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ABSTRACT 
For several years empirical studies have spanned the spectrum of 
research from software productivity, quality, reliability, 
performance to human computer interaction. Analyses have 
involved software systems ranging from desktop software to 
telecommunication switching systems. But surprising there has 
been little work done on the emerging digital game industry, one 
of the fastest growing domains today. To the best of our 
knowledge, our work is one of the first empirical analysis of a 
large commercially successful game system. In this paper, we 
introduce an analysis of the significant user data generated in the 
gaming industry by using a successful game: Project Gotham 
Racing 4.  

More specifically, due to the increasing ubiquity of constantly 
connected high-speed internet connections for game consoles, 
developers are able to collect extensive amounts of data about 
their games following release. The challenge now is to make 
sense of that data, and from it be able to make recommendations 
to developers. This paper presents an empirical case study 
analyzing the data collected from a released game over a three 
year period. The results of this analysis include a better 
understanding of the differences between long-term and short-
term players, and the extent to which various options in the game 
are utilized. This led to recommendations for future development 
ways to reduce development costs and to keep new players 
engaged. A secondary goal for this paper is to introduce software 
game development as a topic of importance to the empirical 
software engineering community and discuss research results on a 
key difference area: data analytics on user data to customize user 
and development experiences.  

Categories and Subject Descriptors 
D.2.8 [Software]: Metrics, K.8.0 [Personal Computing]: Games 

 

General Terms 
Design, Measurement 

Keywords 
Game design, Game development, Game metrics 

 
1. EMPIRICAL RESEARCH AND GAMES 

Empirical research in software engineering has typically focused 
on software systems ranging from the traditional 
telecommunication systems to more recent web services. There 
has been little research on the software engineering aspects of 
digital games (a.k.a. video games, computer games, electronic 
games, etc.; referred to simply as games for the remainder of this 
paper). Games are increasingly becoming an important part of the 
mainstream software development industry. 
PricewaterhouseCoopers (PwC) report Global Entertainment and 
Media Outlook: 2007-2011 estimates that the video game market 
will increase from $31.6 Billion in 2006 to $48.9 Billion in 20111.  
Games require significant software engineering effort and have 
become increasingly complex as games get more sophisticated 
[3]. Many of the issues in the development, production, and 
testing of games reflect those of the general software engineering 
community, and in many cases represent the state of the art. 
Research communities exist for specialized aspects of game 
development, such as SIGGRAPH’s game track [15] for graphics 
or AAAI’s Artificial Intelligence and Interactive Digital 
Entertainment for game AI [2]. There are already workshops in 
this regard that have been held co-located to the International 
Conference of Software Engineering [12]. That said, games are a 
significantly wide field and in this paper our goals are twofold: 

 Identify a specific area of research and characterize its 
operation in the gaming community 

 Investigate via data analytics the ability to improve 
game design 

There are several differences between software development for 
games compared to software development for traditional software 
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1http://www.businessweek.com/innovate/content/aug2007/id20070813_12
0384.htm 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
ESEM’12, September 19–20, 2012, Lund, Sweden. 
Copyright 2012 ACM  978-1-4503-1056-7/12/09...$15.00. 

89



systems. It is beyond the scope of this paper to assess these 
differences. In this paper we focus on one particular aspect, the 
importance of user testing. In recent years there has been a rise in 
interest in the collection and analysis of game metrics, and how 
they can be used to inform the game development process. As 
games have gotten larger and more complex, the need for such 
metrics to make sense of player behavior has increased. The 
number of reachable states in a modern commercial game title is 
enormous; without some way to simplify and represent collected 
data development teams would be unable to act on it in a timely 
matter. 

Telemetry, or the collection of metrics, has become increasingly 
common in game development. As games have become more 
complex traditional playtesting is no longer able to provide 
sufficient coverage of all possible gameplay states or reveal 
potential emergent elements. Playtesting refers to the user testing 
wherein data is collected from players playing the game to 
identify defects and improve customer experience. This makes 
long-term metrics collection the only viable means to understand 
players and how they interact with the game. 

But just collecting data is not enough, the data has to be distilled 
and interpreted before it can be used to inform development 
decisions. A detailed accounting of players’ in-game actions is 
difficult to interpret even for a developer who is intimately 
familiar with the game. Simply knowing what a player did at a 
certain time means nothing without the context of what they did 
previously, what they did afterwards, and how that relates to the 
larger patterns of behavior throughout the game. 

