
Empirical Analysis of User Data in Game Software
Development

The Story of Project Gotham Racing 4

Kenneth Hullett*

UC Santa Cruz
Santa Cruz, CA, USA

Nachiappan Nagappan
Microsoft Research
Redmond, WA, USA

Eric Schuh
Microsoft Game Studios

Redmond, WA, USA

John Hopson
Bungie Studios

Bellevue, WA, USA

khullett@soe.ucsc.edu {nachin, eschuh}@microsoft.com jhopson@bungie.com

ABSTRACT
For several years empirical studies have spanned the spectrum of
research from software productivity, quality, reliability,
performance to human computer interaction. Analyses have
involved software systems ranging from desktop software to
telecommunication switching systems. But surprising there has
been little work done on the emerging digital game industry, one
of the fastest growing domains today. To the best of our
knowledge, our work is one of the first empirical analysis of a
large commercially successful game system. In this paper, we
introduce an analysis of the significant user data generated in the
gaming industry by using a successful game: Project Gotham
Racing 4.

More specifically, due to the increasing ubiquity of constantly
connected high-speed internet connections for game consoles,
developers are able to collect extensive amounts of data about
their games following release. The challenge now is to make
sense of that data, and from it be able to make recommendations
to developers. This paper presents an empirical case study
analyzing the data collected from a released game over a three
year period. The results of this analysis include a better
understanding of the differences between long-term and short-
term players, and the extent to which various options in the game
are utilized. This led to recommendations for future development
ways to reduce development costs and to keep new players
engaged. A secondary goal for this paper is to introduce software
game development as a topic of importance to the empirical
software engineering community and discuss research results on a
key difference area: data analytics on user data to customize user
and development experiences.

Categories and Subject Descriptors
D.2.8 [Software]: Metrics, K.8.0 [Personal Computing]: Games

General Terms
Design, Measurement

Keywords
Game design, Game development, Game metrics

1. EMPIRICAL RESEARCH AND GAMES

Empirical research in software engineering has typically focused
on software systems ranging from the traditional
telecommunication systems to more recent web services. There
has been little research on the software engineering aspects of
digital games (a.k.a. video games, computer games, electronic
games, etc.; referred to simply as games for the remainder of this
paper). Games are increasingly becoming an important part of the
mainstream software development industry.
PricewaterhouseCoopers (PwC) report Global Entertainment and
Media Outlook: 2007-2011 estimates that the video game market
will increase from $31.6 Billion in 2006 to $48.9 Billion in 20111.
Games require significant software engineering effort and have
become increasingly complex as games get more sophisticated
[3]. Many of the issues in the development, production, and
testing of games reflect those of the general software engineering
community, and in many cases represent the state of the art.
Research communities exist for specialized aspects of game
development, such as SIGGRAPH’s game track [15] for graphics
or AAAI’s Artificial Intelligence and Interactive Digital
Entertainment for game AI [2]. There are already workshops in
this regard that have been held co-located to the International
Conference of Software Engineering [12]. That said, games are a
significantly wide field and in this paper our goals are twofold:

 Identify a specific area of research and characterize its
operation in the gaming community

 Investigate via data analytics the ability to improve
game design

There are several differences between software development for
games compared to software development for traditional software

* Kenneth Hullett was an intern at Microsoft Research when this work
was performed.

1http://www.businessweek.com/innovate/content/aug2007/id20070813_12
0384.htm

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ESEM’12, September 19–20, 2012, Lund, Sweden.
Copyright 2012 ACM 978-1-4503-1056-7/12/09...$15.00.

89

systems. It is beyond the scope of this paper to assess these
differences. In this paper we focus on one particular aspect, the
importance of user testing. In recent years there has been a rise in
interest in the collection and analysis of game metrics, and how
they can be used to inform the game development process. As
games have gotten larger and more complex, the need for such
metrics to make sense of player behavior has increased. The
number of reachable states in a modern commercial game title is
enormous; without some way to simplify and represent collected
data development teams would be unable to act on it in a timely
matter.

Telemetry, or the collection of metrics, has become increasingly
common in game development. As games have become more
complex traditional playtesting is no longer able to provide
sufficient coverage of all possible gameplay states or reveal
potential emergent elements. Playtesting refers to the user testing
wherein data is collected from players playing the game to
identify defects and improve customer experience. This makes
long-term metrics collection the only viable means to understand
players and how they interact with the game.

But just collecting data is not enough, the data has to be distilled
and interpreted before it can be used to inform development
decisions. A detailed accounting of players’ in-game actions is
difficult to interpret even for a developer who is intimately
familiar with the game. Simply knowing what a player did at a
certain time means nothing without the context of what they did
previously, what they did afterwards, and how that relates to the
larger patterns of behavior throughout the game.

