
G-SPARQL: A Hybrid Engine for Querying Large Attributed
Graphs

Sherif Sakr
National ICT Australia

UNSW, Sydney, Australia

ssakr@cse.unsw.edu.eu

Sameh Elnikety
Microsoft Research
Redmond, WA, USA

samehe@microsoft.com

Yuxiong He
Microsoft Research
Redmond, WA, USA

yuxhe@microsoft.com

ABSTRACT
Graphs are widely used for modeling complicated data such
as social networks, bibliographical networks and knowledge
bases. The growing sizes of graph databases motivate the
crucial need for developing powerful and scalable graph-
based query engines. We propose a SPARQL-like language,
G-SPARQL, for querying attributed graphs. The language
enables the expression of different types of graph queries
that are of large interest in the databases that are mod-
eled as large graph such as: pattern matching, reachability
and shortest path queries. Each query can combine both of
structural predicates and value-based predicates (on the at-
tributes of the graph nodes/edges). We describe an algebraic
compilation mechanism for our proposed query language
which is extended from the relational algebra and based on
the basic construct of building SPARQL queries, the Triple
Pattern. We describe an efficient hybrid Memory/Disk rep-
resentation of large attributed graphs where only the topol-
ogy of the graph is maintained in memory while the data of
the graph are stored in a relational database. The execu-
tion engine of our proposed query language splits parts of the
query plan to be pushed inside the relational database (using
SQL) while the execution of other parts of the query plan
are processed using memory-based algorithms, as necessary.
Experimental results on real and synthetic datasets demon-
strate the efficiency and the scalability of our approach and
show that our approach outperforms native graph databases
by several factors.

1. INTRODUCTION
Graphs are popular data structures which are used to

model structural relationship between objects. Recently,
graph query processing has attracted a lot attention from
the database research community due to the increasing pop-
ularity of graph databases in various application domains.
In general, existing research on graph databases and graph
query processing can be classified into two main categories.
The first category represents graph databases which consists
of a large number of small graphs (usually called Transac-

.

tional Graph Database) such as bioinformatic applications [24],
cheminformatics applications [27] and repositories of busi-
ness process models [38]. In this category, there are two
types of queries that are commonly studied in the litera-
ture:
a) Subgraph query which aims to find all the graphs in the

database such that a given query graph is a subgraph of
them [47, 48].

b) Supergraph query that aims to find all the graphs in the
database that are subgraphs of the given query graph [10,
49].

The second category of graph databases are usually rep-
resented as one (or a very small number) of large graphs
such as social networks [7], bibliographical networks [45] and
knowledge bases [42]. In this category, there are three com-
mon types of queries:
a) Pattern match query that tries to find the existence(s) of

a pattern graph (e.g. path, star, subgraph) in the large
graph [51, 52].

b) Reachability query that verifies if there exists a path be-
tween any two vertices in the large graph [12, 26].

c) Shortest path query which represents a variant version
of the reachability query as it returns the shortest path
distance (in terms of number of edges) between any two
vertices in the large graph (if the two vertices are con-
nected) [11, 46].

In this paper, we focus on query processing in the second cat-
egory of graph databases. In many real applications of this
category, both the graph topological structure in addition
to the properties of the vertices and edges are important.
For example, in a social network, a vertex can be described
with a property that represents the age of a person while
the topological structure could represent different types of
relationships (directed edges) with a group of people. Each
of these relations can be described by a start date property.
Each vertex is associated with a basic descriptive attribute
that represents its label while each edge has a label that
describes the type of relationship between the connected
vertices. The problem studied in this paper is to query a
graph associated with attributes (called as attributed graph)
based on both structural and attribute conditions. Unfor-
tunately, this problem did not catch much attention in the
literature and there is no solid foundation for building query
engines that can support a combination of different types of
queries over large graphs. Formally, an attributed graph is
denoted as (V,E, Lv, Le, Fv, Fe,Λv,Λe) where V is the set
of vertices; E ⊆ V × V is the set of edges joining two dis-
tinct vertices; Lv is the set of vertex labels; Le is the set

1

Alice JohnSmith

age: 28

office: 518

Age:42

location: Sydney
age:45

Paper 1 Paper 2

UNSW Microsoft

VLDB’12

Keyword: graph
Keyword: XML

type: Demo

location: Istanbul

country: Australia

established: 1949
country: USA

established: 1975

a
ffilia

te
d

affiliated

a
ffilia

te
d

auth
orO

f

auth
orO

f

published

published

citedBy

authorO
f

auth
orO

f

supervises

title: Professor

title: Senior Researcher

order: 1

order: 2
order: 1

order: 2

Month: 1
Month: 3

know

Figure 1: An example attributed graph.

of edge labels; FV is a function V → Lv that assigns labels
to vertices and Fe is a function E → Le that assigns labels
to edges; Λv = {a1, a2, ..., am} is a set of m attributes that
can be associated with any vertex in V . Each vertex v ∈ V
can be described with an attribute vector [a1(v), ..., am(v)]
where aj(v) is the attribute value of vertex v on attribute
aj . Λe = {b1, b2, ..., bn} is a set of n attributes that can be
associated with any edge in E. Each edge e ∈ E can be de-
scribed with an attribute vector [b1(e), ..., bn(e)] where bk(e)
is the attribute value of edge e on attribute bk.

Figure 1 shows a snippet of an example large graph where
a vertex represents an entity instance (e.g. author, paper,
conferences) and an edge represents a structural relationship
(e.g. co-author, affiliated, published). In addition, there are
attributes (e.g. age, keyword, location) that describe the
different graph vertices while other attributes (e.g. order,
title, month) describe the graph edges. In practice, a user
may need to pose a query on the large graph that can involve
more than one of the common graph query types. Examples
of these queries are:
1) Find the names of two authors, X and Y, where X and Y

are connected by a path (sequence of edges) of any length
(number of edges), the author X is affiliated at UNSW, the
author Y is affiliated at Microsoft and each of the authors
has published a paper in VLDB’12. This query involves
pattern matching and reachability expressions.

2) Find the names of two authors, X and Y, where X and Y

are connected by a path of any length, the author X is
affiliated at UNSW, the author Y is affiliated at Microsoft,
each of the authors has published a paper in VLDB’12 as a
first author and each of the authors has an age which
is more than or equal 35. This query involves pattern
matching expression with conditions on the attributes of
graph nodes and edges in addition to reachability expres-
sion.

3) Find the names of two authors, X and Y, and the connect-
ing path(s) between them where X and Y are connected
by a path with a length which is less than or equals 3
edges, the author X is affiliated at UNSW, the author Y

is affiliated at Microsoft and each of the authors has
published a paper in VLDB’12 as a first author. This
query involves pattern matching and reachability expres-
sions where the reachability expression is constrained by
a path filtering condition and returns the information of

the connecting paths(s) in the query output.
4) Find the names and the ages of two authors, X and Y, and

the shortest path between them where the author X is
affiliated at UNSW, the author Y is affiliated at Microsoft
and each of the authors has published a paper at VLDB’12.
This query involves pattern matching and shortest path
expressions.

5) Find the titles of two papers, P1 and P2, and the path
between them where each edge in the path represent the
cited by relationship and the maximum path length is
three edges where the affiliation of the first author of
P1 is affiliated at UNSW and the affiliation of the first

author of P2 is Microsoft. This query involves a pattern
matching expression with condition on the attributes of
graph edges in addition to a constrained reachability ex-
pression.

1.1 Limitations of Existing Approaches
The emerging wave of new graph-based applications in dif-

ferent domains have triggered the calls for new systems for
managing large graphs. Several techniques have been pro-
posed in the literature for querying large graphs. However,
in practice, the existing techniques turn to be inadequate in
many cases due to the following deficiencies.
• The existing techniques follow the approach of building

an index for storing information about the main fea-
tures of the graph database. The structure and content
of this index is usually optimized for accelerating the
evaluation of one of the common types of the graph
queries but usually they can not be used for accelerat-
ing the evaluation of other types of queries. For exam-
ple, different subgraph query processing techniques ex-
ploit different types of graph features for building their
indices (e.g. path [51], tree [48], subgraph [47]) while
proposed techniques for handling reachability queries
use different indexing mechanisms such as the 2-hop
cover [12] and 3-hop cover [26]. In practice, answering
user requests that can involve more than one of the
common graph query types would require maintaining
different type of indices which would be very expensive
in terms of memory consumption. In addition, it im-
poses significant overheads for both constructing these
indices (in offline pre-processing phase) and maintain-
ing them in case of supporting updates on the under-
lying graph database. Moreover, given the increasing
sizes of the graph database, the efficiency of such in-
dexing techniques will break down after a certain limit
is reached.
• The existing graph querying methods (of both cate-

gories of graph databases) that have been presented in
the literature mainly focus on querying the topologi-
cal structure of the graphs [47, 48, 51] and very few of
them have considered the use of attributed graphs [39,
43]. While methods for querying the topological struc-
ture are more required for applications of transactional
graph database, it is more common that the query-
ing requirements for the applications of large graph
databases (e.g. social networks or bibliographical net-
works) would involve querying the graph data (at-
tributes of nodes/edges) in addition to the graph topol-
ogy. In practice, answering queries that involve predi-
cates on the attributes of the graphs (vertices or edges)
in addition to the topological structure is more chal-
lenging as it requires extra memory consumption for

2

building indices over the graph attributes in addition
to the structural indices in order to accelerate the
query evaluation process. Furthermore, it makes the
query evaluation and optimization process more com-
plex (e.g. evaluation order and join order).
• The existing techniques assume that the whole graph

(or at least their constructed indices) can always live
entirely in the main memory. This assumption hinders
the scalability of the proposed techniques due to their
huge memory consumption. Very few approaches have
assumed the use of persistent disk to store the graph
databases (or portion of it) during the query evaluation
process [32, 36, 44].
• The Resource Description Framework (RDF) repre-

sents a special kind of the considered attributed graphs.
SPARQL is the official W3C standard query language
for RDF graphs [35]. Several graph query process-
ing techniques were proposed for large RDF graphs [6,
31, 53]. However, these approaches can not be di-
rectly reused for general attributed graphs due to the
differences in the data model and the specifications
of the query requirements. For example, in the RDF
data model, graph edges can not be described by at-
tributes. In addition, graph edges are used to represent
both of the attribute/literal value pairs of the nodes
and the structural relationship with other nodes in
the graph with no differentiation. Such uniform treat-
ment for the graph data and graph structure informa-
tion dramatically increase the size of graph topology.
Moreover, the initial specifications of SPARQL [35] did
not provide any facility for expressing path queries or
reachability expressions. The recent specifications of
the SPARQL 1.1 query language1 has addressed this
limitation in a limited manner. However, no systems
have, yet, been proposed to support these features. In
addition, some query types that are of common in-
terest in the general domain of large graph such as
shortest path queries might not be of direct interest
in the scope of RDF/SPARQL domain and is thus, so
far, not been considered.
• Recently, some native graph database systems have

been introduced (e.g. Neo4j2, HypergraphDB3). These
systems are mainly designed to provide efficient graph
traversal functions4. However, these systems lack the
support of declarative query interfaces and do not ap-
ply any query optimization strategies. In particular,
they are language-specific and have their own APIs
and low-level interfaces. Therefore, the efficiency of ex-
ecution for any graph query is programmer-dependent.
Thus, it can turn to be quite inefficient in many cases
especially when the programmer has no or little knowl-
edge about the characteristics of the underlying graph.
Pregel system [29] has been introduced by Google as a
large scale graph processing platform. However, Pregel
is designed to work as a batch system for running graph
analytical operations and it does not support online
query processing.