Previous academic work studied data on smaller scales in limited 
domains, and case studies from industry have shown ways various 
types of data can be used in to aid the development process. Our 
aim is to unite and advance these traditions by presenting a case 
study of analysis of large-scale data collected from Project 
Gotham Racing 4, a popular commercially released game. 

This paper presents our case study by explaining the domain, our 
analyses, the conclusions we drew, and recommendations we were 
able to make. Some areas we explore include: 

 Factors that hinder a player’s advancement  
 Differences between long-term and short-term players 
 Differences between multi- and single player usage 
 How players interact with the game in their first ten 

races and how this relates to long term behavior 
 Utilization rates of various game play options and 

factors that contribute to them 

This paper is organized as follows. In Section 2 we discuss the 
related work. In Section 3 we explain the various sources of data 
in games via quantitative (testing) and qualitative (subjective 
evaluations) aspects to characterize the process on how the game 
industry handles these activities. In Section 4 introduce Project 
Gotham Racing 4. In Section 5 we describe the data collected and 
Section 6 the data analysis and results. Section 7 presents the 
recommendations. We present conclusions in Section 8.  

2. RELATED WORK 

A. Academic 

Presented here are some examples of academic work that explore 
data analysis in games.  

Dixit and Youngblood performed user tests and used the data 
collected to create visualizations showing where users’ attention 
was focused during gameplay [4, 5]. This information was then 
used to determine the best places to put relevant information to 
improve recall. The implications for game design are to give 
designers a better idea of where to place important clues and other 
information so that players are most likely to see it. 

Kim et al. presented TRUE, a system for collection and 
visualization of data from user studies, and presented a case study 
of its use in Halo 2 [8], a popular First-Person Shooter (FPS) 
game. Their studies specifically looked for unintended difficulty 
increases introduced during development. Their tests collected 
data on player deaths and surveyed the subject's opinions on 
difficulty. They were able to identify several unbalanced elements 
in the game and correct them before release. 

Weber and Mateas used data mining techniques on large amounts 
of collected data to understand player strategies in the game 
StarCraft. Over 5000 replays of expert matches were used as 
training data for a machine learning algorithm that predicted 
player strategies [20]. This predictor became a component of an 
AI bot that played StarCraft better than most other available 
techniques, thus helping to improve game AI.  

Weber et al. used analysis of large datasets generated by players 
of the game Madden NFL 11 to understand player retention [19]. 
They selected gameplay features to use as input to a machine 
learning algorithm that tried to predict how many games a player 
would play overall. The selected features were then studied to 
make recommendations that would increase player retention in the 
game. 

Lewis and Wardrip-Fruin presented a case study of large-scale 
data collection and interpretation of World of Warcraft 
repositories for better understanding of player behavior [9]. They 
analyzed how long it took players from each class to reach level 
80 (the highest level) in order to empirically evaluate whether the 
game design is balanced, and confirm or refute common folklore 
surrounding the game. 

Miller and Crowcroft also studied World of Warcraft, but instead 
looked at player movement [10]. They analyzed several gameplay 
traces that utilized the same battleground to find patterns in player 
traffic. They were able to identify distinct patterns of player 
behavior, including patrollers, who moved between multiple 
points along standard routes, and guards who tended to remain 
within a small area. This analysis is useful to developers by 
showing how players are interacting with the game environment. 

B. Industry 

Articles in industry-focused publications like Gamasutra are a 
good source of information for ways in which data is used in the 
game industry. Some key examples are presented in this section. 

Russell examined the combat design in Uncharted 2 [13, 14]. 
They reflected on the previous game in the series and drew useful 
lessons, as well as described the process by which they iterated on 
the design of their current game. Levels were playtested 
repeatedly, with both telemetry and observational data being 
collected. This data was used to informed design changes and 
improve the game. 

Adent discussed the development of Forza Motorsport 3 and how 
testing and data analysis contributed [1]. A key factor for that 
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team was having a stable, playable build at all times. This enabled 
constant iterative development of the game. Constant playability 
allowed for a constant stream of data for the designers to study 
and make changes accordingly. 

Van der Heijden examined the usability testing done for Swords & 
Soldiers [18]. They describe the key questions the developers 
hoped to answer, the set up and testing process, and what they 
learned. In particular they were interested in improving the 
interface design and used eye-tracking data to see where players’ 
attention was focused. 

Another example of usability testing is in Thompson’s article on 
Halo 3 development [17]. They describe the extensive playtesting 
performed to improve the playability and balance of the game. 
Large numbers of players were observed and data was collected 
about how well they performed, leading designers to make 
adjustments. Players were also asked subjective questions about 
their level of enjoyment. 