Previous academic work studied data on smaller scales in limited
domains, and case studies from industry have shown ways various
types of data can be used in to aid the development process. Our
aim is to unite and advance these traditions by presenting a case
study of analysis of large-scale data collected from Project
Gotham Racing 4, a popular commercially released game.

This paper presents our case study by explaining the domain, our
analyses, the conclusions we drew, and recommendations we were
able to make. Some areas we explore include:

 Factors that hinder a player’s advancement
 Differences between long-term and short-term players
 Differences between multi- and single player usage
 How players interact with the game in their first ten

races and how this relates to long term behavior
 Utilization rates of various game play options and

factors that contribute to them

This paper is organized as follows. In Section 2 we discuss the
related work. In Section 3 we explain the various sources of data
in games via quantitative (testing) and qualitative (subjective
evaluations) aspects to characterize the process on how the game
industry handles these activities. In Section 4 introduce Project
Gotham Racing 4. In Section 5 we describe the data collected and
Section 6 the data analysis and results. Section 7 presents the
recommendations. We present conclusions in Section 8.

2. RELATED WORK

A. Academic

Presented here are some examples of academic work that explore
data analysis in games.

Dixit and Youngblood performed user tests and used the data
collected to create visualizations showing where users’ attention
was focused during gameplay [4, 5]. This information was then
used to determine the best places to put relevant information to
improve recall. The implications for game design are to give
designers a better idea of where to place important clues and other
information so that players are most likely to see it.

Kim et al. presented TRUE, a system for collection and
visualization of data from user studies, and presented a case study
of its use in Halo 2 [8], a popular First-Person Shooter (FPS)
game. Their studies specifically looked for unintended difficulty
increases introduced during development. Their tests collected
data on player deaths and surveyed the subject's opinions on
difficulty. They were able to identify several unbalanced elements
in the game and correct them before release.

Weber and Mateas used data mining techniques on large amounts
of collected data to understand player strategies in the game
StarCraft. Over 5000 replays of expert matches were used as
training data for a machine learning algorithm that predicted
player strategies [20]. This predictor became a component of an
AI bot that played StarCraft better than most other available
techniques, thus helping to improve game AI.

Weber et al. used analysis of large datasets generated by players
of the game Madden NFL 11 to understand player retention [19].
They selected gameplay features to use as input to a machine
learning algorithm that tried to predict how many games a player
would play overall. The selected features were then studied to
make recommendations that would increase player retention in the
game.

Lewis and Wardrip-Fruin presented a case study of large-scale
data collection and interpretation of World of Warcraft
repositories for better understanding of player behavior [9]. They
analyzed how long it took players from each class to reach level
80 (the highest level) in order to empirically evaluate whether the
game design is balanced, and confirm or refute common folklore
surrounding the game.

Miller and Crowcroft also studied World of Warcraft, but instead
looked at player movement [10]. They analyzed several gameplay
traces that utilized the same battleground to find patterns in player
traffic. They were able to identify distinct patterns of player
behavior, including patrollers, who moved between multiple
points along standard routes, and guards who tended to remain
within a small area. This analysis is useful to developers by
showing how players are interacting with the game environment.

B. Industry

Articles in industry-focused publications like Gamasutra are a
good source of information for ways in which data is used in the
game industry. Some key examples are presented in this section.

Russell examined the combat design in Uncharted 2 [13, 14].
They reflected on the previous game in the series and drew useful
lessons, as well as described the process by which they iterated on
the design of their current game. Levels were playtested
repeatedly, with both telemetry and observational data being
collected. This data was used to informed design changes and
improve the game.

Adent discussed the development of Forza Motorsport 3 and how
testing and data analysis contributed [1]. A key factor for that

90

team was having a stable, playable build at all times. This enabled
constant iterative development of the game. Constant playability
allowed for a constant stream of data for the designers to study
and make changes accordingly.

Van der Heijden examined the usability testing done for Swords &
Soldiers [18]. They describe the key questions the developers
hoped to answer, the set up and testing process, and what they
learned. In particular they were interested in improving the
interface design and used eye-tracking data to see where players’
attention was focused.

Another example of usability testing is in Thompson’s article on
Halo 3 development [17]. They describe the extensive playtesting
performed to improve the playability and balance of the game.
Large numbers of players were observed and data was collected
about how well they performed, leading designers to make
adjustments. Players were also asked subjective questions about
their level of enjoyment.

Another game in the Halo series, Halo: Reach, was subjected to a
large beta test – over 2.7 million players and 16 million hours of
testing [11, 16]. The result was not only finding and fixing bugs,
but also significantly tweaking the gameplay by adjusting factors
such as weapon damage, reload times, shield recharge rates, etc.

3. SOURCES OF DATA

A. Internal Testing

One of the earliest sources of data for game development teams is
from their internal testing. This includes informal testing by the
developers themselves and more formal testing by the QA team.