1http://www.w3.org/TR/sparql11-query/
2http://neo4j.org/
3http://www.kobrix.com/hgdb.jsp
4A traversal refers to visiting the graph vertices sequentially
by following the graph edges in some algorithmic fashion
(e.g. depth-first or breadth-first)

1.2 Our Approach and Contributions
We present an approach for interactive querying of large

attributed graphs which aims to address the above men-
tioned deficiencies. In particular, we rely on a hybrid main
memory/disk-based relational representation of the graph
database and devising efficient algeberaic-based query pro-
cessing mechanisms for different types of graph queries. In
our approach, the incoming queries are compiled into alge-
braic plans where parts of the query plans are pushed down
and executed inside the relational database layer while the
rest of the query plan is processed using memory-based algo-
rithms. In principle, the main reason behind our decision for
relying on a relational database at the physical storage layer
is to leverage the decades’ worth of research in the database
systems community. Some optimizations developed during
this period include the careful layout of data on disk, index-
ing, sorting, buffer management and query optimization. By
combining the memory representation of the graph topology
and memory-based graph algorithms with the storage layer
of the RDBMS, we are able to gain the best features of both
worlds. Our goal is to optimize the performance of query
processing while minimizing the memory consumption and
achieving the scalability goals. In particular, our main con-
tributions can be summarized as follows:
• We propose a SPARQL-like language, called G-SPARQL,

for querying attributed graphs. The language enables
combining the expression of different types of graph
queries into one request. We show that the language
is sufficiently expressive to describe different types of
interesting queries (Section 2).
• We present an efficient hybrid Memory/Disk represen-

tation of large attributed graphs where only the topol-
ogy of the graph is maintained in memory while data
of the graph is stored and processed using relational
database (Section 3).
• We describe an execution mechanism for our proposed

query language where the incoming query is first com-
piled into an intermediate algebraic plan. Then, a split
query evaluation mechanism is applied where the exe-
cution of parts of the query plan is pushed inside the
relational database (using SQL) while the execution
of other parts of the query plan is processed using
memory-based algorithms, as necessary, for optimiz-
ing the query performance (Section 4).
• We conduct extensive experiments with real and syn-

thetic data to evaluate our approach (Section 5).
We review the related work on querying graph databases in
Section 6 before we conclude the paper in Section 7.

2. QUERY LANGUAGE AND SUPPORTED
QUERY TYPES

To represent queries, a language is needed. Therefore, a
number of graph query languages, with corresponding graph
models, have been proposed in the literature [4]. For exam-
ple, PQL [28] is a special-purpose language which is designed
for querying pathways in biological networks. GraphQL [23]
was developed as a general language for querying both large
sets of small graphs as well as small sets of large graphs .
It is designed for querying graph patterns based on graph
structure in addition to the node and edge attributes. The
language considers graphs as the basic unit of abstraction
where the output of each expression is restricted to take the

3

form of a graph structure. However, GraphQL lacks the abil-
ity to express queries about arbitrary path structures in the
graph. Therefore, some important types of queries for large
graphs such as reachability queries and shortest path queries
can not be expressed using GraphQL. Facebook has intro-
duced the Facebook Query Language (FQL)5 that provides
the users with a way to query their own data that can be
accessed through API functions. The language uses a SQL-
style interface and offers a rather primitive and restricted
set of queries in order to achieve good performance. For ex-
ample, the clauses are of the form select-from-where with
a single from table and join operations are not supported in
the language.

The SPARQL query language is the official W3C stan-
dard for querying and extracting information from RDF
graphs [35]. It represents the counterpart to select-project-
join queries in the relational model. It is based on a powerful
graph matching facility that allows the binding of variables
to components in the input RDF graph. In principle, the
RDF data model represents a special kind of the general
model of attributed graph which represents our main focus
in this paper. In particular, the main differences between
the two kind of models (RDF and attributed graph) can be
specified as follows:
• In the RDF data model, graph edges are used for rep-

resenting the structural relationships (graph topology)
between the graph entities (connecting two vertices) in
addition to representing the graph data by connecting
the graph entities to the information of their attribute
values (connecting a vertex with a literal value). Such
uniform treatment leads to a significant increase in
the size of the graph topology as the graph data is
considered as a part of the topology and not as a
separate part. The situation is different in the at-
tributed graph model where the graph data (attributes
of graph nodes/edges) are represented differently from
the structural information of the graph.
• In attributed graphs, edges are treated as first class

citizens where any edge (similar to any vertex) can be
described by an arbitrary set of attributes. However,
that is not the case in the RDF data model where
there is no support for edges to be described by any
attribute information (only vertices).

In general, a good query language should have powerful
expressiveness so as to satisfy the users’ query requirements.
In addition, it should be as clear and concise as possible in
syntax expressions. Therefore, we introduce G-SPARQL as
a SPARQL-like query language that employs the basic graph
matching facilities of the SPARQL language. However, the
language introduces new constructs that handle the above
mentioned differences in the data model in addition to com-
pensating the lack of some querying requirements that are
not supported by the standard specification of the SPARQL
language. In particular, our language aims to fulfill the fol-
lowing set of large graph querying requirements:
• The language supports querying structural graph pat-

terns where filtering conditions can be specified on the
attributes of the graph vertices and/or edges which are
participating in the defined patterns as well.
• The language supports various forms for querying graph

paths (sequence of edges) of possibly unknown lengths

5http://developers.facebook.com/docs/reference/fql/

<Query> = SELECT <VarList>
WHERE{ <Triple>+
[FILTER (<Predicate>)]*
[FILTERPATH (<PathPredicate>)]* }

<VarList> = {?var | <PathVar>}
<PathVar> = ??var | ?*var
<Triple> = <Term> (<Term> | <Edge> | <Path>) <Term>

<Term> = literal | ?var
<Edge> = literal | literal+ | @literal | ?var(literal)
<Path> = <PathVar> | <PathVar>(literal)

<Predicate> = BooleanFunction
<PathPredicate> = Length(<PathVar>, Predicate) |

AtLeastNode(<PathVar>, number, Predicate) |
AtMostNode(<PathVar>, number, Predicate) |
ALLNodes(<PathVar>, Predicate) |
AtLeastEdge(<PathVar>, number, Predicate) |
AtMostEdge(<PathVar>, number, Predicate) |
AllEdges(<PathVar>, Predicate)

Figure 2: G-SPARQL grammar

that connect the graph vertices. In particular, the
language enables the expression of reachability queries
and shortest path queries between the graph vertices
where filtering conditions can be applied on the queried
path patterns (e.g. constraints on the path length).

Figure 2 shows the grammar of the G-SPARQL language
whereas non-terminal Query, defining a G-SPARQL query,
is the start symbol of this grammar. More details about
the syntax and semantics of the G-SPARQL language are
discussed in the following subsections.

2.1 Querying Attributes of Nodes and Edges
The standard specifications of the SPARQL query lan-

guage supports defining query graph patterns and express-
ing various restrictions on the entities and the relationships
which are participating in defining these patterns. In partic-
ular, each SPARQL query defines a graph pattern P that is
matched against an RDF graph G where each variable in the
query graph pattern P is replaced by matching elements of
G such that the resulting graphs are contained in G (pattern
matching). The basic construct of building these graph pat-
terns is the so-called a Triple Pattern [33]. A Triple Pattern
represents an RDF triple (subject, predicate, object)

where subject represents an entity (vertex) in the graph and
predicate represents a relationship (edge) to an object in the
graph. This object in the triple pattern can represent an-
other entity (vertex) in the graph or a literal value. Each
part of this triple pattern can represent either a constant
value or a variable (?var). Hence, a set of triple patterns
concatenated by AND (.) represents the query graph pat-
tern. The following example shows a simple SPARQL query
that finds all persons who are affiliated at UNSW and are
at least of 30 years old.

SELECT ?X

WHERE {?X affiliatedAt UNSW. ?X age ?age.

FILTER (?age >= 30)}

In our context, we need to differentiate between the repre-
sentation of two types of query predicates.

a) Structural predicates: specify conditions on the struc-
tural relationship between graph vertices (the object part of
the query triple pattern represent a graph vertex).

b) Value-based predicates: specify conditions on the values
of the attributes in the graph (the object part of the query
triple pattern represent a literal value).

4

Therefore, the G-SPARQL syntax uses the symbol (@)

at the predicate part of the query triple patterns that repre-
sent value-based predicates and differentiate them from the
standard structural predicates. To illustrate, let us consider
the following example of two query triple patterns:

T1 --> ?Alice affiliatedBy UNSW

T2 --> ?Alice @affiliatedBy "UNSW"

where T1 represents a structural predicate that specifies
the condition of having the graph vertices represented by the
variable ?Alice connected by an edge that represents the
affiliatedBy relationship to a vertex with the label UNSW
while T2 represents a value-based predicate that specifies
the condition of having the vertices represented by the vari-
able ?Alice described by an affiliatedBy attribute that
stores the literal value of UNSW.

Unlike the RDF data model, the model of attributed graphs
enables describing each graph edge with an arbitrary set of
attributes. Therefore, our query language enables represent-
ing two types of value-based predicates. Vertex predicates
which enables specifying conditions on the attributes of the
graph vertices. Edge Predicates which enables specifying
conditions on the attributes of graph edges. In particular,
we rely on the standard query triple pattern to represent
both types of predicates. However, we use the round brack-
ets () for the subject part of the query triple pattern to
differentiate edge predicates. In these predicates, the sub-
ject parts refers to graph edges and not for graph vertices.
To illustrate, let us consider the following example of query
triple patterns:

T3 --> ?Alice ?E(affiliatedBy) UNSW

T4 --> ?E @Role "Professor"

T5 --> ?Alice @officeNumber 518

where T3 represents a structural predicate that specifies
the condition that the vertices represented by the variable
?Alice is connected to a vertex with the label UNSW with an
affiliatedBy relationship. T4 represents an edge predicate
that determines that the Role attribute of the affiliatedBy
relationship (where the edge representing the relationship is
bound to the variable E) should store the value Professor.
T5 represents a vertex predicate that specifies the condition
that Alice is described by an officeNumber attribute that
stores the value 518.