Another game in the Halo series, Halo: Reach, was subjected to a 
large beta test – over 2.7 million players and 16 million hours of 
testing [11, 16]. The result was not only finding and fixing bugs, 
but also significantly tweaking the gameplay by adjusting factors 
such as weapon damage, reload times, shield recharge rates, etc.  

3. SOURCES OF DATA 

A. Internal Testing 

One of the earliest sources of data for game development teams is 
from their internal testing. This includes informal testing by the 
developers themselves and more formal testing by the QA team. 

1) Developers 

The earliest testers of a game are the development team itself, and 
therefore are the earliest creators of useful data about the game. In 
the early development, teams create small prototypes to test and 
explore new ideas. While these prototypes are generally discarded 
once the main development cycle begins, the lessons learned are 
an important initial source of data about what works and doesn’t 
work in the game. 

Once the game is fully in development, the team will continuously 
be testing the game. Of particular interest to designers is the play 
balance of the game. Level designers will play levels to ensure 
that they have the correct difficulty level for where they appear in 
the game. Matching increasing difficulty to the players’ increasing 
skill as they learn the game is key to keeping players engaged. 

2) QA 

The main objective of the QA team is to find bugs and report 
them to the development team. Statistics from reported bugs are 
used to make production decisions in much the same way as they 
are used in traditional software development.  

Many bugs are straightforward problems that the programmers, 
designers, and artists can easily address, but the QA team will 
often find problems with the playability of the game, including 
play balance issues. QA testers are often highly skilled game 
players, and continuously evaluate aspects of the game for 
difficulty, play time, and balance. Data collected from this 

playtesting can be used by the developers to make adjustments 
while the game is still in development. 

B. External Testing 

External testing is testing done by players from the community, 
rather than members of the development or QA teams. Releases of 
the game used for external testing are generally instrumented to 
collect data about the players’ actions in the game. 

1) Usability Testing 

Usability testing is done with selected members of the target 
audience to better understand interactions with and reactions to 
the game. It is generally done under controlled psychological 
research protocols. To be effective, usability testing must be done 
late enough in the development cycle so that the game is 
representative of its final state, but not so late that it’s costly to 
make changes. 

In most cases, usability testing is the first time someone outside 
the organization plays the game. As the development and QA 
teams have been involved in the project for a long time, they are 
familiar with how the game is intended to be played and may not 
realize what is obvious or not to players. By putting a subject in a 
room and observing them play without instruction or interference, 
the development team can better gauge their expectations of how 
players will react to the finished game. 

Typical outcomes of usability testing include the need for better 
tutorials to teach new players and clearer interfaces. Besides the 
qualitative assessment of players’ reactions to the game, 
quantitative data about the players’ specific actions can also be 
gathered. 

2) Beta Tests 

A beta test is a release of a nearly-complete version of a game to a 
limited set of players. Beta testers are generally selected from a 
pool of players of previous games.  

In the past, beta tests consisted of sending copies of games to 
members of the pool, waiting for them to play, and receiving back 
questionnaire responses and comments. However, with the 
increasing ubiquity of internet connected game machines, the beta 
version can be downloaded directly to the tester’s machine and 
play data can be reported directly to the development team. 

Beta tests can also be contribute to the marketing of a game by 
giving players a preview of the game and building excitement 
about the release. 

3) Long-term Play Data 

While not actually testing per se, data gathered from players after 
a game’s release can be an important source of data. Due to the 
increasing ubiquity of internet-connected game, development 
teams can easily collect player data indefinitely after release. If 
problems are found, teams can make changes and deliver a new 
version to players even after release. 

Examples of useful data that can be obtained from long-term data 
are what achievements are earned, how quickly players progress, 
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or favorite levels or game play modes. One well known example 
of long-term play data are the Halo heat maps published by 
Bungie Studios [17]. These show the locations of player deaths 
and kills by different weapons across all multiplayer maps. By 
examining these, the team can make adjustments for future 
releases. 

Data from long-term play is particularly useful for maintaining 
play balance. A lack of balance may not have been appeared in 
earlier testing, but only becomes apparent after many months of 
play. An example would be an unanticipated dominant strategy. 
If, by observing play data, a team sees that a particular weapon 
has become favored, then they may want to adjust the balance to 
counter this.  

Long-term data can also help teams plan the release of expansion 
content. When interest in a game starts to wane, developers can 
release new downloadable content that will entice players to 
continue playing. Also, examining at what point in their progress 
players start downloading new content can drive recommendation 
systems for future players. 