1) Developers

The earliest testers of a game are the development team itself, and
therefore are the earliest creators of useful data about the game. In
the early development, teams create small prototypes to test and
explore new ideas. While these prototypes are generally discarded
once the main development cycle begins, the lessons learned are
an important initial source of data about what works and doesn’t
work in the game.

Once the game is fully in development, the team will continuously
be testing the game. Of particular interest to designers is the play
balance of the game. Level designers will play levels to ensure
that they have the correct difficulty level for where they appear in
the game. Matching increasing difficulty to the players’ increasing
skill as they learn the game is key to keeping players engaged.

2) QA

The main objective of the QA team is to find bugs and report
them to the development team. Statistics from reported bugs are
used to make production decisions in much the same way as they
are used in traditional software development.

Many bugs are straightforward problems that the programmers,
designers, and artists can easily address, but the QA team will
often find problems with the playability of the game, including
play balance issues. QA testers are often highly skilled game
players, and continuously evaluate aspects of the game for
difficulty, play time, and balance. Data collected from this

playtesting can be used by the developers to make adjustments
while the game is still in development.

B. External Testing

External testing is testing done by players from the community,
rather than members of the development or QA teams. Releases of
the game used for external testing are generally instrumented to
collect data about the players’ actions in the game.

1) Usability Testing

Usability testing is done with selected members of the target
audience to better understand interactions with and reactions to
the game. It is generally done under controlled psychological
research protocols. To be effective, usability testing must be done
late enough in the development cycle so that the game is
representative of its final state, but not so late that it’s costly to
make changes.

In most cases, usability testing is the first time someone outside
the organization plays the game. As the development and QA
teams have been involved in the project for a long time, they are
familiar with how the game is intended to be played and may not
realize what is obvious or not to players. By putting a subject in a
room and observing them play without instruction or interference,
the development team can better gauge their expectations of how
players will react to the finished game.

Typical outcomes of usability testing include the need for better
tutorials to teach new players and clearer interfaces. Besides the
qualitative assessment of players’ reactions to the game,
quantitative data about the players’ specific actions can also be
gathered.

2) Beta Tests

A beta test is a release of a nearly-complete version of a game to a
limited set of players. Beta testers are generally selected from a
pool of players of previous games.

In the past, beta tests consisted of sending copies of games to
members of the pool, waiting for them to play, and receiving back
questionnaire responses and comments. However, with the
increasing ubiquity of internet connected game machines, the beta
version can be downloaded directly to the tester’s machine and
play data can be reported directly to the development team.

Beta tests can also be contribute to the marketing of a game by
giving players a preview of the game and building excitement
about the release.

3) Long-term Play Data

While not actually testing per se, data gathered from players after
a game’s release can be an important source of data. Due to the
increasing ubiquity of internet-connected game, development
teams can easily collect player data indefinitely after release. If
problems are found, teams can make changes and deliver a new
version to players even after release.

Examples of useful data that can be obtained from long-term data
are what achievements are earned, how quickly players progress,

91

or favorite levels or game play modes. One well known example
of long-term play data are the Halo heat maps published by
Bungie Studios [17]. These show the locations of player deaths
and kills by different weapons across all multiplayer maps. By
examining these, the team can make adjustments for future
releases.

Data from long-term play is particularly useful for maintaining
play balance. A lack of balance may not have been appeared in
earlier testing, but only becomes apparent after many months of
play. An example would be an unanticipated dominant strategy.
If, by observing play data, a team sees that a particular weapon
has become favored, then they may want to adjust the balance to
counter this.

Long-term data can also help teams plan the release of expansion
content. When interest in a game starts to wane, developers can
release new downloadable content that will entice players to
continue playing. Also, examining at what point in their progress
players start downloading new content can drive recommendation
systems for future players.

C. Subjective Evaluations

1) Surveys

While much of the interest in game metrics is focused on
quantitative data, qualitative data is also important. Survey data is
generally collected along with the quantitative data collection
during usability and beta testing. This data can be open ended,
such as general questions about players’ reactions to the game, or
structured, such as rating various aspects of a game on a Likert
scale.

2) Reviews

One source of expert data is reviews of games written by
professional or non-professional journalists. The games industry is
a large, international industry with hundreds of games released
each year; game buyers consult reviews to determine what games
are most worth spending their money on. By looking at reviews of
their own and similar games, developers can decide what aspects
to focus on to increase the likelihood of good reviews.

3) Online Communities

Gaming culture is increasingly involved and worldwide. Gamers
don’t play games in isolation; they comment upon and read other
player’s comments on various message boards and blogs
dedicated to the subject.

Another aspect of online communities is expert players writing
guides for new players. These guides, often called FAQs (from
Frequently Asked Questions), are published at websites like
GameFAQs.com [6]. Information found in FAQs includes
complete walkthroughs of games, strategy guides, maps, and
character creation guides.

