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Abstract
We present an automatic method to recover high-resolution texture over an object by mapping detailed pho-

tographs onto its surface. Such high-resolution detail often reveals inaccuracies in geometry and registration, as

well as lighting variations and surface reflections. Simple image projection results in visible seams on the surface.

We minimize such seams using a global optimization that assigns compatible texture to adjacent triangles. The key

idea is to search not only combinatorially over the source images, but also over a set of local image transforma-

tions that compensate for geometric misalignment. This broad search space is traversed using a discrete labeling

algorithm, aided by a coarse-to-fine strategy. Our approach significantly improves resilience to acquisition errors,

thereby allowing simple and easy creation of textured models for use in computer graphics.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture

1. Introduction

Our goal is to generate a seamless texture over a surface
model from photographs taken with an ordinary handheld
camera. Given the surface shape and the set of views around
it, texturing the model is a seemingly simple process: each
point on the surface can be back-projected to one of the
views to retrieve color at that point. In an ideal scenario
(where the geometric model is accurate, the views are per-
fectly registered, and there are no reflections or highlights),
the resulting texture is seamless. However, in practice the
reconstructed geometry is only approximated, the views are
rarely registered perfectly, and the model is not Lambertian.

Let us consider the simple doll model in Figure 1. The sim-
plest approach is to map texture onto each triangle from the
highest-quality photograph visible from it. However, even
with a relatively detailed and accurate geometric model, im-
perfect registration of the views leads to noticeable seams
(Figure 1(b)). One possible remedy is to locally blend to-
gether several images, but this would result in ghosting ar-
tifacts where the features do not align. In typical scenarios,
the model geometry is more complex, and the creation of a
seamless texture is challenging.

To overcome the artifacts introduced by per-triangle deci-
sions, Lempitsky and Ivanov [LI07] develop a global opti-

mization that favors smoothness in the texture assignment
and penalizes the introduction of sharp seams. Figure 1(c)
shows results of their approach, which indeed alleviates
many artifacts. However, as shown in Figure 1(c), some
seams often remain due to misregistration and imperfect ge-
ometry. The errors in Figure 1(b,c) suggest that it is unlikely
that simple image fusion techniques alone (e.g. graph-cut,
blending, etc.) can fully resolve the problem of broken image
features. Closer inspection of the problem areas reveals that
the errors are mostly translational. This suggests that locally
shifting the textures may be the key to achieving seamless
results.

We present a generalized optimization approach to over-
come inaccuracies in camera registration and geometry re-
construction. Our technique introduces additional flexibil-
ity into the selection of the texture projection parameters.
We search this broader space using a multi-label graph-
cut optimization [Kol06], with a coarse-to-fine label refine-
ment strategy. This augmented search space significantly im-
proves the creation of seamless textures, as demonstrated in
Figure 1(d).

Process overview. We take numerous photographs (typi-
cally a few dozen) around the subject model in free style,
without restrictions or constraints. Of course, we aim to
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(a) Input images (b) Greedy (c) [LI07] (d) Ours

Figure 1: Overview of our contribution. (a) The input photographs. (b) Back-projecting the photographs onto the geometry of

the doll by selecting the best image for each triangle in a greedy manner results in strong artifacts. (c) Optimizing the selection

of images for texture coherence according to [LI07] alleviates the problem, but seams and broken texture are still noticeable.

(d) Our texture montage results are nearly seamless.

create a collection of photographs that cover the subject
from all directions, or at least from directions in which
the subject will be subsequently rendered. The set of pho-
tographs is then registered and calibrated using bundle ad-
justment [TMHF00] to provide a mapping between 3D
points and pixels in the images, as illustrated in Figure 2(a).

Once the photographs are registered, the object geometry
can be modeled. There are several effective techniques to
reconstruct the surface geometry, as reviewed in Section 2.
To emphasize the robustness of our texturing approach, we
chose a relatively simple and straightforward method based
on visual hull computation. We manually segment the object
in a number of images, and apply silhouette carving [Lau94]
to create a voxelized approximation of the model interior.
A surface triangle mesh is then generated using marching
cubes, and is smoothed and simplified to create an approxi-
mate model as shown in Figure 2.

Given the approximate registration and surface mesh, we
seek to reconstruct the texture from the images. This texture
is defined using a projective map from each mesh triangle to
one of the images. Finding these mappings is the focus of
this work (Section 3).

Solution approach. Accommodating the registration and
modeling errors would seem to require a full perspective
correction for the texture mapped on each surface triangle.
Optimizing these perspective matrices would be costly, and
moreover their many degrees of freedom would likely re-
quire expensive regularization. Instead, we are able to ob-
tain excellent results using a simple screen-space translation
per triangle. The intuition is as follows. Among the pos-
sible view rotation errors, pitch and yaw effectively result
in image translation; it is only roll that presents a problem,
and it is usually recovered accurately by bundle adjustment.

