primary link and the second copy to the middlebox (which
would otherwise not be on the data path). The middlebox
would perform network-side buffering in lieu of buffering at
the secondary AP. Figure 7(c) illustrates this architecture.

When the client misses a packet on the primary link and
wishes to retrieve it over the secondary link (to benefit from
link diversity, per Section 4), the client switches to the sec-
ondary link and sends a request to the middlebox for the spe-
cific packet(s) that it desires. After receiving the packets, it
switches back to the primary link. Depending on the packet
deadlines, this process can be defered a little to allow the
client to retrieve more than one missing packet in one go. In
any case, the secondary AP merely acts as a conduit for the
packets forwarded to it by the middlebox and does not itself

Algorithm 1 Client logic with “Customized AP”. Upon
missing a packet, the client switches to secondary just in
time for the missing packet to reach the head of the queue.
The client also switches to the secondary periodically, just
to keep the association alive.

1: procedure LINKSWITCH(IPS, MTD, LSL) // InterP-
ktSpacing = 20 ms, MaxTolerableDelay = 100 ms,
LinkSwitchingLatency = 2.8 ms

2: SRT← 40 ms // SecondaryResidencyTime
3: PLT← 2 * IPS (= 40 ms) // PacketLossTimeout
4: AKT← 30 s // AssociationKeepaliveTimeout
5: APQL← MTD

IPS (= 100/5 = 5) // APQueueLen
6: ETTRH← IPS * APQL - LSL // ExpectedTimeToReachHead
7: while true do
8: ReceivePackets
9: if PacketNotReceived then

10: SetPacketAsLostOnPrimary
11: ScheduleSwitchToSecondaryAfter (ETTRH)
12: ScheduleSwitchBackToPrimaryAfter (ET-

TRH+PLT)
13: if LostPacketReceivedOnSecondary then
14: SwitchBackToPrimaryImmediately
15: if SecondaryInactiveFor(AKT) then
16: SwitchToSecondary
17: ScheduleSwitchBackToPrimaryAfter(SRT)

perform any buffer management.
Since the middlebox is under our control and the client

performs explicit packet selection, this approach could, in
principle, avoid duplicating any packets. However, our cur-
rent implementation is based on a simple start-stop protocol,
wherein the middlebox starts delivering packets upon receipt
of start message and stops upon receiving a stop message. So
there could be some duplication of packets.

Further, replication at an SDN-capable switch on the lo-
cal network would mean that the remote peer remains unin-
volved. Such a deployment, with a middlebox and an SDN-
capable switch that the client has the credentials to install
rules on, would likely be feasible in settings such as enter-
prises, campuses, etc., where the network is under the con-
trol of a single entity. We evaluate middlebox performance
in Section 6.4.

5.4 Client-side Implementation
We have implemented the client-side piece of DiversiFi

as an user-level library that delivers real-time streams to ap-
plications. Multi-link association is implemented using the
stock ath9k driver on the Linux 2.6.33 kernel, which already
supports multiple instances of virtual station mode needed to
maintain multiple associations. The stock implementation
had minor bugs, which we fixed. For instance, one corner
case related to the the power-save message not being suc-
cessfully received by the AP. To address this, we added 5
driver-level retry attempts to increase reliability, and also en-
sured that the channel switch operation is only invoked after
the power-save message has been successfully delivered.

With regard to deployability on other platforms, both Win-
dows and Android WiFi drivers also include support for mul-
tiple virtual NICs, for supporting WiFi-Direct mode in con-
junction with station mode. We believe that multi-station
mode support can be enabled through software-only changes,
in the WiFi driver, similar to the existing implementation in
the ath9k Linux driver.

6. EVALUATION
The goal of our evaluation is to see if our implementa-

tion of DiversiFi over a single NIC and carefully managed
network-side buffering, yields a diversity gain along the lines
of two NIC experiments showed. We are also interested in
characterizing the overhead and coexistence issues, if any.

6.1 Experimental Setup
Our experiment setup consisted of a Linux laptop equipped

with a single NIC — an Ath9k based DLink 802.11bgn PCM-
CIA card — which serves as the client. We implemented
minimal AP customization from Section 5.3.1 on Netgear
WNDR3800 802.11n AP with 2x2 MIMO running Open-
Wrt. We setup the APs on two different 2.4GHz channels
(1 and 11) at the diagonal ends of a rectangular office space
(30mX15m area) with cubicles and walls. At most locations
within the office, the client could maintain concurrent asso-
ciations with both APs. The stronger of the two links is set
as the Primary, and the other one as the Secondary.

At each location we simulated VoIP calls from a wired
client on the LAN to the WiFi-client. The WiFi-client then
requests the sender-side DiversiFi user library to replicate
the stream to the IP address of the secondary link in addition
to the primary.