By monitoring the online communities populated by their players,
development teams can get a sense of how their game has been
received by the gaming community and how their view of the
game matches the design. If the walkthroughs miss some
important aspect, then it was too hard to find. If the players’

assessment of the strength and weaknesses of various elements
don’t match the team’s expectations, then their play balancing
may need adjustment.

4) Post Mortems

It is becoming increasingly common for industry-focused
publications to publish game developers’ post mortems after a
game is released. This is a summary of what went right and wrong
in the development process. By studying areas of development
that were problematic in other projects, developers can better
anticipate and avoid problems in their own projects.

4. PROJECT GOTHAM RACING 4

We present an analysis of long-term play data from a
commercially released game. For this case study, we looked at
data from Project Gotham Racing 4 (PGR4), an Xbox 360 game
developed by Bizarre Creations and published by Microsoft Game
Studios in 2007 (Example screen shot – Figure 1).

PGR4 is an auto racing game and is representative of many games
in the genre. Players have the option to play either single or
multiplayer races organized into various game modes and event
types. Game modes include, for example, career mode, a single
player mode where the player earns money by competing in races,
which in turn allows them to unlock other races and vehicles,
leading to continuous advancement. Other game modes are
multiplayer quick races, arcade mode, and time attack challenges.
There are ten of these in total. Event types are the 29 specific
challenges a player may compete in within a mode. These include
things like street race, cone challenges, and elimination races.

The game features 134 vehicles, both cars and motorcycles,
organized into 7 classes, A−G. The primary division between
classes is performance, with A-Class being the highest

performance and G-class being the lowest. Races are conducted
on one of 121 routes spread out over 9 in-game locations.
Locations are generally virtual representations of cities, such as
Macau or Shanghai, while the routes are specific tracks laid out
over the location.

In the time since its release, PGR4 has been played extensively by
its audience. Telemetry data was collected from players who
opted in whenever they played while connected to the Xbox Live
service, regardless of whether they were playing in multi- or
single player races.

Figure 1: A screenshot from Project Gotham Racing 4

92

5. DATASET

Several datasets were collected from PGR4. The primary one
analyzed was the Start of Race dataset. This contained
approximately 3.1 million entries, one for each time a player
started a race, including both multi- and single player races. Data
about both the race and the player were logged, including:

 Type of event
 Route selected
 Vehicle selected
 Number of vehicles in race
 Player’s career rating
 Number of previous events completed by player
 Total kudos earned by player

A. Features

For our analysis we looked at usage patterns for five game
features of interest to the development team:

 Game modes
 Event types
 Routes
 Vehicles
 Vehicle classes

As these are the main options available to the player, patterns in
their usage present a picture of how players are playing the game
and what is most important to them.

B. Subdivisions

We felt it would be beneficial to separately examine players
grouped according to their level of engagement with the game. To
this end we subdivided the data into four groups based on the total
number of races for that player in the entire dataset. The four
groups were:

 Regular: > 200 races
 Mid 2: > 85 & ≤ 200
 Mid 1: > 13 & ≤ 85
 Infrequent: ≤ 13 races

For most analyses, we specifically compared the two most
extreme groups: the regular and the infrequent players. This
allowed us to make statements about how the behavior of the most
enthusiastic players compared to the least engaged.

C. Subsets

In addition to studying the entire dataset, we examined three
subsets for additional insight. We looked at multiplayer and single
player races separately, and looked at the first ten races for each
unique player. The motivation behind looking at the first ten races
was to understand how a player’s initial experience affects their
subsequent engagement by the game. Differences that exist
between infrequent and regular players in their first ten races may
contribute to the likelihood that a new player will ultimately fall
into one group or the other.

6. ANALYSIS AND RESULTS

We drew five conclusions from our examination of the Start of
Race dataset:

 Regular players play more multiplayer races
 Regular players play more in career mode
 Many options (game modes, event types, routes, and

vehicles) are underused
 A- & F-Class vehicles are most popular classes of

vehicles
 C-Class vehicles equally or more popular than B-Class,

especially among regular players

A. Regular players play more multiplayer

Within both the entire Start of Race dataset and the first ten races,
regular players showed a clear preference for multiplayer game
modes and event types.

For regular players, NETWORK_PLAYTIME was the 2nd most
popular mode, used in 27.6% of races overall (see Figure 2). In
contrast, for infrequent players, NETWORK_PLAYTIME is 3rd,
at 16.1%, behind 2 single player modes (OFFLINE_CAREER at
47.0% and PGR_ARCADE at 19.6%) (see Figure 3).

In terms of event types, the most popular for regular players in the
entire dataset was NET_STREET_RACE at 26.6%. For
infrequent players, it was second at 10.5%, significantly less than
the single player event type of STREET_RACE at 54.8%.