C. Subjective Evaluations 

1) Surveys 

While much of the interest in game metrics is focused on 
quantitative data, qualitative data is also important. Survey data is 
generally collected along with the quantitative data collection 
during usability and beta testing. This data can be open ended, 
such as general questions about players’ reactions to the game, or 
structured, such as rating various aspects of a game on a Likert 
scale. 

2) Reviews 

One source of expert data is reviews of games written by 
professional or non-professional journalists. The games industry is 
a large, international industry with hundreds of games released 
each year; game buyers consult reviews to determine what games 
are most worth spending their money on. By looking at reviews of 
their own and similar games, developers can decide what aspects 
to focus on to increase the likelihood of good reviews.  

3) Online Communities 

Gaming culture is increasingly involved and worldwide. Gamers 
don’t play games in isolation; they comment upon and read other 
player’s comments on various message boards and blogs 
dedicated to the subject. 

Another aspect of online communities is expert players writing 
guides for new players. These guides, often called FAQs (from 
Frequently Asked Questions), are published at websites like 
GameFAQs.com [6]. Information found in FAQs includes 
complete walkthroughs of games, strategy guides, maps, and 
character creation guides. 

By monitoring the online communities populated by their players, 
development teams can get a sense of how their game has been 
received by the gaming community and how their view of the 
game matches the design. If the walkthroughs miss some 
important aspect, then it was too hard to find. If the players’ 

assessment of the strength and weaknesses of various elements 
don’t match the team’s expectations, then their play balancing 
may need adjustment. 

4) Post Mortems 

It is becoming increasingly common for industry-focused 
publications to publish game developers’ post mortems after a 
game is released. This is a summary of what went right and wrong 
in the development process. By studying areas of development 
that were problematic in other projects, developers can better 
anticipate and avoid problems in their own projects. 

4. PROJECT GOTHAM RACING 4 

We present an analysis of long-term play data from a 
commercially released game. For this case study, we looked at 
data from Project Gotham Racing 4 (PGR4), an Xbox 360 game 
developed by Bizarre Creations and published by Microsoft Game 
Studios in 2007 (Example screen shot – Figure 1). 

PGR4 is an auto racing game and is representative of many games 
in the genre. Players have the option to play either single or 
multiplayer races organized into various game modes and event 
types. Game modes include, for example, career mode, a single 
player mode where the player earns money by competing in races, 
which in turn allows them to unlock other races and vehicles, 
leading to continuous advancement. Other game modes are 
multiplayer quick races, arcade mode, and time attack challenges. 
There are ten of these in total. Event types are the 29 specific 
challenges a player may compete in within a mode. These include 
things like street race, cone challenges, and elimination races. 

The game features 134 vehicles, both cars and motorcycles, 
organized into 7 classes, A−G. The primary division between 
classes is performance, with A-Class being the highest 

performance and G-class being the lowest. Races are conducted 
on one of 121 routes spread out over 9 in-game locations. 
Locations are generally virtual representations of cities, such as 
Macau or Shanghai, while the routes are specific tracks laid out 
over the location. 

In the time since its release, PGR4 has been played extensively by 
its audience. Telemetry data was collected from players who 
opted in whenever they played while connected to the Xbox Live 
service, regardless of whether they were playing in multi- or 
single player races. 

Figure 1: A screenshot from Project Gotham Racing 4 
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5. DATASET 

Several datasets were collected from PGR4. The primary one 
analyzed was the Start of Race dataset. This contained 
approximately 3.1 million entries, one for each time a player 
started a race, including both multi- and single player races. Data 
about both the race and the player were logged, including: 

 Type of event 
 Route selected 
 Vehicle selected 
 Number of vehicles in race 
 Player’s career rating 
 Number of previous events completed by player 
 Total kudos earned by player 

A. Features 

For our analysis we looked at usage patterns for five game 
features of interest to the development team:  

 Game modes 
 Event types 
 Routes 
 Vehicles 
 Vehicle classes 

As these are the main options available to the player, patterns in 
their usage present a picture of how players are playing the game 
and what is most important to them. 

B. Subdivisions 

We felt it would be beneficial to separately examine players 
grouped according to their level of engagement with the game. To 
this end we subdivided the data into four groups based on the total 
number of races for that player in the entire dataset. The four 
groups were: 

 Regular: > 200 races 
 Mid 2: > 85 & ≤ 200 
 Mid 1: > 13  & ≤ 85 
 Infrequent: ≤ 13 races 

For most analyses, we specifically compared the two most 
extreme groups: the regular and the infrequent players. This 
allowed us to make statements about how the behavior of the most 
enthusiastic players compared to the least engaged. 