2.2 Querying Path Patterns
One of the main requirements in querying large graphs is

the ability to express matching queries based on path pat-
terns. This querying feature is quite important especially
when the information about the graph topology or the exact
connection patterns between the queried graph vertices are
unknown. For example, reachability query is an important
type of queries in large graphs that aims to check if there
exists a path (of any unknown length) between any two ver-
tices in the large graph. Similarly, the shortest path query
aims to determine the shortest connection (number of se-
quenced edges) between any two vertices in the graph. The
initial specifications of the SPARQL query language [35] lack
the constructs that support expressing such type of queries.
Therefore, several extensions to the SPARQL query lan-
guage have been proposed to address some of these require-
ments such as: SPARQ2L [5] and PSPARQL [3]. The most
recent specifications of SPARQL 1.1 have tried to address
some of these limitations, however, in a limited manner. In
particular, SPARQL 1.1 supports the ability to match ar-

bitrary length paths where the end of the path pattern can
be represented as an RDF value or a variable. However,
variables can not be used as a part of the path itself, only
the ends. For such type of expressions, the query answer
includes all matches of that path expression and binds the
subject or object variable as specified. To illustrate, let us
consider the following examples of query triple patterns:

T6 --> ?Alice knows+ ?X

T7 --> ?Alice knows+ John

where T6 assigns to the variable X all vertices that can be
reached from the vertices that are represented by the vari-
able ?Alice through the relationship knows. The symbol
(+) indicates that the path can be of any length where each
edge in the path needs to represent the relationship knows.
T7 represents a structural predicate that describes a reach-
ability test which verifies if the vertices represented by the
variable ?Alice are connected to a vertex with label John by
any path (sequence of edges) where each edge in that path
represents the relationship knows. The predicate filters out
the vertices which are bound to the variable ?Alice and do
not satisfy the condition.

G-SPARQL supports this extension for expressing path
patterns and, similar to SPARQ2L [5] and PSPARQL [3],
allows path variables in the predicate position of a triple
pattern (subject, path variable, object). In particular,
G-SPARQL supports the following options of binding path
variables in the path patterns.

T8 --> subject ??P object

T9 --> subject ?*P object

T10 --> subject ??P(predicate) object

T11 --> subject ?*P(predicate) object

where T8 binds the path variable P to the connecting
paths between the two vertices of the subject and object.
The symbol (??) indicates that the matching paths between
the subject and object can be of any arbitrary length.
In T9, the symbol (?*) indicates that the variable P will
be matched with the shortest path between the two ver-
tices of subject and object. T10 ensures that each edge
in the matching paths represents the specified relationship
predicate. Similarly, T11 ensures that each edge in the
matched shortest path represents the relationship predicate.

In general, any two graph vertices can be connected with
multiple paths. Therefore, G-SPARQL enables expressing
filtering conditions that can specify boolean predicates on
the nodes and the edges of the matching paths which are
bound to the path variable. In particular, G-SPARQL sup-
ports the following filtering conditions over the matched
paths.
• Length(PV, P): This filtering condition verifies that

the length (number of edges) of each matching path
which is bound to the variable PV satisfies the predi-
cate P and filters out those paths which do not satisfy
the predicate P. For example, the following path fil-
tering condition FilterPath (Length(??X, < 4)) en-
sures that the length of each path which is assigned to
the path variable (X) is less than 4 edges.
• AtLeastNode(PV, N, P): Verifies if at least N number

of nodes on each path which is bound to the variable
PV satisfies the predicate P and filters out those paths
which do not satisfy the predicate P. This predicate can
be a structural predicate or value-based predicate. Let
us consider the following examples of these predicates.

– AtLeastNode(??X, 2, livesIn Sydney) ensures

5

that at least 2 nodes of each path, which is bound
to the variable X, are satisfying the structural
predicate of being connected through the livesIn
relationship to a vertex with the label Sydney.

– AtLeastNode(??X, 1, @affiliated UNSW) ensures
that at least 1 node of each path, which is bound
to the variable X, satisfies the value-based predi-
cate of having a value of the affiliated attribute
equals to UNSW.

• AtMostNode(PV, N, P): Ensures that at most N num-
ber of nodes on each path which is bound to the vari-
able PV satisfies the structure/value-based predicate P.
• AllNodes(PV, P): Ensures that every node of each path

which is bound to the variable PV satisfies the struc-
ture/ value-based predicate P.
• AtLeastEdge(PV, N, P): Ensures that at least N num-

ber of edges on each path which is bound to the vari-
able PV satisfies the value-based predicate P (structural
predicates can not be represented for graph edges).
• AtMostEdge(PV, N, P): Ensures that at most N num-

ber of edges on each path which is bound to the vari-
able PV satisfies the value-based predicate P.
• AllEdges(PV, P): Ensures that at every edge of each

path which is bound to the variable PV satisfies the
value-based predicate P.

3. HYBRID REPRESENTATION OF LARGE
ATTRIBUTED GRAPHS

Due to the lack of scalable graph indexing mechanisms
and cost-effective graph query optimizers, it becomes very
challenging to search and analyze any reasonably large net-
works. Therefore, there is a crucial need and strong moti-
vation to take advantage of well-studied relational database
indexing and query optimization techniques to address the
problems of querying large graphs. In general, relational
databases have been considered as the main choice for most
traditional data-intensive storage and retrieval applications
for decades. In practice, relational database systems are
generally very efficient for queries that requires extensive
use of physical indexing (e.g. B-tree) and sophisticated
query optimization techniques (e.g. selectivity estimation
and join ordering). For example, by applying predicates, re-
lational indices can limit the data that must be accessed to
only those rows that satisfy those predicates. In addition,
query evaluations can be achieved using index-only access
and save the necessity to access the data pages by provid-
ing all the columns needed for the query evaluation. How-
ever, relational databases turn to be inefficient for answering
the queries that would require looping or recursive access to
large numbers of records by executing multiple expensive
join operations which may yield to very large intermediate
results. Hence, executing traversal operations over relation-
ally stored graphs can be time-inefficient due to the large
number of potential joins in addition to the expensive disk
access cost to retrieve the target vertices. As such, it is
much more efficient to rely on algorithms that execute on
main memory data structures to answer graph queries that
requires heavy traversal operations on the graph topology.
Therefore, in our graph representation, we rely on a hybrid
mechanism where the entire graph information (topology +
data) are stored in relational database while only the topol-
ogy information of the graph needs to be loaded onto the
main memory for accelerating the query evaluation process

Microsoft4

UNSW7

Paper 16

VLDB’125

Smith8

Alice3

Paper 22

John1

ValueID

288

423

451

ValueID

5188

ValueID

Istanbul5

Sydney3

ValueID

graph6

XML2

ValueID

Demo2

ValueID

Australia7

USA4

ValueID

19497

19754

ValueID

8

3

3

1

sID

611

66

25

21

dIDeID

Node Label age office location keyword

keyword

type established

country

authorOf

8

3

1

sID

712

78

43

dIDeID

affiliated

6

2

sID

510

54

dIDeID

published

6

sID

29

dIDeID

citedBy

3

sID

87

dIDeID

supervise

1

sID

32

dIDeID

know

Professor8

Senior Researcher3

ValueID

title

111

26

15

21

ValueID

order

110

34

ValueID

month

Figure 3: Relational Representation of Attributed
Graph of Figure 1.

when necessary.
In our approach, we physically store the attributed graph

in a relational database. In general, it is a virtue of the
relational database model that its canonical physical rep-
resentation, tables of tuples, is simple and thus efficient to
implement. Therefore, several approaches have been pro-
posed for storing XML [18] and RDF [37] databases using
relational databases. However, none of these approaches can
be directly reused for storing attributed graphs due to the
differences in the data model and the specifications of the
query requirements. Therefore, we adopted an approach for
storing attributed graphs in relational database using a fully
decomposed storage model (DSM) [1, 13]. In particular, we
start by assigning identifiers (IDs) for each vertex and edge
in the graph. Then, the attributed graph is mapped into
M +N two-column tables and P three-column tables where
M is the number of unique attributes of the graph vertices,
N is the number of unique attributes of the graph edges and
P is the number of unique relationships that exist between
the graph vertices. The first column (ID) for each of the
(M + N) two-column attribute tables stores the identifiers
of those vertices/edges that are described by the associated
attribute while the second column (V alue) stores the literal
values for those attributes. Obviously, the vertices/edges
which are not described by a particular attribute will sim-
ply not have a representative record in the associated table
for that attribute. Multi-valued attributes will be repre-
sented with multiple rows (with the same ID value) in the
table for that attribute.

Each table is sorted with a clustered index on the ID col-
umn in order to enable a fast execution for merge joins where
multiple attributes of the same vertex/edge need to be re-
trieved. In addition, a partitioned B-tree index (V alue, ID)
is created for each table in order to allow efficient execution
for value-based predicates on the attributes of the graphs by
reducing the access costs of the secondary storage to retrieve
those nodes/edges that satisfy the condition of a predicate
to a minimum [19]. The P three-column tables capture the
graph topology information. In particular, each of these ta-
bles groups the information of all graph edges that repre-
sent a particular relationship where each edge is described
by three pieces of information: the edge identifier (eID), the
identifier of the source vertex of the edge (sID) in addition
to the identifier of the destination vertex (dID). Figure 3 il-
lustrates an example of our relational representation for the
attributed graph of Figure 1.

A main advantage of the DSM-based mapping for the at-
tributed graph is that it is agnostic to the graph schema.

6

Therefore, it can be straightforwardly applied to any at-
tributed graph with any schema. In addition, during the
query processing, the disk access costs can be significantly
reduced because only the records of the tables of those at-
tributes/relationships which are involved in a query will be
processed. On the other hand, some queries may need to
query/access several attributes for the same entity (vertex
or edge). In this case, a number of attribute tables which is
equal to the number of the attributes that are involved in the
query have to be joined in order to re-group the fragmented
information of the graph entities over multiple tables. How-
ever, this challenge can be tackled by relying on inexpensive
merge joins which make use of the sorting of the tables in
their ID columns and their clustered indices. In practice, it
is not very common that the posed queries would involve a
very large number of attributes/relationships.

In our hybrid graph representation, we rely on a native
pointer-based data structure for representing the graph topol-
ogy information in the main memory. In particular, this
memory-based representation of the graph topology encodes
the information of the P (Relationship) tables that store
the structural information of the graph edges. In princi-
ple, this information represents the mandatory knowledge
for executing the index-free and memory-based algorithms
that involve heavy traversal operations on the graph topol-
ogy or that of recursive nature such as performing the Di-
jkstra’s algorithm to obtain the shortest path between any
two vertices or performing a breath-first search (BFS) to
answer reachability queries [14]. Therefore, our hybrid rep-
resentation achieves a clear reduction in the main memory
consumption as it avoids loading the attributes of the graph
vertices/edges and their data values (M + N attribute ta-
bles) into the main memory. In addition, it avoids building
extra main memory indices for the graph attributes which
might be required for accelerating the query evaluation pro-
cess of the query predicates and pushes these tasks to the
underlying relational storage. Such reduction in the main
memory consumption provides better scalability opportuni-
ties for handling larger graphs for a given fixed size of the
available main memory.

4. ALGEBRAIC COMPILATION AND SPLIT
OF QUERY EVALUATION

A crucial strength of any graph query language is that
it can be efficiently implemented. In general, one of the
key effective query optimization techniques for any query
language is the availability of a powerful algebraic compi-
lation and rewriting framework of logical query plans. For
example, relational algebra has been a crucial foundation
for relational database systems and has played a large role
in enabling their success. In XML query processing, some
approaches have relied on a form of tree algebra where trees
are the basic unit and the operators work on collections of
trees [25] while some other approaches have relied on a rela-
tional algebraic mechanism for compiling XML queries [22].
GraphQL [23] compiles its graph queries using a form of
graph algebra where graphs are the basic unit of information
and each operator takes one or more collections of graphs as
input and generates a collection of graphs as output.

Several approaches have been proposed for compiling SPARQL
queries into relational algebraic plans [9, 15, 16], as an ab-
stract intermediate language for representing the queries.