Among the possible view translation erros, only translation
along the depth presents a problem as it results in image
scaling. Moreover, when the triangle mesh is fairly dense,
second-order effects beyond local translation are effectively
distributed over the many small triangles. Thus we leverage
the fact that acquisition errors are well approximated locally
by translation shifts within the images.

The magnitude of the needed translations can also be
bounded by the reprojection errors provided by the calibra-
tion (via 3D reprojection errors) and modeling phases (via
reconstruction accuracy). After globally optimizing the tex-
ture mappings, we apply a gradient-domain method on the
surface mesh to attenuate color differences between adjacent
projected images.

2. Previous Work

Image-based modeling has been researched extensively over
the last decade [Dow02]. It involves a sequence of challeng-
ing tasks including calibration, registration, reconstruction,
and texturing. Each of these steps has its own methodology
and adds some degree of uncertainty and error. Our work fo-
cuses mainly on the texturing task, and accordingly also the
overview in this section.

Calibration. Advanced calibration techniques are based
on bundle adjustment, which simultaneously estimates the
camera parameters and the positions of a sparse set of 3D
points [TMHF00]. Such techniques have evolved to account
for various distortions like those present in consumer cam-
eras. Per-image calibration can be further improved using
object silhouettes and image matching [LH01].

Reconstruction. From the calibrated images, surface re-
construction creates a more complete description of the
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(a) (b) (c)

Figure 2: Overview of the method. Given a set of calibrated images and a triangle mesh model, we compute a seamless texture

for it. The examples shown in this paper use standard point-and-shoot camera for the source imagery. The model is either

downloaded from the web or approximated via silhouette-carving. The output is a texture map for the given object.

object shape, in the form of a dense triangle mesh. A
standard approach is multi-view stereo, which infers depth
by finding matching neigbhorhoods in the source im-
ages [SCDS06]. Some techniques are based on volumetric
reconstruction [Dye01]. The visual hull [Lau94] is the 3D
intersection of extruded image silhouettes, and can be com-
puted quickly and efficiently. A refinement is space carv-
ing [KS98] which successively removes voxels that project
to different colors in the images.

Texturing. Our focus is on texturing the reconstructed
shape from the input images. As each image covers only part
of the object, one must combine the sources to form a sin-
gle coherent texture. Several techniques form the texture by
blending the available images [WKSS01, Bau02], with the
goal of finding per-texel blend weights that produce the best
merged texture. One drawback of blending is that it can lead
to ghosting and blurring artifacts when the textures are geo-
metrically misaligned.

To reduce such artifacts, Lempitsky and Ivanov [LI07] pose
texturing as an image stitching problem. Each surface tri-
angle is projected onto the images from which it is visible,
and its final texture will be assigned entirely from one im-
age in this set. The goals are to select the best texture source
and to penalize mismatches across triangle boundaries. This
results in a Markov Random Field problem. Lighting varia-
tions are corrected as a postprocess using a piecewise con-
tinuous function over the triangles. Our approach builds on
this work, with two major differences. We expand the com-
binatorial search to consider local image translations; this
change lets the technique compensate for calibration and re-
construction errors, and proves remarkably effective. Sec-
ond, to eliminate the residual lighting variations, we rely on
Poisson blending [PGB03] in the texture image domain.

Interestingly, the approach of locally shifting texture con-

tent per-triangle has been explored previously in the context
of texture synthesis, by Soler et al. [SCA02]. Given a tex-
ture exemplar, a seamless texture is formed over a surface
mesh by optimizing a set of per-face imaging transforma-
tions. Their approach works in a greedy manner rather than
with a global MRF. Eisemann et al. [EDM∗08] deal with the
misalignment by computing pairwise warping between the
images using optical flow. These are then fused at render-
ing time. Both the computation and the rendering rely on the
GPU. When one coherent texture can be prepared ahead of
time, the rendering effort is greatly simplified both in term
of storage and computation as only one texture is needed.
When the object and camera calibration are indeed accurate,
Super-Resolution methods may be applied on the textures as
well as is suggested by [GC09].

Several recent techniques provide semi-automated tools
to allow user placement of texture content onto shapes,
e.g. [KSG03,ZWT∗05,SGW06,TT09]. These techniques let
the user specify a number of matching points between the tri-
angle mesh and an image region, and solve a relaxation prob-
lem to find a low-distortion map onto the surface. Our work
differs in that it automatically selects content from among
multiple photographs, and most significantly, it addresses the
problem of minimizing seams between the mapped regions.