Separately, we also ran experiments with a middlebox, the
details of which appear in Section 6.4 below.

6.2 Loss Recovery
We conducted 61 sets of runs that interleaved single link

experiments and DiversiFi at different locations in the of-
fice building. We calculated the packet loss rate in worst
5-second window during each call. Figure 8 plots the CDF
of these loss rates, both for the single link case (where the
client connects over the stronger, primary link), and for Di-

versiFi (where the client connects over both primary and sec-
ondary links). We find that DiversiFi significantly outper-
forms the single-link case. For instance, while the 90th%tile
loss rate (computed by considering the worst 5-second pe-
riod for each of the 61 calls) for the primary link was 11.6%
and for the secondary link was 52%, that for DiversiFi was
only 1.2%. The large gain with DiversiFi arises because it is
quite unlikely that the worst 5-second period experienced on
the secondary would coincide with that on the primary.

DiversiFi also helps cut down the incidence of burst losses,
as shown in Figure 9. When just the primary link is used,
each 2-minute call suffers a loss of 44.3 packets on average,
35.9 of those in bursts of two or more packets. In compar-
ison, with DiversiFi only 0.9 out of the 2.7 packets lost on
average per call was in bursts (which implies that only a frac-
tion of the calls suffered any burst losses at all).

This performance improvement also translates into an im-
provement in the poor call rate (PCR), which drops from
4.9% and 26.2%, respectively, when the primary link or the
secondary link alone is used, to 0% with DiversiFi.

6.3 Duplication Overhead and Fairness
While DiversiFi yields significant gains, the question is

how much overhead is imposed by replication and what im-
pact it has on fairness to other, non-real-time traffic. We
focus here on the duplication overhead over WiFi; the over-
head over the WAN would either be 100% if the replication
is done at the source or 0% if it is done at a local middlebox.

For the set of 61 calls, the average packet loss rate on the
primary link alone is 1.97%. (This is computed over the
entire length of the calls, not just the worst 5-second period
considered above.) With DiversiFi, the average packet loss
rate drops to 0.05% because an overwhelming majority of
the primary link losses are recovered on the secondary link.
In addition to these useful transmissions over the secondary
link, 0.62% of the packets were transmitted unnecessarily
over the secondary link.

This (wasteful) duplication overhead of about 1 packet
(0.62%) for every 3 lost on the primary (1.97%), arises be-
cause of two reasons: first, the AP inserts multiple packets
into its hardware queue and transmits all of them even when
the packet that the client is looking for is at the head of the
queue, and second, the client has to receive packets from
the secondary AP at some minimal periodicity, irrespective
of whether there is packet loss, just to keep its (secondary)
association alive.

To evaluate the impact of such wasteful duplication on
other traffic, we performed iperf-based TCP measurements
concurrently with a VoIP flow, with DiversiFi turned on or
turned off alternately. Note that even when DiversiFi is turned
on, the TCP traffic is confined to theDEF link (Section 5.2.2).
However, when DiversiFi is turned on, the NIC would be
switched between channels, so we need to examine the pos-
sibility of a performance impact on traffic flowing on DEF .

The results from 26 sets of runs is shown in Figure 10,

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 20 40 60 80 100

Fr
ac

tio
n

of
 D

at
a

St
re

am
s

Loss Percentage

DiversiFi

Primary

Secondary

Figure 8: CDF of loss rates over the
worst 5-second periods.

 0

 10

 20

 30

 40

 50

 60

1 2 3 4 5 6 7 8 9 10 >10

Av
er

ag
e

Co
un

t

Burst Length (# Packets)

Primary
Secondary

DiversiFi

Figure 9: Distribution of packet loss
burst length.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-4000 -2000 0 2000 4000

Fr
ac

tio
n

of
 D

at
a

St
re

am
s

Difference in TCP Throughput (Kbps)

Throughput(Primary) - Throughput(DiversiFi)

Figure 10: Difference in throughput of
TCP flow, with and without DiversiFi.

which plots the CDF of the difference in TCP throughput
between staying continuously on the primary link (Diver-
siFi is turned off) and switching back-and-forth between the
primary and secondary links (DiversiFi is turned on). We
find the points distributed almost evenly about the zero dif-
ference line, indicating that DiversiFi has little impact on the
throughput of the TCP flow. Indeed, over the 26 runs, the av-
erage TCP throughput with DiversiFi turned on is 3.9 Mbps
compared to 4.0 with it turned off, a difference of only 2.5%.

Thus, we conclude that DiversiFi provides significant gains
for real-time VoIP flows while imposing little overhead in
terms of channel switching or unnecessary duplication, thereby
ensuring coexistence with competing, non-real-time traffic.