We follow the same approach of [15, 22] where we rely on
a dialect of tuple algebra for compiling G-SPARQL queries.
Hence, we can leverage the well-established relational query
planning and optimization techniques in several venues be-
fore further translating our query plans (or parts of them)
into SQL queries. In particular, our algebra considers tuples
as the basic unit of information. Each algebraic operator
manipulates collections of tuples. However, our logical al-
gebra extends the set of traditional relational algebraic op-
erators (e.g. selection, projection, cartesian product, join)
with a set of logical operators that are capable of expressing
complex G-SPARQL operations that can not be matched
with the semantics of the traditional relational operators.
The descriptions of these algebraic operators are listed in
Table 1.

As we previously described, query triple patterns repre-
sent the main constructs of building G-SPARQL queries
where each variable in the query triple pattern is replaced
by matching elements from the queried graph. Evaluating a
G-SPARQL query yields to a set of variable bindings (a map-
ping from variable names to values). Shared variable names
are represented as join equality predicates in the query plan.
The semantics of each of our defined operators is identical to
exactly one possible query triple pattern in G-SPARQL. De-
scriptions of the G-SPARQL algebraic operators (Table 1)
are given as follows:
• The NgetAttVal is a unary operator which is used for

retrieving the values of a specific attribute for a set
of graph nodes. The operator receives a set of tuples
where the column (id) of the input relation identifies
the graph nodes and the name of the attribute to be
accessed (attName). The schema of the output tu-
ples extends the schema of the input tuples with the
(value) column that represent the values of the ac-
cessed attribute. Based on the attributed graph of
Figure 1 and its relational representation in Figure 3,
Figure 4(a) illustrates an example for the behavior of
the NgetAttVal operator where it retrieves the values
of the location attribute for an input relation with the
(id) of three graph vertices ("John","Alice","Smith").
The output relation includes only one record (for the
vertex "Alice") that has the location attribute with
the value "Sydney". The other two vertices are filtered
out because they do not have values for the indicated
location attribute. Similarly, the EgetAttVal oper-
ator retrieves the values of a specific attribute for a
set of graph edges. Figure 4(b) illustrates an example
for the behavior of the EgetAttVal operator where it
retrieves the values of the title attribute for an in-
put relation with the (id) of two graph edges. The
schema of the output relation extends the schema of
the input relation with an attribute that stores the
value of the accessed attribute. The traditional rela-
tional Selection operator (σp) is used for representing
value-based predicates over the values of the attributes
of graph nodes or edges. It selects only those tuples of
an input relation for which a value-based predicated
(p) over a specific column holds. Hence, it represents
the right match for reflecting the expressivity of the
SPARQL FILTER expressions. Figure 4(c) illustrates
an extension of the example of Figure 4(b) where the
input edges are filtered based on a predicate (title
= "Professor") for the retrieved values of the title

7

8

3

1

ID

Sydney8

ValueID
NgetAttValid,location:value

8

3

ID

Senior Researcher3

Professor8

ValueIDEgetAttValid,title:value

8

3

ID

Senior Researcher3

Professor8

ValueIDEgetAttValid,title:value

Senior Researcher3

Professor8

ValueIDσvalue=‘Professor’

(a) The NgetAttVal operator

8

3

1

ID

Sydney8

ValueID
NgetAttValid,location:value

8

3

ID

Senior Researcher3

Professor8

ValueIDEgetAttValid,title:value

8

3

ID

Senior Researcher3

Professor8

ValueIDEgetAttValid,title:value

Senior Researcher3

Professor8

ValueIDσvalue=‘Professor’

(b) The EgetAttVal operator

8

3

1

ID

Sydney8

ValueID
NgetAttValid,location:value

8

3

ID

Senior Researcher3

Professor8

ValueIDEgetAttValid,title:value

8

3

ID

Senior Researcher3

Professor8

ValueIDEgetAttValid,title:value

Professor8

ValueID
σvalue=‘Professor’

(c) The Filter operator

3

1

sID

2

eID

31

dIDsID
getEdgeNodessID,know:eID;dID

3

1

sID

783

663

211

321

431

253

7

eID

83

dIDsID

getNeighNodessID:eID;dID

8

1

SID

1

sID
strucPredsID,know,Smith

(d) The getEdgeNodes operator (specified relationship)
3

1

sID

2

eID

31

dIDsID
getEdgeNodessID,know:eID;dID

3

1

sID

783

663

211

321

431

253

7

eID

83

dIDsID

getEdgeNodessID:eID,dID

8

1

SID

1

sID
strucPredsID,know,Smith

8

1

SID

1

sID

2

eID
strucPredsID,know,Smith:eID

(e) The getEdgeNodes operator (all relationships)

3

1

sID

2

eID

31

dIDsID
getEdgeNodessID,know:eID;dID

3

1

sID

783

663

211

321

431

253

7

eID

83

dIDsID

getNeighNodessID:eID,dID

8

1

SID

1

sID
strucPredsID,know,Smith

(f) The strucPred operator

3

1

sID

2

eID

31

dIDsID
getEdgeNodessID,know:eID;dID

3

1

sID

783

663

211

321

431

253

7

eID

83

dIDsID

getNeighNodessID:eID,dID

8

1

SID

1

sID
strucPredsID,know,Smith

8

1

SID

1

sID

2

eID
strucPredsID,know,Smith:eID

(g) The strucPred operator (with projection)

4

dID

4

dID

1

sIDedgeJoinsID,dID,affiliated
3

8

1

sID

4

dID

4

dID

3

eID

1

sIDedgeJoinsID,dID,affiliated:eID
3

8

1

sID

2

6

dID 21

23

63

6

dID

8

sID

edgeJoinsID,dID
3

8

1

sID

2

6

dID

6

6

2

2

dID

11

6

5

1

eID

1

3

3

8

sID

edgeJoinsID,dID:eID
3

8

1

sID

(h) The edgeJoin operator

4

dID

4

dID

1

sIDedgeJoinsID,dID,affiliated
3

8

1

sID

4

dID

4

dID

3

eID

1

sIDedgeJoinsID,dID,affiliated:eID
3

8

1

sID

2

6

dID 21

23

63

6

dID

8

sID

edgeJoinsID,dID
3

8

1

sID

2

6

dID

6

6

2

2

dID

11

6

5

1

eID

1

3

3

8

sID

edgeJoinsID,dID:eID
3

8

1

sID

(i) The edgeJoin operator (with projection)

4

dID

4

dID

1

sIDedgeJoinsID,dID,affiliated
3

8

1

sID

4

dID

4

dID

3

eID

1

sIDedgeJoinsID,dID,affiliated:eID
3

8

1

sID

2

6

dID 21

23

63

6

dID

8

sID

edgeJoinsID,dID
3

8

1

sID

2

6

dID

6

6

2

2

dID

11

6

5

1

eID

1

3

3

8

sID

edgeJoinsID,dID:eID
3

8

1

sID

(j) The edgeJoin operator (specified relationship)4

dID

4

dID

1

sIDedgeJoinsID,dID,affiliated
3

8

1

sID

4

dID

4

dID

3

eID

1

sIDedgeJoinsID,dID,affiliated:eID
3

8

1

sID

2

6

dID 21

23

63

6

dID

8

sID

edgeJoinsID,dID
3

8

1

sID

2

6

dID

6

6

2

2

dID

11

6

5

1

eID

1

3

3

8

sID

edgeJoinsID,dID:eID
3

8

1

sID

(k) The edgeJoin operator (specified relationship with
projection)

3

dID

1

sIDpathJoinsID,dID,know
3

8

1

sID

3

8

1

dID

31

81

8

dID

3

sID

pathJoinsID,dID
3

8

1

sID

3

8

1

dID

3

dID

p1

pID

1

sIDpathJoinsID,dID,know:pID
3

8

1

sID

3

8

1

dID

1

order

2

ID

‘E’

type

know

label

p1

pID

(l) The pathJoin operator

8

8

3

dID

p11

p21

p3

pID

3

sID

pathJoinsID,dID:pID
3

8

1

sID

3

8

1

dID

know21‘E’p1

Know21‘E’p2

Alice32‘N’p2

supervise73‘E’p2

supervise71‘E’p3

order IDtype labelpID

8

8

3

dID

p11

p21

p3

pID

3

sID

know21‘E’p1

Know21‘E’p2

Alice32‘N’p2

supervise73‘E’p2

supervise71‘E’p3

order IDtype labelpID

filterPathpID,pRel.Length(pID > 1)

8

dID

p21

pIDsID

(m) The pathJoin operator (with projection)

3

dID

1

sIDpathJoinsID,dID,know
3

8

1

sID

3

8

1

dID

31

81

8

dID

3

sID

pathJoinsID,dID
3

8

1

sID

3

8

1

dID

3

dID

p1

pID

1

sIDpathJoinsID,dID,know:pID
3

8

1

sID

3

8

1

dID

1

order

2

ID

‘E’

type

know

label

p1

pID

(n) The pathJoin operator (specified relationship)

3

dID

1

sIDpathJoinsID,dID,know
3

8

1

sID

3

8

1

dID

31

81

8

dID

3

sID

pathJoinsID,dID
3

8

1

sID

3

8

1

dID

3

dID

p1

pID

1

sIDpathJoinsID,dID,know:pID
3

8

1

sID

3

8

1

dID

1

order

2

ID

‘E’

type

know

label

p1

pID

(o) The pathJoin operator (specified relationship with
projection)

8

8

3

dID

p11

p21

p3

pID

3

sID

prjPathJoinsID,dIDLpID
3

8

1

sID

3

8

1

dID

know21‘E’p1

Know21‘E’p2

Alice32‘N’p2

supervise73‘E’p2

supervise71‘E’p3

order IDtype labelpID

8

8

3

dID

p11

p21

p3

pID

3

sID

know21‘E’p1

Know21‘E’p2

Alice32‘N’p2

supervise73‘E’p2

supervise71‘E’p3

order IDtype labelpID

filterPathpID,pRel.Length(pID > 1)

8

dID

p21

pIDsID

(p) The filterPath operator

Figure 4: Example behavior of G-SPARQL algebraic operators.