Figure 2: Game Modes, Regular Players

Figure 3: Game Modes, Infrequent Players

We see a similar pattern when looking at the first ten races only.
48% of races for regular player were in multiplayer game modes,
compared to 20.8% for infrequent players. The most common
multiplayer game mode, NETWORK_PLAYTIME, was
significantly more preferred by regular players, 35.5% versus
7.6% for infrequent players.

93

For regular players NET_STREET_RACE was the most popular
event type by an overwhelming margin: 39% of races, with single
player STREET_RACE a distant second at 15.5%. For infrequent
players, the single player event types of STREET_RACE and
TIMEATTACK were vastly more preferred (24.9% and 20.8%
respectively) over NET_STREE T_RACE (3rd at 9.4%).

B. Regular players play more career mode

When regular players do play single player races, they are more
likely to do so in career mode than infrequent players.

In the entire dataset, OFFLINE_CAREER was the most popular
game mode overall for regular players: 36.6%, followed by the
aforementioned multiplayer mode NETWORK_PLAYTIME at
27.6% (see Figure 2). In contrast, the non-career modes of
SINGLE_PLAYER_PLAYTIME and PGR_ARCADE were more
preferred by infrequent players (20.6% v. 3.5% and 24.5% v.
18.46% respectively) (see Figure 3).

When looking at data from the single player races only,
OFFLINE_CAREER was the most popular for both regular and
infrequent players. 59.9% of single player races for regular
players were in OFFLINE_CAREER and 47.5% for infrequent
players. This may not seem like a large difference, but when we
look at the primary non-career mode,
SINGLE_PLAYER_PLAYTIME, the difference becomes more
apparent. Regular players used SINGLE_PLAYER_PLAYTIME
in only 5.8% of single player races, while infrequent players used
it in 24.2%.

We see a difference in the first ten races as well. Regular players
prefer OFFLINE_CAREER career more than infrequent players
(36.5% v. 22.2%). By contrast, infrequent players were more
likely than regular players to play non-career modes
TIMEATTACK (20.1% v. 0.5%) and PGR_ARCADE (26.4% v.
6.5%).

C. Many options were underused

Our analysis showed that large amounts of the options available in
the game were used in so few instances that they could have been
removed from the game entirely. In four of the features we
examined, 20% to over 70% of available options were used in less
than 1% of races. This suggests that savings in development times
and costs could be realized in future games by offering fewer
options without negatively affecting the players’ overall
experience. When looking at the entire dataset,

 22% (2 of 9) game modes,
 41% (12 of 29) event types,
 67% (81 of 121) routes,
 and 78% (104 of 134) vehicles

were used in less than 1% of races each.

1) Game Modes

As shown in Table 1, OFFLINE_CAREER (a single player mode)
was the most commonly used game mode by far, with
NETWORK_TOURANMENT_QUAL and
NETWORK_TOURNAMENT_ELIM being used in less than
0.5% of races. If fact, the 7 least used modes account for only
15% of races overall.

Table 1. Game Modes

Game Mode Races
% of
Total

OFFLINE_CAREER 1479586 47.63%

PGR_ARCADE 566705 18.24%

NETWORK_PLAYTIME 584201 18.81%

NETWORK_ONLINECAREER 193091 6.22%

SINGLE_PLAYER_PLAYTIME 185415 5.97%

TIMEATTACK 43942 1.41%

WORLD_CHALLENGE_MODE 36581 1.18%

NETWORK_TOURANMENT_QUA
L

13847 0.45%

NETWORK_TOURNAMENT_ELI
M

2713 0.09%

When we look at just multiplayer game modes we see an even
larger disparity: the top two modes account for 98% of all
multiplayer races.

2) Event Types

When looking at event types, we again see a rapid drop off in
popularity with the least popular types receiving only trivial
usage. A reduced version of this data is shown in Table 2.

Table 2. Event Types (Reduced)

Group Races
% of
Total

STREET_RACE 795334 25.60%

NET_STREET_RACE 543491 17.50%

ELIMINATION 216042 6.95%

• OFFLINE_CAREER was the most popular game mode
among regular players

• SINGLE_PLAYER_PLAYTIME was used more by
infrequent players overall and in their first ten races

• Regular players used OFFLINE_CAREER more in their
first ten races

• Regular players used the NETWORK_PLAYTIME game
mode more than infrequent players

• Regular players used the NET_STREET_RACE event
type more than infrequent players

• In their first 10 races, regular players used the
NETWORK_PLAYTIME game mode more than
infrequent players by a large margin

• In their first 10 races, regular players used the
NET_STREET_RACE event type more than infrequent
players by a large margin

94

HOTLAP 195949 6.31%

…

TESTTRACK_TIME 7484 0.24%

NET_CAT_AND_MOUSE_FREE_R
OAM

3989 0.13%

CAT_AND_MOUSE 53 0.00%

Single player street races were the most popular event type,
followed by multiplayer street races and elimination races (knock
out stages in tournaments), whereas 12 of the 29 event types were
used in less than 1% of races. The underutilization of event types
is even more pronounced when looking at multiplayer races only
(7 of 16 event types used in less than 0.1% of races).