C. Subsets 

In addition to studying the entire dataset, we examined three 
subsets for additional insight. We looked at multiplayer and single 
player races separately, and looked at the first ten races for each 
unique player. The motivation behind looking at the first ten races 
was to understand how a player’s initial experience affects their 
subsequent engagement by the game. Differences that exist 
between infrequent and regular players in their first ten races may 
contribute to the likelihood that a new player will ultimately fall 
into one group or the other. 

6. ANALYSIS AND RESULTS 

We drew five conclusions from our examination of the Start of 
Race dataset: 

 Regular players play more multiplayer races 
 Regular players play more in career mode 
 Many options (game modes, event types, routes, and 

vehicles) are underused 
 A- & F-Class vehicles are most popular classes of 

vehicles 
 C-Class vehicles equally or more popular than B-Class, 

especially among regular players 

A. Regular players play more multiplayer 

Within both the entire Start of Race dataset and the first ten races, 
regular players showed a clear preference for multiplayer game 
modes and event types. 

For regular players, NETWORK_PLAYTIME was the 2nd most 
popular mode, used in 27.6% of races overall (see Figure 2). In 
contrast, for infrequent players, NETWORK_PLAYTIME is 3rd, 
at 16.1%, behind 2 single player modes (OFFLINE_CAREER at 
47.0% and PGR_ARCADE at 19.6%)  (see Figure 3). 

In terms of event types, the most popular for regular players in the 
entire dataset was NET_STREET_RACE at 26.6%. For 
infrequent players, it was second at 10.5%, significantly less than 
the single player event type of STREET_RACE at 54.8%. 

 

Figure 2: Game Modes, Regular Players 

 

Figure 3: Game Modes, Infrequent Players 

We see a similar pattern when looking at the first ten races only. 
48% of races for regular player were in multiplayer game modes, 
compared to 20.8% for infrequent players. The most common 
multiplayer game mode, NETWORK_PLAYTIME, was 
significantly more preferred by regular players, 35.5% versus 
7.6% for infrequent players. 
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For regular players NET_STREET_RACE was the most popular 
event type by an overwhelming margin: 39% of races, with single 
player STREET_RACE a distant second at 15.5%. For infrequent 
players, the single player event types of STREET_RACE and 
TIMEATTACK were vastly more preferred (24.9% and 20.8% 
respectively) over NET_STREE T_RACE (3rd at 9.4%). 

 

 
 

B. Regular players play more career mode 

When regular players do play single player races, they are more 
likely to do so in career mode than infrequent players. 

In the entire dataset, OFFLINE_CAREER was the most popular 
game mode overall for regular players: 36.6%, followed by the 
aforementioned multiplayer mode NETWORK_PLAYTIME at 
27.6% (see Figure 2). In contrast, the non-career modes of 
SINGLE_PLAYER_PLAYTIME and PGR_ARCADE were more 
preferred by infrequent players (20.6% v. 3.5% and 24.5% v. 
18.46% respectively) (see Figure 3). 

When looking at data from the single player races only, 
OFFLINE_CAREER was the most popular for both regular and 
infrequent players. 59.9% of single player races for regular 
players were in OFFLINE_CAREER and 47.5% for infrequent 
players. This may not seem like a large difference, but when we 
look at the primary non-career mode, 
SINGLE_PLAYER_PLAYTIME, the difference becomes more 
apparent. Regular players used SINGLE_PLAYER_PLAYTIME 
in only 5.8% of single player races, while infrequent players used 
it in 24.2%. 

We see a difference in the first ten races as well. Regular players 
prefer OFFLINE_CAREER career more than infrequent players 
(36.5% v. 22.2%). By contrast, infrequent players were more 
likely than regular players to play non-career modes 
TIMEATTACK (20.1% v. 0.5%) and PGR_ARCADE (26.4% v. 
6.5%). 

 

 
 

C. Many options were underused 

Our analysis showed that large amounts of the options available in 
the game were used in so few instances that they could have been 
removed from the game entirely. In four of the features we 
examined, 20% to over 70% of available options were used in less 
than 1% of races. This suggests that savings in development times 
and costs could be realized in future games by offering fewer 
options without negatively affecting the players’ overall 
experience. When looking at the entire dataset, 

 22% (2 of 9) game modes, 
 41% (12 of 29) event types, 
 67% (81 of 121) routes, 
 and 78% (104 of 134) vehicles 

were used in less than 1% of races each. 