8

Operator Description Relational
NgetAttValid,(attName):value Retrieves the values of a specific attribute for a set of nodes Yes
EgetAttValid,(attName):value Retrieves the values of a specific attribute for a set of edges Yes
getEdgeNodessID,(eLabel):eID,dID Retrieves the set of adjacent nodes, optionally through a specific relation (edge label), for a set Yes

of graph nodes
strucPredsID,(eLabel),(dNLabel):[eID] Filters a set of nodes based on their connection to other nodes through a specific edge Yes

relation and optionally return the ID of the connecting edges.
edgeJoinsID,dID,[(eLabel)]:[eID] Checks if a pair of nodes is connected with an edge, optionally of a specified relationship, Yes

filters out the not connected pairs and optionally returns the ID of the connecting edges.
pathJoinsID,dID,[(eLabel)]:[pID,pRel] Checks if a pair of nodes is connected by a sequence of edges of any length, optionally No

with a specified relationship, filters out the not connected pairs and optionally returns the
information of the connecting paths.

sPathJoinsID,dID,[(eLabel)]:pID,pRel Checks if a pair of nodes is connected by a sequence of edges of any length, optionally No
with a specified relationship, filters out the not connected pairs and returns the information
of the shortest connecting path.

filterPathpID,pRel,(cond) Filters out the paths which do not fulfill a specified filtering condition No

Table 1: G-SPARQL Algebraic Operators

attribute.
• The getEdgeNodes is a unary operator which is used

for retrieving a set of adjacent nodes that are con-
nected through a specified relation. The operator re-
ceives a set of tuples where the column (id) of the input
relation identifies the graph nodes and the specified re-
lation for accessing the adjacent nodes (eLabel). The
schema of the output tuples extends the schema of the
input tuples with the two columns that represent the
identifiers of the connecting edge (eID) of the specified
relation and the adjacent node (dID). The operator
filters out the tuples where the nodes identified by the
column (id) do not have adjacent nodes connected with
the specified relation. Figure 4(d) illustrates an exam-
ple of the getEdgeNodes operator where it retrieves
the adjacent nodes through the relationship know of
an input relation with the (id) of two graph vertices
("John","Alice"). The output relation filters out the
"Alice" vertex as it is not connected to any other node
through the know relationship. Figure 4(e) illustrates
an example of the getEdgeNodes operator where it re-
trieves all the adjacent nodes for an input relation with
the (id) of two graph vertices ("John","Alice").
• The strucPred is another unary operator which is used

for filtering a set of nodes based on a specified struc-
tural predicate. It receives a set of tuples where the
column (sID) of the input relation identifies the graph
nodes and a structural predicate which is described by
the label of the connecting relation (eLabel) and the
label for the adjacent node that should be accessed
through this relation (dNLabel). Figure 4(f) illus-
trates an example of the strucPred operator where
it applies a structural predicate which filters out the
graph vertices that are not connected to an adjacent
vertex with the label Smith through the know rela-
tionship. Figure 4(g) illustrates another example of
the strucPred operator which projects the informa-
tion of the connecting edges that represent the struc-
tural predicate. In this example, the schema of the
output relation is extended with an additional column
that stores the ID of the connecting edges (eID).
• The edgeJoin is a binary join operator which receives

two relations (S and D) where the two columns (sID)
and (dID) identify the graph nodes of S and D, re-
spectively. The operator checks for each pair of nodes
whether it is connected with any graph edge, filters
out the not connected pairs and returns the tuples of

the connected pairs as a result. The output of the
operator is a single relation where the schema of the
output tuples concatenates the columns of (S and D).
Figure 4(h) illustrates an example of the edgeJoin

operator where it receives two sets of graph vertices
- ("John","Alice","Smith") and ("Microsoft")- and
returns pairs of graph vertices that are connected through
any relationship. The operator can receive an optional
parameter which imposes a condition on the connect-
ing edge between each pair of nodes to be representing
a specified relationship label (eLabel). Figure 4(j) il-
lustrates another example of the edgeJoin operator
where it receives two sets of graph vertices - the same
as Figure 4(h) - and returns pairs of graph vertices
that are connected through an affiliated relation-
ship. Moreover, the edgeJoin operator can option-
ally project the information of the connecting edge(s)
where it extends the schema of the output relation by
an additional column (eID) that represents the iden-
tifiers of the connecting edges between each pair of
nodes in the output tuples according to the specified
input parameters. Figures 4(i) and 4(k) illustrate an-
other examples of the behavior of the edgeJoin oper-
ator which are similar to the examples shown in Fig-
ures 4(h) and 4(j), respectively, with only one differ-
ence that the output relations include the (ID) of the
connecting edges between the output pair of vertices.
• The pathJoin operator is another binary join operator

which receives two relations (S and D) where the two
columns (sID) and (dID) identify the graph nodes
of S and D, respectively. The operator checks for
each pair of nodes whether it is connected by a se-
quence of edges (of any length), filters out the not
connected pairs and returns the tuples of the con-
nected pairs as a result. Figure 4(l) illustrates an ex-
ample of the pathJoin operator where it receives two
sets of graph vertices - ("John","Alice","Smith") and
("John","Alice","Smith")- and returns pairs of graph
vertices that are connected through a sequence of re-
lationships of any length. The operator can receive
an optional parameter which imposes a condition on
the edges of each connecting path between each pair
of nodes to be representing a specified relationship la-
bel (eLabel). Figure 4(n) illustrates an example of the
pathJoin operator where it receives two sets of graph
vertices - the same as Figure 4(n) - and returns pairs of
graph vertices that are connected through a sequence

9

of any length of know relationships. Moreover, the
pathJoin operator can optionally project the informa-
tion of the connecting path(s) as follows:

– It extends the schema of the input relation by
an additional column (pID) that represents an
assigned identifier for each connecting edge be-
tween each pair of nodes. It should be noted that
each pair of nodes can be connected with multiple
paths. Therefore, each input pair of nodes can
have multiple representing tuples that describes
the information of the bound paths.

– It returns another output relation (pRel) which
describes the information of the resulting paths
where each path is described by a sequence of
tuples that represent the nodes and edges consti-
tuting the path in an orderly manner. In par-
ticular, the tuples are described by the following
fields: (pID) represents the path identifier, (type)
represents if the tuple describes a node (then it
has a value ′N ′) or an edge (value ′E′), (order)
represents the order of the node/edge that par-
ticipates in the path (the order of each path al-
ways start with an edge ordered as 1 followed by
a node ordered as 2 and then it alternates till the
last constituting edge of the path), (ID) repre-
sents the identifier of the node/edge in addition
to its (Label) information. The value of a path
variable in the query output is represented by a
serialization of the (Label) information of its as-
sociated tuples in this relation according to their
ascending (order).

Figures 4(m) and 4(o) illustrate another examples of
the behavior of the pathJoin operator which are sim-
ilar to the example of Figures 4(l) and 4(n), respec-
tively, with the difference that they project the infor-
mation of the resulting connecting paths. The sPathJoin
operator work in the same way of the pathJoin oper-
ator with only one difference is that it returns a single
path that represent the shortest connection between
each pair of nodes (if exist a connection).
• The filterPath is a binary operator which receives

two relations (R and pRel) where the column (pID)
of the relation (R) represents the path identifiers that
have their associated description information repre-
sented by the relation (pRel). The operator returns
the relation (R) where the tuples which have paths
(pID) with information (pRel) that do not fulfill the
condition (cond) are filtered out. The (cond) parame-
ter represents one of the path filtering conditions which
we previously described in Section 2.2. Figure 4(p) il-
lustrates an example of the filterPath operator which
filters a set of paths based on a length condition (num-
ber of edges) which returns the paths with lengths
greater than 1 and filters out the rest.

As indicated in Table 1, not all of our algebraic opera-
tors can be represented by the standard relational algebraic
operators. Based on our relational representation of the at-
tributed graphs, Figure 5 depicts the relational representa-
tions for those operators that can be compiled into a pattern
of standard relational algebraic operators. For example, the
NgetAttVal operator is mapped to a join operation between
the column (nodeID) of the input relation (R) and the (ID)
column of the relation that represents the specified node at-

tribute (attName). The operator extends the schema of the
input tuples (R.∗) with the (value) column for the relation of
the specified attribute (attName). Since the semantic of the
operators getEdgeNodes and edgeJoin can be not restricted
by a specified relationship (eLabel), compiling these opera-
tors using the standard relational operators requires joining
the input relation(s) with each of the relation tables, sepa-
rately, and then union all the results. To simplify, we have
created a materialized view (allEdges) that represents such
union of all relation tables. Figure 6 depicts the inference
rules for the SQL translation templates of the algebraic oper-
ators. A sample interpretation of the inference rule Trans-1
that represents the translation of the NgetAttVal operator
is: Given the information that the relation (R) represents
the SQL evaluation of the triple pattern t, the translation
of the (NgetAttValnodeID,(attName):value) operator is defined
using the following SQL code:
SELECT R.*, attName.Value FROM R, attName

WHERE R.nodeID = attName.ID;

In general, the design of our compilation procedure and
our logical operators are independent of any specific disk
or memory representation of the attributed graph. In ad-
dition, they are independent of the underlying query eval-
uation engine. Therefore, in a first compilation step, we
decide for each query triple pattern a mapping onto alge-
braic operators. Figures 7 and 8 illustrate the inference
rules for mapping the G-SPARQL query triple patterns into
our algebraic operators. A sample interpretation of the in-
ference rule OpMap-1 is that it maps a query triple pat-
tern (?var, @attName, ?var2) of query q into the algebraic
operator (NgetAttValID,(attName):value) where the variable
?var2 is bound to the column value (Col(?var2) ≡ value)
of the output relation from applying the NgetAttVal opera-
tor given that the mapping of the variable ?var (Map(?var))
is bound to the column ID as a part of the input relation R.
In these rules, Triple(q) refers to the set of triple patterns
of a query q, PathFilter(q) refers to the set of path filters
of a query q and allEdges (Rule OpMap-8) refers to the
materialized that represents a union of all relation tables.
Figure 10 illustrates an example algebraic compilation for
the following query:

SELECT ?L1 ?L2

WHERE {?X @label ?L1. ?Y @label ?L2.

?X @age ?age1. ?Y @age ?age2.

?X affiliated UNSW. ?X livesIn Sydney.

?Y ?E(affiliated) Microsoft.

?E @title "Researcher".

?X ??P ?Y.

FILTER(?age1 >= 40). FILTER(?age2 >= 40)}

During this compilation step, a set of query rewriting rules
is applied in order to optimize the execution time of the
query evaluation. Examples of these rewriting rules which
are specific to our introduced constructs are represented
in Figure 9. A sample interpretation of the inference rule
Rewrite-1 is that it rewrites a triple pattern (subject,

?*var, object) of query q (Triple(q)) into the triple pat-
tern (subject, ??var, object) given that the path vari-
able (?*var) is not part of the output variable list of the
query q (outVarList(q)). In addition, this compilation
steps reorders the query triple patterns according to their re-
strictiveness (the more restrictive pattern has higher prece-
dence) in order to optimize the join computations based on

10

NgetAttValnodeID,(attName):value ⇒ πR.∗,attName.value(R 1R.nodeID=attName.ID attName)
EgetAttValedgeID,(attName):value ⇒ πR.∗,attName.value(R 1R.edgeID=attName.ID attName)
getEdgeNodessID,(eLabel):eID,dID ⇒ πR.∗,eLabel.eID,eLabel.dID(R 1R.sID=eLabel.sID eLabel)
getEdgeNodessID:eID,dID ⇒ πR.∗,allEdges.eID,allEdges.dID(R 1R.sID=allEdges.sID allEdges)
strucPredsID,(eL),(dNL) ⇒ σnodeLabel.V alue=dNL((R 1R.sID=eL.SID eL) 1eL.dID=nodeLabel.ID nodeLabel)
strucPredsID,(eL),(dNL):eID ⇒ πR.∗,eL.eID(σnodeLabel.V alue=dNL((R 1R.sID=eL.SID eL) 1eL.dID=nodeLabel.ID nodeLabel))
edgeJoinR.sID,S.dID ⇒ πR.∗,S.∗((R 1R.sID=allEdges.SID allEdges) 1allEdges.dID=S.dID S)
edgeJoinR.sID,S.dID:eID ⇒ πR.∗,S.∗,allEdges.eID((R 1R.sID=allEdges.SID allEdges) 1allEdges.dID=S.dID S)
edgeJoinR.sID,S.dID,(eLabel) ⇒ πR.∗,S.∗((R 1R.sID=eLabel.SID eLabel) 1eLabel.dID=S.dID S)
edgeJoinR.sID,S.dID,(eLabel):eID ⇒ πR.∗,S.∗,eLabel.eID((R 1R.sID=eLabel.SID eLabel) 1eLabel.dID=S.dID S)

Figure 5: Relational Representation of G-SPARQL Algebraic Operators

the following rules. Let tp1, tp2 ∈ Triple(q) be two triple
patterns of G-SPARQL query q.
• tp1 is defined as less restrictive than tp2 (tp1 � tp2)

if tp1 contains more number of path variables (?? or
?*) than tp2.
• tp1 is defined as more restrictive than tp2 (tp1� tp2)

if tp1 contains less number of variables than tp2.
• tp1 is defined as more restrictive than tp2 (tp1� tp2)

if tp1 contains the same number of variables than tp2

and the number of filter expressions over the variables
of tp1 is more than the number of filter expressions
over the variables of tp2.