Thormählen et al. [TS08] address the problem of creating
“ortho-images” (orthographic views from orthogonal direc-
tions) given a set of calibrated images of an object. This pro-
cess can be viewed as that of texturing an extremely simpli-
fied object, namely an axis-aligned box.

3. Image-based texturing

Overview. Our core strategy for texturing builds on the ap-
proach of Lempitsky and Ivanov [LI07]. The texture on each
mesh triangle is defined by projecting the triangle face onto
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Object face Fi

Image I1Image I2 Labels

Figure 3: Mapping from images to a surface triangle. Given

errors in the surface location or the camera parameters, the

default recovered projection is inaccurate. Our solution is to

allow translation shifts within the images.

one of the input images {I1, . . . IN}. This projection between
faces and images uses the camera parameters and the mesh
geometry.

We seek to assign a label to each face that identifies
its associated input image. This label assignment has two
goals: (1) selecting texture content with high resolution, low
anisotropy, and high contrast, and (2) forming seamless tex-
ture joins between adjacent triangles.

Our contribution is to allow additional degrees of freedom
into the texture projections to compensate for inaccuracies
in the image acquisition, bundle adjustment, and particu-
larly the geometric model. This additional flexibility results
in significantly fewer seam artifacts in the final surface tex-
ture montage.

Specifically, we expand the space of face labels to include an
image-space transformation, which is applied after the pro-
jection in image space. As discussed in Section 1, we let this
transformation be a simple translation. The label associated
to each triangle face Fi thus consists of a tuple li = (si, ti)
where si ∈ {1 . . .N} identifies the source image, and ti ∈ R

2

is a 2D translation vector. This tuple defines a perspective
map φli from mesh face Fi into image Isi .

Finding a good label assignment is therefore a hybrid com-
binatorial continuous optimization. Our approach is to make
the optimization purely combinatorial by discretizing the
translation vectors. We next present our scheme in further
detail.

Objective function. Our optimization has the form

min
l1...lN

N

∑
i=1

Edata(li) + λ ∑
{i, j}∈M

Esmooth(li, l j). (1)

In the first term,

Edata(li) =−δi

∫
φli

(Fi)
‖∇(Isi(p))‖2

d p (2)

seeks to texture each face from the “best” image that sees
it. It does so by integrating the total image variation mapped
onto the triangle, in image space. Note that this definition
incorporates the effect of foreshortening (as a smaller re-
gion would be integrated), image resolution, and blur. The
normalization constants δs are the ratios between triangle
perimeter and area.

In the second term,

Esmooth(li, l j) =
∫
N (Fi∩Fj)

∥
∥
∥Isi(φli(p))− Is j (φl j

(p))
∥
∥
∥

2
d p

(3)
measures the texture discrepency between adjacent triangles.
It seeks textures on adjacent faces whose colors agree in a
neighborhood of their shared edge. Note that this term is zero
for pairs of faces with the same label. Typically, the natural
result of the optimization will be a set of mesh charts, each
containing faces with similar or identical labels, so that most
of the error is concentrated on the optimized boundaries be-
tween the charts.

Both energy term have the same unit of measure, as they
both integrate the squared difference of pixel values over the
perimeter of the triangles.

Optimization.

The objective function (1) forms a Markov Random Field
(MRF) problem, in which the graph nodes correspond to
the mesh faces and each node has a discrete set of possi-
ble labels. We solve this MRF problem using the method
of [Kol06].

The number of labels that result from our formulation is of-
ten beyond the capabilities of current implementations. We
therefore perform the optimization in an iterative coarse-
to-fine scheme to allow the recovery of precise translations
without having to consider an excessively large combinato-
rial space. The images are coarsened in a Gaussian pyramid
to half the resolution in each dimension. In the coarsest itera-
tion, the set of candidate labels for each face consists of all N

possible image assignments times 9 possible translation vec-
tors {−1,0,+1}2 in pixel units at that pyramid resolution.
The result of the optimization provides the best label assign-
ment l∗i for each node. Rather than limiting ourselves to this
single choice, we rank all other labels for li based on (3) as
the sum ∑Esmooth(li, l

∗
j ) where the graph neighbors of node

i are assigned their optimal labels l∗j . The top entries in this
ranking are used to seed the candidate labels at the next finer
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Figure 4: The results before and after applying color cor-

rection using Poisson blending.

level. Specifically, each label entry is considered in conjunc-
tion with 9 new shift vectors. This allows the hierarchical
optimization to maintain several possible candidates.

We perform three MRF iterations at each shift size, to allow
larger total translations. The coarsest pyramid level is chosen
to accommodate the magnitude of the registration and recon-
struction errors (e.g., six pyramid levels to allow an error of
±64 pixels). For greater quality, the finest pyramid level is
solved again with shifts of 1/2 pixels. While the graph-cut-
based MRF optimization method is guaranteed to converge,
it may not converge to the global optimum.