1) Game Modes 

As shown in Table 1, OFFLINE_CAREER (a single player mode) 
was the most commonly used game mode by far, with 
NETWORK_TOURANMENT_QUAL and 
NETWORK_TOURNAMENT_ELIM being used in less than 
0.5% of races. If fact, the 7 least used modes account for only 
15% of races overall. 

Table 1. Game Modes 

Game Mode Races 
% of 
Total 

OFFLINE_CAREER 1479586 47.63% 

PGR_ARCADE 566705 18.24% 

NETWORK_PLAYTIME 584201 18.81% 

NETWORK_ONLINECAREER 193091 6.22% 

SINGLE_PLAYER_PLAYTIME 185415 5.97% 

TIMEATTACK 43942 1.41% 

WORLD_CHALLENGE_MODE 36581 1.18% 

NETWORK_TOURANMENT_QUA
L 

13847 0.45% 

NETWORK_TOURNAMENT_ELI
M 

2713 0.09% 

 

When we look at just multiplayer game modes we see an even 
larger disparity: the top two modes account for 98% of all 
multiplayer races.  

2) Event Types 

When looking at event types, we again see a rapid drop off in 
popularity with the least popular types receiving only trivial 
usage. A reduced version of this data is shown in Table 2.  

Table 2. Event Types (Reduced) 

Group Races 
% of 
Total 

STREET_RACE 795334 25.60% 

NET_STREET_RACE 543491 17.50% 

ELIMINATION 216042 6.95% 

• OFFLINE_CAREER was the most popular game mode 
among regular players 

• SINGLE_PLAYER_PLAYTIME was used more by 
infrequent players overall and in their first ten races 

• Regular players used OFFLINE_CAREER more in their 
first ten races 

• Regular players used the NETWORK_PLAYTIME game 
mode more than infrequent players 

• Regular players used the NET_STREET_RACE event 
type more than infrequent players 

• In their first 10 races, regular players used the 
NETWORK_PLAYTIME game mode more than 
infrequent players by a large margin 

• In their first 10 races, regular players used the 
NET_STREET_RACE event type more than infrequent 
players by a large margin 
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HOTLAP 195949 6.31% 

… 

TESTTRACK_TIME 7484 0.24% 

NET_CAT_AND_MOUSE_FREE_R
OAM 

3989 0.13% 

CAT_AND_MOUSE 53 0.00% 

Single player street races were the most popular event type, 
followed by multiplayer street races and elimination races (knock 
out stages in tournaments), whereas 12 of the 29 event types were 
used in less than 1% of races. The underutilization of event types 
is even more pronounced when looking at multiplayer races only 
(7 of 16 event types used in less than 0.1% of races).  

3) Routes 

While 67% of the available routes were used in less than 1% of 
races each, collectively they account for 36% of races. i.e., two-
thirds of races occur on one-third of the routes. Developers would 
likely not support a proposal to eliminate such a large portion of 
potential gameplay, so we looked at even smaller percentages of 
use and found that  

 47 (39%) were used in less than 0.5%, 
 19 (16%) were used in less than 0.25%, 
 and 8 (7%) were used in less than 0.1% 

of total races. 

The 47 routes used in less than 0.5% of races account for 13% of 
overall usage, a much more palatable percentage to consider 
removing, while still leaving 70+ routes available for players. 

4) Vehicles 

Similarly with routes, a wide variety of vehicles adds to depth of 
gameplay even if a significant portion is rarely used. Furthermore, 
the number of available vehicles in a driving game can be an 
important point in the marketing strategy. 

The 104 of the 134 vehicles that are used in less than 1% of races 
each collectively represent 38% of usage. Furthermore,  

 72 (54%) were used in less than 0.5%; 
 50 (37%) were used in less than 0.25%, 
 and 12 (9%) were used in less than 0.1% of total races. 

The 50 vehicles used in less than 0.25% of races each represent 
less than 7% of the total races. 

5) Vehicle Classes 

We can also look at vehicles in terms of their classes. The 
vehicles in the game are grouped into 7 classes based on 
performance. As seen in Table 3, A-Class vehicles were used 
nearly twice as often as the next most popular class, while Classes 
B though F were close in popularity, ranging from 10-15% of all 
races.  