The second compilation step is specific to our hybrid mem-
ory/disk representation of attributed graphs where we start
by mapping the operators of the plan to their relational
representation, when applicable (Figure 5), then we start
optimizing the algebraic plans using a set of rules. These
rules includes the traditional rules for relational algebraic
optimization (e.g. pushing the selection operators down the
plan) [17, 34] in addition to some rules that are specific
to the context of our algebraic plans. In particular, the
main strategy of our rules is to push the non-standard alge-
braic operators (with memory-based processing) above all
the standard relational operators (that can be pushed in-
side the relational engine) in order to delay their execution
(which is the most expensive due to its recursive nature)
to be performed after executing all data access and filtering
operations that are represented by the standard relational
operators.

At the execution level, the basic strategy of our query pro-
cessing mechanism is to push those parts of query processing
that can be performed independently into the underlying
RDBMS by issuing SQL statements [21]. In particular, our
execution split mechanism makes use of the following two
main heuristics:
• Relational databases are very efficient for executing

queries that represent structural predicates or value-
based predicates on the graph attributes (vertices or
edges) due to its well-established powerful indexing
mechanisms and its sophisticated query optimizers. In
addition, relational databases are very efficient on find-
ing the most efficient physical execution plan including
considering different possible variants such as different
join implementations and different join orderings.
• Relational databases are inefficient for executing queries

with operators of a recursive nature (e.g. path pat-
terns). Main memory algorithms are much faster for
evaluating such types of operators which require heavy
traversal operations over the graph topology.

As shown in Figure 10, our algebraic plans come in a
DAG shape. Therefore, we perform the translation of these
plans into SQL queries by traversing the algebraic plan in a

Nodes Table Nodes Table

πid:sID,value:L1 πid:dID,value:L2

NgetAttValsID,age:Age1 NgetAttValdID,age:Age2

σAge1≥40 σAge2≥40

strucPredsID,affiliated,UNSW

strucPredsID,livesIn,Sydney

strucPreddID,affiliated,Microsoft:eID

EgetAttValeID,value:title

σtitle=′Researcher′

pathJoinsID,dID

πL1,L2

SQL1

SQL2

Figure 7: An exmple DAG plan for G-SPARQL query.

In ICDE, 1997.

[34] E. Prud’hommeaux and A. Seaborne. SPARQL Query
Language for RDF, W3C Recommendation, January 2008.
http://www.w3.org/TR/rdf-sparql-query/.

[35] S. Sakr. GraphREL: A Decomposition-Based and
Selectivity-Aware Relational Framework for Processing
Sub-graph Queries. In DASFAA, 2009.

[36] S. Sakr and G. Al-Naymat. Relational processing of RDF
queries: a survey. SIGMOD Record, 38(4), 2009.

[37] S. Sakr and A. Awad. A Framework for Querying Graph-Based
Business Process Models. In WWW, 2010.

[38] M. Sarwat, S. Elnikety, Y. He, and G. Kliot. Horton: Online
Query Execution Engine For Large Distributed Graphs . In
ICDE, 2011.

[39] F. Suchanek, G. Kasneci, and G. Weikum. Yago: a core of
semantic knowledge. In WWW, 2007.

[40] H. Tong, C. Faloutsos, B. Gallagher, and T. Eliassi-Rad. Fast
best-effort pattern matching in large attributed graphs. In
KDD, 2007.

[41] S. Trißl and U. Leser. Fast and practical indexing and querying
of very large graphs. In SIGMOD, 2007.

[42] C. Wang, J. Han, Y. Jia, J. Tang, D. Zhang, Y. Yu, and
J. Guo. Mining advisor-advisee relationships from research
publication networks. In KDD, 2010.

[43] F. Wei. TEDI: efficient shortest path query answering on
graphs. In SIGMOD, 2010.

[44] X. Yan, P. Yu, and J. Han. Graph indexing: a frequent
structure-based approach. In SIGMOD, 2004.

[45] S. Zhang, M. Hu, and J. Yang. TreePi: A Novel Graph
Indexing Method. In ICDE, 2007.

[46] S. Zhang, J. Li, H. Gao, and Z. Zou. A novel approach for
efficient supergraph query processing on graph databases. In
EDBT, 2009.

[47] S. Zhang, S. Li, and J. Yang. GADDI: distance index based
subgraph matching in biological networks. In EDBT, 2009.

[48] P. Zhao and J. Han. On Graph Query Optimization in Large
Networks. PVLDB, 3(1), 2010.

[49] L. Zou, L. Chen, M. Özsu, and D. Zhao. Answering pattern
match queries in large graph databases via graph embedding.
VLDB J., 32(5), 2011.

[50] L. Zou, J. Mo, L. Chen, M. Özsu, and D. Zhao. gStore:
Answering SPARQL Queries via Subgraph Matching. PVLDB,
4(8), 2011.

12

Figure 10: An example DAG plan for G-SPARQL.

bottom-up fashion (starting from the leaves and then climb
the different paths back to the root) using a set of defined
pattern-based translation rules [20]. This climbing process
for each path stops if it hits one of the operators that does
not have a standard relational representation for its seman-
tics or if it reaches the root. Each generated SQL query is
tempting to simply then rely on the underlying relational
backends for the physical optimization and processing. For
example, in Figure 10, all operators can be translated into
standard relational operators except of the pathJoin opera-
tor (filled with gray color). In this example, as indicated by
dashed rectangles in the figure, two SQL queries are gener-
ated (SQL1 and SQL2) where the results of these queries
(Figure 11) are then passed for further memory-based pro-
cessing using the pathJoin operator and the following oper-
ators in the plan.

The main implementation of our query evaluation engine
relies on index-free main memory algorithms for evaluat-
ing reachability and shortest path operators [14]. However,
our algebraic compilation approach remains agnostic to the
physical execution of its logical operator and can make use
of any available indexing information for accelerating the
query evaluation process of the different types of queries
taking into consideration the trade-off of building and main-
taining their indices in addition to their main memory con-
sumption. For example, we rely on BFS to implement the
evaluation of reachability. However, we can make use of
any indexing information (such as the 2-hop cover or the
3-hop cover) to accelerate the physical execution of the log-
ical operator. Similarly, we rely on the Dijkstra algorithm
to implement the shortest path operator. However, other
indexings method can be utilized as well.

11

SQL(t) : R(
SQL(NgetAttValnodeID,(attName):value) ⇒
SELECT R.*, attName.Value FROM R, attName WHERE R.nodeID = attName.ID;

) (Trans-1)

SQL(t) : R(
SQL(EgetAttValedgeID,(attName):value) ⇒
SELECT R.*, attName.Value FROM R, attName WHERE R.edgeID = attName.ID;

) (Trans-2)

SQL(t) : R SQL(getEdgeNodessID,(eLabel):eID,dID) ⇒
SELECT R.*, eLabel.eID, eLabel.dID FROM R, eLabel

WHERE R.edgeID = eLabel.SID;

 (Trans-3)

SQL(t) : R SQL(getEdgeNodessID:eID,dID) ⇒
SELECT R.*, allEdges.eID, allEdges.dID FROM R, allEdges

WHERE R.edgeID = allEdges.SID;

 (Trans-4)

SQL(t) : R
SQL(strucPredsID,(eLabel),(dNLabel)) ⇒
SELECT R.* FROM R, eLabel, NodeLabel

WHERE R.sID = eLabel.sID AND eLabel.dID = dNLabel.ID

AND NodeLabel.Value = ’dNLabel’;

(Trans-5)

SQL(t) : R
SQL(strucPredsID,(eLabel),(dNLabel):eID) ⇒
SELECT R.*, eLabel.eID FROM R, eLabel, NodeLabel

WHERE R.sID = eLabel.sID AND eLabel.dID = dNLabel.ID

AND NodeLabel.Value = ’dNLabel’;

(Trans-6)

SQL(t1) : R SQL(t2) : S SQL(edgeJoinR.sID,S.dID) ⇒
SELECT R.*, S.* FROM R, S, allEdges

WHERE R.sID = allEdges.sID AND allEdges.dID = S.dID;

 (Trans-7)

SQL(t1) : R SQL(t2) : S SQL(edgeJoinR.sID,S.dID:eID) ⇒
SELECT R.*, S.*, eLabel.eID FROM R, S, allEdges

WHERE R.sID = allEdges.sID AND allEdges.dID = S.dID;

 (Trans-8)

SQL(t1) : R SQL(t2) : S SQL(edgeRJoinR.sID,S.dID,(eLabel)) ⇒
SELECT R.*, S.* FROM R, S, eLabel

WHERE R.sID = eLabel.sID AND eLabel.dID = S.dID;

 (Trans-9)

SQL(t1) : R SQL(t2) : S SQL(edgeRJoinR.sID,S.dID,(eLabel):eID) ⇒
SELECT R.*, S.*, eLabel.eID FROM R, S, eLabel

WHERE R.sID = eLabel.sID AND eLabel.dID = S.dID;

 (Trans-10)

Figure 6: SQL Translations of Algebraic Operators.