3) Routes

While 67% of the available routes were used in less than 1% of
races each, collectively they account for 36% of races. i.e., two-
thirds of races occur on one-third of the routes. Developers would
likely not support a proposal to eliminate such a large portion of
potential gameplay, so we looked at even smaller percentages of
use and found that

 47 (39%) were used in less than 0.5%,
 19 (16%) were used in less than 0.25%,
 and 8 (7%) were used in less than 0.1%

of total races.

The 47 routes used in less than 0.5% of races account for 13% of
overall usage, a much more palatable percentage to consider
removing, while still leaving 70+ routes available for players.

4) Vehicles

Similarly with routes, a wide variety of vehicles adds to depth of
gameplay even if a significant portion is rarely used. Furthermore,
the number of available vehicles in a driving game can be an
important point in the marketing strategy.

The 104 of the 134 vehicles that are used in less than 1% of races
each collectively represent 38% of usage. Furthermore,

 72 (54%) were used in less than 0.5%;
 50 (37%) were used in less than 0.25%,
 and 12 (9%) were used in less than 0.1% of total races.

The 50 vehicles used in less than 0.25% of races each represent
less than 7% of the total races.

5) Vehicle Classes

We can also look at vehicles in terms of their classes. The
vehicles in the game are grouped into 7 classes based on
performance. As seen in Table 3, A-Class vehicles were used
nearly twice as often as the next most popular class, while Classes
B though F were close in popularity, ranging from 10-15% of all
races.

Table 3. Vehicle Class

Vehicle Class Races % of Total

A_Class 908581 29.25%

F_Class 478944 15.42%

C_Class 465889 15.00%

B_Class 454594 14.63%

D_Class 386862 12.45%

E_Class 338938 10.91%

G_Class 69625 2.24%

Also, G-Class was considerably less popular, being used in about
2% of races overall. This suggests that the number of classes can
be reduced. Players have little interest in the low-performance G-
Class, and perceive little difference between the other classes
except A-Class.

D. A- & F-Class vehicles most popular

As seen in Table 3, A-Class vehicles were the most popular by a
considerable margin. They were also the most preferred in
multiplayer (53.6%) and in the first ten races (32.5%). These are
the highest performance vehicles, so we would expect them to be
most preferred by regular players, and they were (36.2% v. 20.2%
for infrequent players). However, they were still used significantly
by infrequent players, being the second most popular in the first
ten races (33%) and overall (20.2%) and most popular in
multiplayer races (54.5%).

While in the overall dataset F-Class doesn’t appear significantly
more popular than B- through E-Classes, when we look at subsets
of the data we see certain trends. Amongst infrequent players, F-
Class was by far the most popular, 55.4% overall (see Figure 4)
and 47% in single player races only. This seems like an obvious
result as F-Class vehicles are the only ones initially available in
career mode at the start of the game, but as shown above,
infrequent players are less likely to play in career mode.

Figure 4: Vehicle Class, Infrequent Players

E. C-Class & B-Class equally popular

As seen in Table 3, C-Class was slightly more popular than B-
Class overall. This may not seem significant, but when we look at

• A-Class vehicles were the most often used overall, in
multiplayer, and in players’ first ten races

• A-Class vehicle were the second most often used by
infrequent players overall and in their first ten races

• F-Class vehicles were the most often by infrequent
players

95

the data for the first ten races, we see that C-Class was the second
most popular class among regular players at 26% v. 13% for B-
Class. This suggests that C-Class cars have characteristics that
make them more appealing to players than the higher-performance
B-Class vehicles.

7. RECOMMENDATIONS

The five conclusions we reached after examining the Start of Race
dataset led to 4 recommendations for future development that
would be applicable to many different games in the racing game
genre, and could possibly be generalized to other games:

 New players should be encouraged to play in career
mode

 New players should be encouraged to use F-Class
vehicles in multiplayer

 Development time and costs could be reduced by having
fewer available options

 Reduce the number of vehicle classes from 7 to 5

A. New players should be encouraged to play career mode

As discussed above, regular players are more likely to play in
career mode, both overall and in the first ten races. This suggests
that playing in career mode increases the likelihood that a player
will continue playing the game for a much longer time. Players
enjoy progression, and being presented with a series of increasing
challenges and rewards, such as advancing through the stages in
career mode, will cause them to be engaged and keep playing.

The data suggests that many new players come into the game,
experiment with various game modes and event types in their first
few races, and then stop playing. If they could be drawn into the
challenge/reward structure of career mode they would be more
likely to continue playing. The early career races are designed to
be easy, so most players will start winning early, unlocking more
cars and routes that they are then eager to try out.