Table 3. Vehicle Class 

Vehicle Class Races % of Total 

A_Class 908581 29.25% 

F_Class 478944 15.42% 

C_Class 465889 15.00% 

B_Class 454594 14.63% 

D_Class 386862 12.45% 

E_Class 338938 10.91% 

G_Class 69625 2.24% 

Also, G-Class was considerably less popular, being used in about 
2% of races overall. This suggests that the number of classes can 
be reduced. Players have little interest in the low-performance G-
Class, and perceive little difference between the other classes 
except A-Class. 

D. A- & F-Class vehicles most popular 

As seen in Table 3, A-Class vehicles were the most popular by a 
considerable margin. They were also the most preferred in 
multiplayer (53.6%) and in the first ten races (32.5%). These are 
the highest performance vehicles, so we would expect them to be 
most preferred by regular players, and they were (36.2% v. 20.2% 
for infrequent players). However, they were still used significantly 
by infrequent players, being the second most popular in the first 
ten races (33%) and overall (20.2%) and most popular in 
multiplayer races (54.5%). 

While in the overall dataset F-Class doesn’t appear significantly 
more popular than B- through E-Classes, when we look at subsets 
of the data we see certain trends. Amongst infrequent players, F-
Class was by far the most popular, 55.4% overall (see Figure 4) 
and 47% in single player races only. This seems like an obvious 
result as F-Class vehicles are the only ones initially available in 
career mode at the start of the game, but as shown above, 
infrequent players are less likely to play in career mode. 

 

Figure 4: Vehicle Class, Infrequent Players 

 

E. C-Class & B-Class equally popular 

As seen in Table 3, C-Class was slightly more popular than B-
Class overall. This may not seem significant, but when we look at 

• A-Class vehicles were the most often used overall, in 
multiplayer, and in players’ first ten races 

• A-Class vehicle were the second most often used by 
infrequent players overall and in their first ten races 

• F-Class vehicles were the most often by infrequent 
players 
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the data for the first ten races, we see that C-Class was the second 
most popular class among regular players at 26% v. 13% for B-
Class. This suggests that C-Class cars have characteristics that 
make them more appealing to players than the higher-performance 
B-Class vehicles.  

 

7. RECOMMENDATIONS 

The five conclusions we reached after examining the Start of Race 
dataset led to 4 recommendations for future development that 
would be applicable to many different games in the racing game 
genre, and could possibly be generalized to other games: 

 New players should be encouraged to play in career 
mode 

 New players should be encouraged to use F-Class 
vehicles in multiplayer 

 Development time and costs could be reduced by having 
fewer available options 

 Reduce the number of vehicle classes from 7 to 5 

A. New players should be encouraged to play career mode 

As discussed above, regular players are more likely to play in 
career mode, both overall and in the first ten races. This suggests 
that playing in career mode increases the likelihood that a player 
will continue playing the game for a much longer time. Players 
enjoy progression, and being presented with a series of increasing 
challenges and rewards, such as advancing through the stages in 
career mode, will cause them to be engaged and keep playing. 

The data suggests that many new players come into the game, 
experiment with various game modes and event types in their first 
few races, and then stop playing. If they could be drawn into the 
challenge/reward structure of career mode they would be more 
likely to continue playing. The early career races are designed to 
be easy, so most players will start winning early, unlocking more 
cars and routes that they are then eager to try out. 

B. New players should be encouraged to use F-Class vehicles in 
multiplayer 

While infrequent players were shown to prefer F-Class vehicles in 
single player races, they had as high a preference for A-Class 
vehicles in multiplayer as regular players. Given that the learning 
curve for A-Class vehicles is quite steep, this may be a factor in 
infrequent players losing interest in the game. If, in one of their 
earliest experiences with the game, a player joins a multiplayer 
race with experienced players on a track they are unfamiliar with, 
picks one of the fastest cars available, and then crashes in the first 
turn, they are likely to become frustrated and stop playing. 

Alternatively, new players could, by default, be sent to 
multiplayer races only with other new players, specifically on 
tracks that are available early in the single player game. The only 
vehicles available would be the F-Class vehicles, so they wouldn’t 
feel compelled to select an A-Class vehicle merely to be 
competitive with other players. These initial experiences in 
multiplayer would be gentler, on tracks and using vehicles they 
are familiar with, and against other players of similar skill levels. 