6.4 Middlebox Performance
We also evaluate the performance of network-side buffer-

ing at a middlebox compared to buffering at the AP. We im-
plemented the middlebox using MIT Click router software
V2.1 running on a quad-core i7 16GB RAM machine, and
also setup an SDN switch using Open vSwitch V2.0.2, and
Floodlight controller V1.0 software. The DiversiFi client li-
brary requests the middlebox to start replicating a specific
real-time flow destined to the same client, which triggers
the middlebox to have a match-action rule for replication in-
stalled in the SDN switch. The replicated packets are buffered
in a shallow head-drop queue and retrieved by the client
whenever packet loss is detected.

Table 3: Delay in milliseconds to collect a buffered packet
on the Secondary link for two schemes

Total Switching Network Queuing
Middlebox 5.2 2.3 2 0.9
AP 2.8 2.3 0.5 -

One question is how much additional latency is entailed
in the client contacting the middlebox for missing packets
as compared to retrieving these from the secondary AP. We
measured the delay between the reception of last packet on
the primary link and the first packet received on the sec-
ondary link across 100 runs of primary-to-secondary switches
Table 3 reports the total delay as well as the break up. Chan-
nel switching operations, which includes sending power-save

and wakeup messages, takes up an average latency of 2.3
plus 0.5 = 2.8 ms. An additional 5.2 minus 2.8 = 2.4 ms
delay is introduced by the middlebox, which is likely to be
acceptable for real-time streaming applications.

To evaluate the scalability of the middlebox, we initiated
concurrent real-time streams numbering between 0 to 1000,
where each stream gets replicated and sent to the middlebox.
We then measured the delay experienced by a WiFi-client
to retrieve a lost packet from the middlebox. We find that
the delay increases very gradually with an increasing load of
flows. At 1000 streams, the total delay, including switching
overhead, increased by only 1.1 ms compared to zero load,
suggesting that a single middlebox can easily serve a large
WiFi deployment.

7. CONCLUSION
WiFi links are often a significant cause of poor perfor-

mance for real-time interactive streaming such as VoIP. Di-
versiFi helps improve performance for such streaming sig-
nificantly using a simple idea: cross-link replication of the
stream over the multiple WiFi links that are often available
to a client. Such replication helps cut down the poor call
rate for VoIP by 2.24x. We show how network-side buffer-
ing allows DiversiFi to provide the benefits of replication to
real-time flows, with little duplication overhead and while
ensuring coexistence with non-real-time applications.

Acknowledgments
We thank the anonymous ACM CoNEXT 2015 reviewers for
their constructive feedback. Author Baranasuriya was an in-
tern at Microsoft Research India during part of this work. He
was supported in part by A*STAR, Singapore, under SERC
Grant 1224104049.

8. REFERENCES
[1] Controlled Delay (CoDel).

http://www.bufferbloat.net/projects/codel.
[2] Google Hangouts.

http://www.google.com/+/learnmore/
hangouts/.

[3] IEEE 802.11e Standard, 2005.
http://standards.ieee.org/findstds/
standard/802.11e-2005.html.

[4] Microsoft Azure RemoteApp.
https://www.remoteapp.windowsazure.com/.

[5] OnLive. https://www.onlive.com/.
[6] Quality of Service for Voice over IP.

http://www.cisco.com/c/en/us/td/docs/
ios/solutions_docs/qos_solutions/
QoSVoIP/QoSVoIP.pdf.

[7] Skype. http://www.skype.com/.
[8] Sony PlayStation Now.

http://www.playstation.com/en-us/
explore/psnow/.

[9] Ubuntu Stochastic Fairness Queueing.
http://manpages.ubuntu.com/manpages/
trusty/man8/tc-sfq.8.html.

[10] P.862 : Perceptual evaluation of speech quality (PESQ): An
objective method for end-to-end speech quality assessment
of narrow-band telephone networks and speech codecs,
February 2001. ITU-T Recommendation.

[11] P.862.1 : Mapping function for transforming P.862 raw result
scores to MOS-LQO, November 2003. ITU-T
Recommendation.

[12] UDP packet replication using Open vSwitch, November
2013. http://blog.sflow.com/2013/11/
udp-packet-replication-using-open.html.

[13] Buffer size of AP for clients in power save mode, June 2014.
http://community.arubanetworks.com/
t5/Controller-Based-WLANs/Buffer-size-
of-AP-for-clients-in-power-save-mode/
ta-p/176888.

[14] G. Ananthanarayanan et al. COMBINE: Leveraging the
Power of Wireless Peers through Collaborative
Downloading. In MobiSys, 2008.