B. New players should be encouraged to use F-Class vehicles in
multiplayer

While infrequent players were shown to prefer F-Class vehicles in
single player races, they had as high a preference for A-Class
vehicles in multiplayer as regular players. Given that the learning
curve for A-Class vehicles is quite steep, this may be a factor in
infrequent players losing interest in the game. If, in one of their
earliest experiences with the game, a player joins a multiplayer
race with experienced players on a track they are unfamiliar with,
picks one of the fastest cars available, and then crashes in the first
turn, they are likely to become frustrated and stop playing.

Alternatively, new players could, by default, be sent to
multiplayer races only with other new players, specifically on
tracks that are available early in the single player game. The only
vehicles available would be the F-Class vehicles, so they wouldn’t
feel compelled to select an A-Class vehicle merely to be
competitive with other players. These initial experiences in
multiplayer would be gentler, on tracks and using vehicles they
are familiar with, and against other players of similar skill levels.

C. Development time and costs could be reduced by having
available options

Our analysis showed that 20-70% of the available options were
used in less than 1% of races each. As asset creation is a major
expense in game development, reducing little-used options could
significantly reduce costs and development time while having
little impact on players’ experience. Each vehicle in the game, for
example, represents a significant investment: a 3d artist must
model it, a texture artist must decorate it, a designer must to tweak
its performance values, and testers must rigorously use it in a
variety of conditions to make sure there are no problems. Creating
new routes requires artists, designers, and testers, while new event
types require engineering effort.

That being said, there are benefits to having little used content
available in the game. It can extend the life of a game for players;
they can explore rarely-used options when they grow tired of the
game. A wide variety of options can lead to emergent play as
players find uses for content that developers never anticipated.
The amount of content can be useful in the marketing of a game;
being able to say that you has more vehicles or event types than
your competitors can drive sales.

While excessively pruning available content in future games
might not be preferred, a reduction of 20% across the board could
reduce costs and development times significantly while the back
of the box could still boast that the game contains more than 100
vehicles.

D. Reduce number of vehicle classes from 7 to 5

In addition to reducing the sheer amount of content, removing
complexity from the game can reduce cognitive overhead for the
player. In particular, the 7 vehicle classes are an unnecessary
element that does not enhance the game experience for the player.

The analysis showed that G-Class vehicles were used in about 2%
of races overall. These are mostly low-performance specialty and
historic vehicles that are not generally of much use to players
throughout the game. Any that developers feel are important
enough to keep could be moved into other classes.

The analysis also showed little difference in preference for
Classes B−E. While having stages of progression is important to
the learning curve, fewer steps would achieve the same effect. In
particular, C-Class is preferred over B-Class in some instances,
suggesting there’s little difference and the two could be combined.

The resulting 5 classes should offer sufficient ramp-up in
difficulty for the player to progress though the game without any
sudden increases.

8. CONCLUSIONS

This paper presented a series of analyses performed on data
collected on players in the game Project Gotham Racing 4. We
looked for patterns within large data sets that provide insight into
player behavior. We learned there were key differences in how
regular and infrequent players approached the game, and how
what players do in their earliest exposure to the game can affect
their desire to continue playing. We also found that much of the
available options for gameplay were rarely used by players.

From the patterns in the data we made recommendations for
future development. Many rarely utilized options could be

• In their first 10 races, regular players used C-Class
vehicles twice as often as B-Class vehicles

96

removed with no negative impact on players. A more structured
introduction would keep new players engaged and increase the
likelihood that they will continue playing.

These conclusions could be applied generally to a wide variety of
games in different genres. Developers who are inclined to add
many options to their games should consider the result that
players in PGR4 tended to focus mainly on the game’s core
features. Providing tutorials and a gentle early difficulty curve can
help ease new players into a game and keep them playing. This
paper also shows that simple analysis to begin with can greatly
help advance the state of the art in software engineering in the
games domain.

It is also important to call out several points.

a. Telemetry, or the collection of metrics, has become increasingly
common in game development. The contribution of this paper is
to show how data analysis, even exploratory, on data from games
can have potentially far-reaching software engineering
implications in the empirical community. There is the potential to
evaluate how these new classes of software systems work with
various empirical processes and practices.

b. The paper necessarily spends a lot of time explaining the
domain of the analysis to provide context to the reader. A
secondary goal of this paper is to introduce this topic of software
engineering research for games to the broader software
engineering community and expose the potential for research in
games. We have presented the various sources of data available in
game analytics. There are several open questions in the software
engineering research for games community, ranging from the
requirements engineering: how are requirements for games
defined, where the major emphasis is based on user interaction
and real-time feedback, the use of personas for requirements
documents etc.; to testing and analysis: how can games be tested
in the lab, simulating user behavior. We hope in coming years the
software engineering community as a whole will embrace the
games domain to investigate and address the important software
engineering challenges facing games.

c. The paper is specific to Project Gotham Racing 4, though
techniques similar to those outlined in this paper could be applied
to any game dataset. As this case study involves an already
released game, we were limited to making suggestions for future
releases, but similar techniques could be applied to beta test data
for a game in development. The larger the dataset, the more
pronounced the patterns will be, but conclusions drawn from a
pool of beta testers representative of the target audience are likely
to be more insightful then those that can be gained through
traditional playtesting. Similar analysis could be performed for
different game genres, ranging from FPS (First Person Shooter) or
strategy games to educational and physical activity games.