C. Development time and costs could be reduced by having 
available options 

Our analysis showed that 20-70% of the available options were 
used in less than 1% of races each. As asset creation is a major 
expense in game development, reducing little-used options could 
significantly reduce costs and development time while having 
little impact on players’ experience. Each vehicle in the game, for 
example, represents a significant investment: a 3d artist must 
model it, a texture artist must decorate it, a designer must to tweak 
its performance values, and testers must rigorously use it in a 
variety of conditions to make sure there are no problems. Creating 
new routes requires artists, designers, and testers, while new event 
types require engineering effort.  

That being said, there are benefits to having little used content 
available in the game. It can extend the life of a game for players; 
they can explore rarely-used options when they grow tired of the 
game. A wide variety of options can lead to emergent play as 
players find uses for content that developers never anticipated. 
The amount of content can be useful in the marketing of a game; 
being able to say that you has more vehicles or event types than 
your competitors can drive sales. 

While excessively pruning available content in future games 
might not be preferred, a reduction of 20% across the board could 
reduce costs and development times significantly while the back 
of the    box could still boast that the game contains more than 100 
vehicles. 

D. Reduce number of vehicle classes from 7 to 5 

In addition to reducing the sheer amount of content, removing 
complexity from the game can reduce cognitive overhead for the 
player. In particular, the 7 vehicle classes are an unnecessary 
element that does not enhance the game experience for the player.  

The analysis showed that G-Class vehicles were used in about 2% 
of races overall. These are mostly low-performance specialty and 
historic vehicles that are not generally of much use to players 
throughout the game. Any that developers feel are important 
enough to keep could be moved into other classes. 

The analysis also showed little difference in preference for 
Classes B−E. While having stages of progression is important to 
the learning curve, fewer steps would achieve the same effect. In 
particular, C-Class is preferred over B-Class in some instances, 
suggesting there’s little difference and the two could be combined.  

The resulting 5 classes should offer sufficient ramp-up in 
difficulty for the player to progress though the game without any 
sudden increases.  

8. CONCLUSIONS 

This paper presented a series of analyses performed on data 
collected on players in the game Project Gotham Racing 4. We 
looked for patterns within large data sets that provide insight into 
player behavior. We learned there were key differences in how 
regular and infrequent players approached the game, and how 
what players do in their earliest exposure to the game can affect 
their desire to continue playing. We also found that much of the 
available options for gameplay were rarely used by players.  

From the patterns in the data we made recommendations for 
future development. Many rarely utilized options could be 

• In their first 10 races, regular players used C-Class 
vehicles twice as often as B-Class vehicles 
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removed with no negative impact on players. A more structured 
introduction would keep new players engaged and increase the 
likelihood that they will continue playing.  

These conclusions could be applied generally to a wide variety of 
games in different genres. Developers who are inclined to add 
many options to their games should consider the result that 
players in PGR4 tended to focus mainly on the game’s core 
features. Providing tutorials and a gentle early difficulty curve can 
help ease new players into a game and keep them playing. This 
paper also shows that simple analysis to begin with can greatly 
help advance the state of the art in software engineering in the 
games domain. 

It is also important to call out several points.  

a. Telemetry, or the collection of metrics, has become increasingly 
common in game development. The contribution of this paper is 
to show how data analysis, even exploratory, on data from games 
can have potentially far-reaching software engineering 
implications in the empirical community. There is the potential to 
evaluate how these new classes of software systems work with 
various empirical processes and practices. 

b. The paper necessarily spends a lot of time explaining the 
domain of the analysis to provide context to the reader. A 
secondary goal of this paper is to introduce this topic of software 
engineering research for games to the broader software 
engineering community and expose the potential for research in 
games. We have presented the various sources of data available in 
game analytics. There are several open questions in the software 
engineering research for games community, ranging from the 
requirements engineering: how are requirements for games 
defined, where the major emphasis is based on user interaction 
and real-time feedback, the use of personas for requirements 
documents etc.; to testing and analysis: how can games be tested 
in the lab, simulating user behavior. We hope in coming years the 
software engineering community as a whole will embrace the 
games domain to investigate and address the important software 
engineering challenges facing games.  

c. The paper is specific to Project Gotham Racing 4, though 
techniques similar to those outlined in this paper could be applied 
to any game dataset. As this case study involves an already 
released game, we were limited to making suggestions for future 
releases, but similar techniques could be applied to beta test data 
for a game in development. The larger the dataset, the more 
pronounced the patterns will be, but conclusions drawn from a 
pool of beta testers representative of the target audience are likely 
to be more insightful then those that can be gained through 
traditional playtesting. Similar analysis could be performed for 
different game genres, ranging from FPS (First Person Shooter) or 
strategy games to educational and physical activity games. 
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