12

Map(?var) ∈ R Col(?var) ≡ ID

(?var, @attName, ?var2) ⇒ NgetAttValID,(attName):value(R)

Col(?var2) ≡ value

(OpMap-1)

Map(?var) ∈ R Col(?var) ≡ ID

(?var, @attName, ’attValue’) ⇒ πID(σvalue=′attV alue′ (NgetAttValID,(attName):value(R)))
(OpMap-2)

(subject, ?E(predicate), object) ∈ Triple(q)
Map(?E) ∈ R Col(?E) ≡ ID

(?E, @attName, ?var) ⇒ EgetAttValID,(attName):value(R)

Col(?var) ≡ value

(OpMap-3)

(subject, ?E(predicate), object) ∈ Triple(q)
Map(?E) ∈ R Col(?E) ≡ ID

(?E, @attName, ’attValue’) ⇒ πID(σvalue=′attV alue′ (EgetAttValID,(attName):value(R)))
(OpMap-4)

Map(?var) ∈ R Col(?var) ≡ sID

(?var, eLabel, dNLabel) ⇒ strucPredsID,(eLabel),(dNLabel)(R)
(OpMap-5)

(?E, predicate, object) ∈ Triple(q)
Map(?var) ∈ R Col(?var) ≡ sID

(?var, ?E(eLabel), dNLabel) ⇒ strucPredsID,(eLabel),(dNLabel):eID(R)

Col(?E) ≡ eID

(OpMap-6)

Map(?var) ∈ R Col(?var) ≡ sID

(?var, eLabel, ?var2) ⇒ getEdgeNodessID,(eLabel):eID,dID(R)

Col(eLabel.eID) ≡ eID Col(?var2) ≡ dID

(OpMap-7)

Map(?var) ∈ R Col(?var) ≡ sID

(?var, eLabel, ?var2) ⇒ getEdgeNodessID,:eID,dID(R)
Col(allEdges.eID) ≡ eID Col(?var2) ≡ dID

(OpMap-8)

(?E, predicate, object) ∈ Triple(q)
Map(?var) ∈ R Col(?var) ≡ sID

Map(?var2) ∈ S Col(?var2) ≡ dID

(?var, ?E(eLabel), ?var2) ⇒ (R) edgeJoinsID,dID,(eLabel):eID (S)

Col(?E) ≡ eID

(OpMap-9)

Map(?var) ∈ R Col(?var) ≡ sID
Map(?var2) ∈ S Col(?var2) ≡ dID

(?var, eLabel, ?var2) ⇒ (R) edgeJoinsID,dID,(eLabel) (S)
(OpMap-10)

(?E, predicate, object) ∈ Triple(q)
Map(?var) ∈ R Col(?var) ≡ sID

Map(?var2) ∈ S Col(?var2) ≡ dID

(?var, ?E, ?var2) ⇒ (R) edgeJoinsID,dID:eID (S)
Col(?E) ≡ eID

(OpMap-11)

Map(?var) ∈ R Col(?var) ≡ sID
Map(?var2) ∈ S Col(?var2) ≡ dID

(?var, ?E, ?var2) ⇒ (R) edgeJoinsID,dID (S)
(OpMap-12)

Map(?var) ∈ R Col(?var) ≡ sID
Map(?var2) ∈ S Col(?var2) ≡ dID

FilterPath(??P) ∈ PathFilter(q)

(?var, ??P, ?var2) ⇒ (R) pathJoinsID,dID:pID,pRel (S)
Col(??P) ≡ pID
Schema(pRel) = (pID, type, order, ID, Label)

(OpMap-13)

Figure 7: G-SPARQL Operator Mapping Rules (1).

13

Map(?var) ∈ R Col(?var) ≡ sID
Map(?var2) ∈ S Col(?var2) ≡ dID

FilterPath(??P) ∈ PathFilter(q)

(?var, ??P(eLabel), ?var2) ⇒ (R) pathJoinsID,dID,(eLabel):pID,pRel (S)

Col(??P) ≡ pID
Schema(pRel) = (pID, type, order, ID, Label)

(OpMap-14)

Map(?var) ∈ R Col(?var) ≡ sID
Map(?var2) ∈ S Col(?var2) ≡ dID

(?var, ??P, ?var2) ⇒ (R) pathJoinsID,dID (S)
(OpMap-15)

Map(?var) ∈ R Col(?var) ≡ sID
Map(?var2) ∈ S Col(?var2) ≡ dID

(?var, ??P(eLabel), ?var2) ⇒ (R) pathJoinsID,dID,(eLabel) (S)
(OpMap-16)

Map(?var) ∈ R Col(?var) ≡ sID
Map(?var2) ∈ S Col(?var2) ≡ dID

FilterPath(?*P) ∈ PathFilter(q)

(?var, ?*P, ?var2) ⇒ (R) sPathJoinsID,dID:pID,pRel (S)
Col(?*P) ≡ pID
Schema(pRel) = (pID, type, order, ID, Label)

(OpMap-17)

Map(?var) ∈ R Col(?var) ≡ sID
Map(?var2) ∈ S Col(?var2) ≡ dID

FilterPath(?*P) ∈ PathFilter(q)

(?var, ?*P(eLabel), ?var2) ⇒ (R) sPathJoinsID,dID,(eLabel):pID,pRel (S)

Col(?*P) ≡ pID
Schema(pRel) = (pID, type, order, ID, Label)

(OpMap-18)

Figure 8: G-SPARQL Operator Mapping Rules (2).

(subject, ?*var, object) ∈ Triple(q)
?*var 3 outVarList(q)

(subject, ?*var, object) ⇒ (subject, ??var, object)
(Rewrite-1)

(subject, ?*var(Predicate), object) ∈ Triple(q)
?*var 3 outVarList(q)

(subject, ?*var(Predicate), object) ⇒ (subject, ??var(Predicate), object)
(Rewrite-2)

(subject, ?var(Predicate), object) ∈ Triple(q)
?var 3 outVarList(q)

(?var, @literal, literal) 3 Triple(q)
(?var, @literal, ?var2) 3 Triple(q)

(subject, ?var(Predicate), object) ⇒ (subject, Predicate, object)
(Rewrite-3)

(subject, ?*var, object) ∈ Triple(q)
(Length(?*var, =1)) ∈ PathPredicate(q)

(subject, ?*var, object) ⇒ (subject, ?var, object)
(Rewrite-4)

(subject, ?*var(Predicate), object) ∈ Triple(q)
(Length(?*var, =1)) ∈ PathPredicate(q)

(subject, ?*var(Predicate), object) ⇒ (subject, ?var(Predicate), object)
(Rewrite-5)

(subject, ??var, object) ∈ Triple(q)
(Length(??var, =1)) ∈ PathPredicate(q)

(subject, ??var, object) ⇒ (subject, ?var, object)
(Rewrite-6)

(subject, ??var(Predicate), object) ∈ Triple(q)
(Length(??var, =1)) ∈ PathPredicate(q)

(subject, ??var(Predicate), object) ⇒ (subject, ?var(Predicate), object)
(Rewrite-7)

Figure 9: G-SPARQL Query Rewriting Rules.

14

SQL1: SELECT N1.ID as sID, N1.Value as L1
FROM NodeLabel as N1, age, affiliated, livesIn,
NodeLabel as N2, NodeLabel as N3
WHERE N1.ID = age.ID AND N1.ID = affiliated.sID AND
affiliated.dID = N2.ID AND N2.value ="UNSW" AND N1.ID
= livesIn.sID AND livesIn.dID = N3.ID and N3.Value =
"Sydney" AND age.Value >= 40;

SQL2: SELECT N1.ID as dID, N1.Value as L2
FROM NodeLabel as N1, age, title, affiliated, NodeLabel
as N2
WHERE N1.ID = age.ID AND N1.ID = affiliated.sID AND
affiliated.dID = N2.ID AND N2.value ="Microsoft" AND
affiliated.eID= title.ID AND title.Value = "Researcher"
AND age.Value >= 40;

Figure 11: SQL Translations of an example DAG
plan shown in Figure 10.

Vertices Edges Attribute Topology
Values Information

Small 126,137 297,960 610,302 9%
Medium 242,074 761,558 1,687,465 11%
Large 825,433 3,680,156 7,336,899 12%

Table 2: Characteristics of real datasets

5. PERFORMANCE EVALUATION
We implemented a native pointer-based memory repre-

sentation of the graph topology in addition to the Dijkstra
and BFS algorithms (with slightly different variants that can
represent each of our non-relational algebraic operators (Ta-
ble 1)) using C++. We used IBM DB2 RDBMS for storage,
indexing and performing all SQL queries. In order to mea-
sure the relative effectiveness of our query split execution
mechanism, we compared the performance results of our ap-
proach with the performance of the native graph database
system, Neo4j (version 1.5 GA). Neo4j is an open source
project which is recognized as one of the foremost graph
database systems. According to the Neo4j website, ”Neo4j
is a disk-based, native storage manager completely optimized
for storing graph structures for maximum performance and
scalability”. It has an API that is easy to use and provides
powerful traversal framework that can implement all queries
which can be expressed by G-SPARQL. Neo4j uses Apache
Lucene for indexing the graph attributes. We conducted our
experiments on a PC with 3.2 GHz Intel Xeon processors, 8
GB of main memory storage and 500 GB of SCSI secondary
storage.

5.1 Results on Real Dataset
Dataset: We used the ACM digital library dataset (which

includes the information of all ACM publications till Septem-
ber 2011) to construct the attributed graph. The graph ver-
tices represent 8 different types of entities (author, article,
series, conference, proceedings, journal, issue and publisher).
The original data describes 12 different types of relationships
between the graph entities (e.g. authorOf, editorOf, pub-
lishedBy, citedBy, partOfIsuue, partOfProceedings). In ad-
dition, we have created the co-author relationships (edges)
between any two author nodes which are sharing the author-
ship of at least one paper. Each created edge is described
by a noPapers attribute that represents the number of joint
papers between the connected authors. The original dataset
has a total of 76 unique attributes, of which 62 attributes are
describing the graph vertices and 14 attributes are describ-

ing the graph edges. In addition, for each author, we created
a prolific attribute where authors with more than 25 papers
are labeled as highly prolific. In addition, for each citedBy
edge, we created a source attribute which is labeled as an
external citation if there is an empty intersection between
the author lists of the two connected papers. In our experi-
ments, we used three different sizes of graph subsets (small,
medium and large) in order to test the scalability of our
approach. The small subset represents all journal and mag-
azine publications, the medium subset adds the newsletter
and transaction publications while the large subset adds the
conference proceedings. Table 2 lists the characteristics of
the three sets. On average, the graph topology information
that needs to be loaded onto the main memory represents
10% of the whole graph information (topology + values of
attributes of graph nodes and edges) while the remaining
90% resides in the underlying relational database.

Query Workload: Our query workload consists of 12
query templates (Figure 12) where we used random literal
values to generate different query instances. The queries are
designed to cover the different types of the triple patterns
that are supported by G-SPARQL. The algebraic plans of
the query templates are described in the Appendix section
of this article. As we previously described, the efficiency of
execution for any graph query using Neo4j is programmer-
dependent and each query template can have different ways
of implementations using Neo4j APIs. The execution times
of these implementations can dramatically vary. In our ex-
periments, for each query template, we created two asso-
ciated Neo4j implementations. The first implementation is
an optimized version that considers a pre-known knowledge
about the result size of each query step (triple pattern) while
the second version is a non-optimized one that does not con-
sider this knowledge. Each query template is instantiated 20
times where the data values are generated randomly. Each
instance is executed 5 times and execution times were col-
lected. All times are in milliseconds. In order to to ensure
that any caching or system process activity would not affect
the collected results, the longest and shortest times for each
query instance were dropped and the remaining three times
were averaged.