ACKNOWLEDGEMENTS

We would like to gratefully acknowledge the participants of
ISERN in the special session on Games in 2009. Their
encouragement was instrumental in submitting this paper to
ESEM. Part of this paper, specifically Section 3, appeared as part
of an ICSE NIER 2011 paper [7]. The rest of the paper has
significantly newer results. We would like to thank the ICSE
NIER reviewers who provided much encouragement and support
which caused us to submit this paper. We would like to thank all
the users who played PGR4, the data collection team in Xbox,
Thomas Zimmermann, Christian Bird, Tom Ball, Jim Whitehead,

and the broader ESEM and ISERN communities which have
encouraged the publishing of research on Games.

REFERENCES

[1] Adent, D. Forza Motorsport 3 and Predictable Development.
Gamasutra.com.
http://www.gamasutra.com/view/feature/6182/forza_motorsp
ort_3_and_predictable_.php

[2] Annual Conference on Artificial Intelligence and Interactive
Digital Entertainment. http://www.aiide.org/

[3] Blow, J. Game Development: Harder Than You Think.
Queue 1, 10 (February 2004), 28-37, 2004.

[4] Dixit, P. N. and Youngblood, G. M. Optimal information
placement in an interactive 3D environment. In Proceedings
of the 2007 ACM SIGGRAPH symposium on Video games.
2007.

[5] Dixit, P. N. and Youngblood, G. M. Understanding
information observation in interactive 3D environments. In
Proceedings of the 2008 ACM SIGGRAPH symposium on
Video games. 2008.

[6] GameFaqs. http://www.gamefaqs.com/

[7] Hullett, K., Nagappan, N., Schuh, E., Hopson, J. Data
analytics for game development: NIER track. In Proceedings
of the International Conference on Software Engineering.
2011.

[8] Kim, J., Gunn, D., Schuh, E., Phillips, B., Pagulayan, R., and
Wixon, D. Tracking real-time user experience (TRUE): a
comprehensive instrumentation solution for complex
systems. In Proceeding of the twenty-sixth annual SIGCHI
conference on Human factors in computing systems. 2008.

[9] Lewis, C. and Wardrip-Fruin, N. Mining game statistics from
web services: a World of Warcraft armory case study. In
Proceedings of the Fifth International Conference on the
Foundations of Digital Games. 2010.

[10] Miller, J. L. and Crowcroft, J. Avatar movement in World of
Warcraft battlegrounds. In Proceedings of the 8th Annual
Workshop on Network and Systems Support for Games
(NetGames '09). 2009.

[11] Nutt, C. Halo: Reach - The Beta Story. Gamasutra.com.
http://www.gamasutra.com/view/feature/5875/halo_reach__t
he_beta_story.php

[12] Proceedings of the 1st International Workshop on Games and
Software Engineering, ISBN: 978-1-4503-0578-5, New
York, NY.
http://dl.acm.org/citation.cfm?id=1984674&picked=prox

[13] Russell, B. A Deeper. Look into The Combat Design Of
Uncharted 2. Gamasutra.com.
http://www.gamasutra.com/view/feature/5883/a_deeper_look
_into_the_combat_.php

[14] Russell, B. Designing Combat Encounters In Uncharted 2.
Gamasutra.com.
http://www.gamasutra.com/view/feature/5945/designing_co
mbat_encounters_in_.php

[15] SIGGRAPH, Games Papers 2011.
http://www.siggraph.org/s2011/for_submitters/game-papers

97

[16] Sofge, E. How Halo: Reach Was Created: Insider's Guide.
PopularMechanics.com.
http://www.popularmechanics.com/technology/gadgets/video
-games/how-halo-reach-was-created-insiders-guide

[17] Thompson, C. Halo 3: How Microsoft Labs Invented a New
Science of Play. Wired.com.
http://www.wired.com/gaming/virtualworlds/magazine/15-
09/ff_halo

[18] Van der Heijden, J. Successful Playtesting In Swords &
Soldiers. Gamasutra.com

http://www.gamasutra.com/view/feature/5939/successful_pla
ytesting_in_swords__.php

[19] Weber, B., John, M., Mateas, M., Jhala, A. Modeling Player
Retention in Madden NFL 11. In Proceedings of Innovative
Applications of Artificial Intelligence. 2011.

[20] Weber, B., Mateas, M. A data mining approach to strategy
prediction. In IEEE Symposium on Computational
Intelligence and Games, 2009.

98