[15] J. Apostolopoulos and M. Trott. Path Diversity for Enhanced
Media Streaming. IEEE Communication Magazine,
42:80–87, 2004.

[16] A. Balasubramanian, R. Mahajan, and A. Venkataramani.
Augmenting mobile 3G using WiFi. In MobiSys, 2010.

[17] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and
W. Weiss. An Architecture for Differentiated Services,
December 1998. RFC 2475.

[18] R. Chandra, V. Bahl, and P. Bahl. MultiNet: Connecting to
Multiple IEEE 802.11 Networks Using a Single Wireless
Card. In INFOCOM, 2004.

[19] A. Croitoru, D. Niculescu, and C. Raiciu. Towards Wifi
Mobility without Fast Handover. In NSDI, May 2015.

[20] S. Deng, R. Netravali, A. Sivaraman, and H. Balakrishnan.
WiFi, LTE, or Both? Measuring Multi-Homed Wireless
Internet Performance. In IMC, 2014.

[21] L. Golubchik, J. Lui, T. Tung, A. Chow, A. Lee,
G. Franceschinis, and C. Anglano. Multi-path Continuous
Media Streaming: What are the Benefits? Performance
Evaluation, 49:429–449, 2002.

[22] R. Gummadi, D. Wetherall, B. Greenstein, and S. Seshan.
Understanding and Mitigating the Impact of RF Interference
on 802.11 Networks. In SIGCOMM, 2007.

[23] Jamie Stark. Lync and Software-Defined Networking,
December 2013.
http://blogs.technet.com/b/lync/
archive/2013/12/17/lync-and-software-
defined-networking.aspx.

[24] S. Kandula, K. C.-J. Lin, T. Badirkhanli, and D. Katabi.

FatVAP: Aggregating AP Backhaul Capacity to Maximize
Throughput. In NSDI, 2008.

[25] K. Lee, D. Chu, E. Cuervo, Y. Degtyarev, S. Grizan, J. Kopf,
A. Wolman, and J. Flinn. Outatime: Using Speculation to
Enable Low-Latency Continuous Interaction for Cloud
Gaming. In MobiSys, 2015.

[26] A. Lozano and N. Jindal. Transmit Diversity vs. Spatial
Multiplexing in Modern MIMO Systems. IEEE Transactions
on Wireless Communications, 9:186–197, 2010.

[27] A. K. Miu, H. Balakrishnan, and C. E. Koksal. Improving
Loss Resilience with Multi-Radio Diversity in Wireless
Networks. In Mobicom, 2005.

[28] A. K. Miu, G. Tan, H. Balakrishnan, and J. Apostolopoulos.
Divert: Fine-grained Path Selection for Wireless LANs. In
MobiSys, 2004.

[29] H. Rahul, H. Hassanieh, and D. Katabi. SourceSync: A
Distributed Wireless Architecture for Exploiting Sender
Diversity. In SIGCOMM, 2010.

[30] C. Raiciu, C. Paasch, S. Barre, A. Ford, M. Honda,
F. Duchene, O. Bonaventure, and M. Handley. How Hard
Can It Be? Designing and Implementing a Deployable
Multipath TCP. In NSDI, 2012.

[31] H. Schulzrinne and S. Casner. RTP Profile for Audio and
Video Conferences with Minimal Control, July 2003. RFC
3551.

[32] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson.
RTP: A Transport Protocol for Real-Time Applications, July
2003. RFC 3550.

[33] V. Shrivastava, S. Rayanchu, J. Yoon, and S. Banerjee.
802.11n Under the Microscope. In IMC, 2008.

[34] T. Szigeti and C. Hattingh. End-to-End QoS Network
Design: Quality of Service in LANs, WANs, and VPNs. Cisco
Press, November 2004.
http://www.ciscopress.com/store/
end-to-end-qos-network-design-
quality-of-service-in-9781587051760.

[35] E. Vergetis, R. Guerin, and S. Sarkar. Packet-Level Diversity
- From Theory to Practice: An 802.11-based Experimental
Investigation. In ITC, 2005.

[36] E. Vergetis, E. Pierce, M. Blanco, and R. Guerin.
Packet-Level Diversity - From Theory to Practice: An
802.11-based Experimental Investigation. In Mobicom, 2006.

[37] A. Vulimiri, P. B. Godfrey, R. Mittal, J. Sherry,
S. Ratnasamy, and S. Shenker. Low Latency via
Redundancy. In CoNEXT, 2013.

[38] B. Weiss, S. Moller, B. Belmudez, and B. Lewcio. Analysis
of Call-Quality Prediction Performance for Speech-only and
Audio-Visual Telephony. In IEEE QoMEX, September 2014.