Poisson blending.

The discrete optimization can deal with large errors. One ef-
fect that remains after textural alignment is local variations
in luminosity. These variations are due to the automatic gain
of the camera as well as surface reflections. These create
small but noticeable artifacts as can be seen in Figure 4(left).

We resolve these using the state-of-the-art method of
[PGB03], applied to the input textures. In each image, con-
tiguous texture patches are identified. A 1-pixel wide bound-
ary around each patch is identified and adjusted halfway to-
wards the pixel values on the other side of the boundary as
induced by the solution. This ensures a good fit and pro-
vides the necessary boundary conditions for the interior of
the patch. Solving this step for pixels in image space (rather
than for mesh vertices) lets us leverage algorithms optimized
for solving Poisson equations on regular grids. We found that
each patch can be solved independently without incurring ar-
tifacts.

4. Implementation and results

We implement our method on commodity hardware (3 GHz
processor with 3 GB RAM). In a typical use, we take 20–30
photos around the object using a consumer point-and-shoot
camera (6-megapixel resolution). These photos are then cal-
ibrated via bundle adjustment and every other photo is taken,

Dataset Input Mesh Processing
name photographs triangles time (minutes)

Doll 9 12,000 15
Striped cat 8 13,500 15
Monkey 12 15,000 15
Brown cat 15 18,500 30
Yellow car 16 17,000 25
Tall cat 10 11,000 7

Table 1: Quantitative results for the various examples.

resulting in 10–15 photos. The visual hull is computed from
the segmentation of the object in 5–6 of these. The hull mesh
is simplified to 10–15 K triangles (Table 1). Our coarse-to-
fine MRF optimization is performed over 6 pyramid levels.
Altogether the process takes under an hour from start to fin-
ish, with 5 minutes for capture, 2 for copying the images,
1 for calibration, 10 for segmentation, and 5–30 for the op-
timization. The output is a set of projective textures for the
object. Figures 5–11 show a varitey of example results, and
highlight benefits and limitations.

Figure 9 shows a textured car model, where the visual hull
mesh is a rather crude approximation of the car shape.
Nonetheless, our method is able to generate a plausible
smooth texture (Figure 9(b)). Figures 5, 6, 8, 10, and 11
show the results of our method using images of different ob-
jects. Note the sparsity of texture seams even in the presence
of inaccurate geometry. Figure 7 shows the reconstruction of
texture for the same model with different levels of geomet-
ric approximation. Note the nice seamless texture despite the
geometric simplification.

The example in Figure 11 highlights some limitations of our
scheme. In the presence of high-frequency texture content
and significant geometric errors, it is unable to form a seam-
less montage. In some other cases, a seamless result is ob-
tained, but at the expense of severe warping distortion. For
instance, the features in the monkey face of Figure 6(d) are
distorted compared to the input image in Figure 6(a).

5. Conclusions

Texturing is one of the more time-consuming stages in a typ-
ical modeling pipeline. We present a practical, fully auto-
mated technique for seamlessly texturing a 3D model from a
set of casual photographs. In particular, our method robustly
handles inaccuracies in input including shape and alignment
errors. The key insight is the realization that most texture
artifacts can be eliminated through local image-space trans-
lations. The result is one texture for the whole object which
minimizes visual artifacts. This simple strategy proves re-
markably effective.
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Figure 5: Example demonstrating the benefit of optimizing

with translation shift vectors. Top row: two input images and

reconstructed mesh. Bottom row: resulting texture montage

without and with shift optimization.
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Figure 7: Comparison of texture montages on different ge-

ometries. The top result uses a fine mesh with 8,000 trian-

gles, whereas the bottom result uses a coarse mesh with

1,200 triangles. The reconstructed texture remains seamless,

despite the significant geometric errors in the surface such

as those evident near the ears.

Figure 8: Additional examples, showing some of the input

images, the reconstructed mesh colored by labels, and some

resulting textured views.
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(a) (b) (c) (d)

Figure 9: Texturing a yellow car. (a) One of the casual photographs, and the labeled mesh generated by the optimization. (b)

Two views of the textured model. (c) Close-up view showing the benefit of adding shifts to the optimization; note the broken

lines on the hood.

(a) (b) (c) (d)

Figure 10: Tall cat. (a) One photograph of the cat model. (b) Optimization without shifts. (c) Optimization with shifts. (d)

Close-up views.

(a) (b) (c)

Figure 11: Brown Cat. (a) A few of the input photographs and the generated labeled mesh. (b) Three renderings of the textured

model. There is one small misalignment above the cat’s leg in the light blue square. (c) Close-up views, top and bottom, without

shift and with shifts. Note that in the rightmost example, the shifts do not successfully recover a seamless texture, due to large

errors in the geometry.
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