Query Evaluation Times: The average query evalua-
tion times for the 20 instances of each of the 12 query tem-
plates are shown in Figure 13 for the small (Figure 14(a)),
medium (Figure 14(b)) and large (Figure 14(c)) sized experi-
mental graphs. As has been well recognized in conventional
query processing, a good query plan is a crucial factor in
improving the query performance by orders of magnitude.
The results of the experiments show that our approach is
on average 3 times faster than the Neo4j non-optimized im-
plementations of the query workload on the small subset
of the experimental graph, 4 times faster on the medium
subset of the experimental graph and 5 times faster on the
large subset of the experimental graph. In particular, our
approach outperforms the Neo4j non-optimized implemen-
tations in each of the defined query templates. In native
graph database systems, such as Neo4j, users are required
to implement their graph queries using the available system
APIs. The implementation process, in fact, defines a specific
query plan. Therefore, when users have sufficient knowl-
edge about the characteristics of the underlying graph and
query optimization rules they can define very efficient query
plans. The results of the experiments show that the average

15

Q1

Pattern Matching
Find the names of two authors who are highly prolific, affiliated at ”affiliation 1” and ”affiliation 2” respectively, and jointly
co-authored more than two papers.
SELECT ?Name1 ?Name2 WHERE {?X @name ?Name1. ?Y @name ?Name2. ?X @prolific "High". ?Y @prolific "High".
?X @affilation "%affiliation1%". ?Y @affilation "%affiliation2%". ?X ?E(co-author) ?Y. ?E @noPapers ?NO.
FILTER (?NO >= 2).}

Q2

Pattern Matching + Reachability
Find the names of two authors who are highly prolific, affiliated at ”affiliation 1” and ”affiliation 2” respectively, and are
connected by a path of any length where all edges of the path represent the co-author relationship.
SELECT ?Name1 ?Name2 WHERE {?X @name ?Name1. ?Y @name ?Name2. ?X @prolific "High". ?Y @prolific "High".
?X @affilation "%affiliation1%". ?Y @affilation "%affiliation2%". ?X co-author+ ?Y.}

Q3

Pattern Matching + Reachability (With Projection)
Find the names of two authors and the connecting path between them where the two authors are highly prolific, affiliated at
”affiliation 1” and ”affiliation 2” respectively. The connecting path can be of any length where all edges of the path represent
the co-author relationship.
SELECT ?Name1 ?Name2 ??P WHERE {?X @name ?Name1. ?Y @name ?Name2. ?X @prolific "High". ?Y @prolific "High".
?X @affilation "%affiliation1%". ?Y @affilation "%affiliation2%". ?X ??P(co-author+) ?Y.}

Q4

Pattern Matching + Shortest Path (With Projection)
Find the names of two authors and the shortest connecting path between them where the two authors are highly prolific, affiliated at
”affiliation 1” and ”affiliation 2 ”respectively. The connecting path can be of any length where all edges of the path represent
the co-author relationship.
SELECT ?Name1 ?Name2 ?*P WHERE {X @name ?Name1. Y @name ?Name2. ?X @prolific "High". ?Y @prolific "High".
X @affilation "%affiliation1%". Y @affilation "%affiliation2%". ?X ?*P(co-author+) ?Y.}

Q5

Pattern Matching + Reachability (With Projection)
Find the names of two authors and the connecting path between them where the authors are highly prolific, affiliated at ”affiliation 1”
and ”affiliation 2” respectively. The connecting path can be of any length where each edge can represent any relationship.
SELECT ?Name1 ?Name2 ??P WHERE {X @name ?Name1. Y @name ?Name2. ?X @prolific "High". ?Y @prolific "High".
X @affilation "%affiliation1%". Y @affilation "%affiliation2%". ?X ??P ?Y.}

Q6

Pattern Matching + Reachability (With Projection) + Path Filtering
Find the names of two authors and the connecting path between them where the authors are highly prolific, affiliated at ”affiliation 1”
and ”affiliation 2” respectively. The connecting path length can not be of more than 3 edges where each edge of the path represent
the co-author relationship.
SELECT ?Name1 ?Name2 ??P WHERE {?X @name ?Name1. ?Y @name ?Name2. ?X @prolific "High". ?Y @prolific "High".
?X @affilation "%affiliation1%". ?Y @affilation "%affiliation2%". ?X ??P(co-author+) ?Y. FilterPath(Length(??P, <= 3)).}

Q7

Pattern Matching + Reachability (With Projection) + Path Filtering
Find the names of two authors and the path between them where the authors are highly prolific, affiliated at ”affiliation 1” and
”affiliation 2” respectively. The connecting path length can not be of more than 3 edges where each edge of the path represent
the co-author relationship.
SELECT ?Name1 ?Name2 ??P WHERE {?X @name ?Name1. ?Y @name ?Name2. ?X @prolific "High". ?Y @prolific "High".
?X @affilation "%affiliation1%". ?Y @affilation "%affiliation2%". ?X ??P(co-author+) ?Y. FilterPath(AllNodes(??P, @prolific "High")).}

Q8

Pattern Matching
Find the name of an author, the title of a paper, the year of an issue where the author is the first author of the paper and
is highly prolific, the paper has a keyword ”keyword” and is part of a journal issue which has a code equals to ”code”.
SELECT ?Name ?Title ?Year WHERE {?X @name ?Name. ?X @prolific "High". ?X ?E(authorOf) ?Paper. ?E @seqNo 1. ?Paper @title ?Title.
?Paper @keyword "%keyword%". ?Paper partOf ?Issue. ?Issue @year ?Year. ?Issue issueOf ?Journal. ?Journal @code "%code%".}

Q9

Pattern Matching
Find the title of a paper (P) and the name of three highly prolific authors (AU1, AU2, AU3) where the paper (P) is cited by three
papers (P1, P2, P3) such that: P1 is authored by AU1, P2 is authored by AU2 and P3 is authored by AU3.
SELECT ?Title ?Name1 ?Name2 ?Name3 WHERE {?P @title Title. ?P @keyword "%keyword%". ?P citedBy ?P1. ?P citedBy ?P2.
?P citedBy ?P3. Au1 authorOf ?P1. ?Au2 authorOf ?P2. ?Au3 authorOf ?P3. ?AU1 @prolific "High". ?AU2 @prolific "High".
?AU3 @prolific "High". ?Au1 @name ?Name1. ?Au2 @name ?Name2. ?Au3 @name ?Name3.}

Q10

Pattern Matching + Reachability + Path Filtering
Find the titles of two papers, Paper1 and Paper2, where both of the papers are described by the keyword ”keyword”, Paper1 is
authored by ”name” and Paper1 is connected to Paper2 with a path of length which is less than or equal 2 edges where each edge
represents the citedBy relationship.
SELECT ?T1 ?T2 WHERE {?X @name ="%name%". ?X authorOf ?Paper1. ?Paper1 @Title ?T1. ?Paper2 @Title ?T2. ?Paper1 @Keyword "%keyword%".
?Paper2 @Keyword "%keyword%". ?Paper1 ??P(citedBy+) ?Paper2. FilterPath(Length(??P, <= 2)).}

Q11

Pattern Matching + Reachability + Path Filtering
Find the titles of two papers, Paper1 and Paper2, where both of the paper are described by the keyword ”keyword”, Paper1 is
authored by ”name” and Paper1 is connected to Paper2 with a path of length which is less than or equal 4 edges where each
edge represents the citedBy relationship of an external source of citation.
SELECT ?T1 ?T2 WHERE {?X @name ="%name%". ?X authorOf ?Paper1. ?Paper1 @Title ?T1. ?Paper2 @Title ?T2. ?Paper1 @Keyword "%keyword%".
?Paper2 @Keyword "%keyword%". ?Paper1 ??P(citedBy+) ?Paper2. FilterPath(Length(??P, <= 4)).
FilterPath(AllEdges(??P, @source "External")).}

Q12

Pattern Matching + Reachability + Path Filtering
Find the name of an author who is connected to two authors with names ”name1” and ”name2” where the connecting path with each
of two authors is of length which is less than or equal two edges that are representing the co-author relationship. In addition, all the
co-author edges of the connecting path with the author ”name1” are described by a ”@noPapers” attribute with a value which is
greater than 2.
SELECT ?Name WHERE {?X @name ?Name. ?Y @name "%name1%". ?Z @name "%name2%". ?X ??E1(co-author+) ?Y. ?X ??E2(co-author+) ?Z.
FilterPath(Length(??E1, <= 2)). FilterPath(Length(??E2, <= 2)). FilterPath(AllEdges(??E1, @noPapers >2)).}

Figure 12: Query templates of our experimental workload.

16

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12

1

10

100

1000

10000

100000
Q

u
e
ry

 E
x
e
c
u

ti
o

n
 T

im
e
 (

m
s
)

 Hybrid

 Neo4jOptimized

 Neo4j

(a) Small Graph Size

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12

10

100

1000

10000

100000

1000000

Q
u

e
ry

 E
x
e
c
u

ti
o

n
 T

im
e
 (

m
s
)

 Hybrid

 Neo4jOptimized

 Neo4j

(b) Medium Graph Size

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12

10

100

1000

10000

100000

1000000

Q
u

e
ry

 E
x
e
c
u

ti
o

n
 T

im
e
 (

m
s
)

 Hybrid

 Neo4jOptimized

 Neo4j

(c) Large Graph Size

Figure 13: Average query evaluation times of real datasets

query evaluation times of our approach is %17 faster than
the Neo4j optimized implementations on the small subset of
the experimental graph, 22% faster on the medium subset
and 28% faster on the large experimental graph. The Neo4j
optimized implementations outperforms our approach in 2
of the 12 query templates (Q11 and Q12) while our approach
performs better in the rest of the queries. In general, the
well-known maturity of the indexing and built-in optimiza-
tion techniques of physical query evaluation (e.g. join algo-
rithms) provided by the underlying RDBMs play the main
role of outperforming Neo4j optimized implementations. For
example, the performance of relational partitioned B-tree in-
dices outperforms the performance of the indexing service of
Neo4j that uses Lucene6 which is more optimized for full-
text indexing rather than traditional data retrieval queries.

To better understand the reasons for the differences in per-
formance between our approach and optimized Neo4j imple-
mentations, we look at the performance differences for each
query. Q1, Q8 and Q9 are pattern matching queries where, in
our approach, the whole of their executions can be pushed
inside the underlying RDBMS. In particular, Q1 seeks for a
pattern of two vertices (authors) which are connected by
a co-author relationship. The query involves 5 value-based
predicates where each of the two queried vertices are filtered
based on the 2 value-based predicates on the affiliation

and prolific attributes and the connecting edges are fil-
tered based on a value-based predicate on their noPapers

attribute. Q8 specifies a path pattern that consists of 4 ver-
tices (author, paper, issue, Journal) that are connected
by 3 relationships (authorOf, partOf, issueOf) respectively.
The query involves 4 value-based predicates on the prolific
attribute of the author vertex, the keyword attribute of the
paper vertex, the code attribute of the journal vertex and
the seqNo attribute of the authorOf relationship. Q9 repre-
sents a star pattern that seeks for paper vertices which are
filtered based on a specific keyword and cited by 3 papers

where each paper has an author which is prolific. Rela-
tional engine has shown to be more efficient than Neo4j as
a native graph engine in performing such pattern matching
queries that purely relies on the efficiency of the underlying
physical execution properties of the engine, mainly physi-
cal indices and join algorithms, and do not involve any re-
cursive operations. The scalability feature of the relational
database engine is also shown by the increasing percent-
age of improvement for these queries over Neo4j with the

6http://lucene.apache.org/

increasing size of the underlying graph size. For example,
for Q8, the relational execution is 3.3 times faster than the
optimized Neo4j execution for the small subset of the exper-
imental graph graph while it is 4.2 times faster on the large
subset of the experimental graph.
Q2, Q3, Q4, Q5, Q6 and Q7 are queries that involve recur-

sive join operations between two filtered set of vertices. In
particular, all of these queries are seeking for two sets of
authors where each set is filtered based on the prolific

and affiliation attributes. Q2 verifies for each pair of
vertices (one from each filtered set) whether they are con-
nected by a sequence of edges of any length where all edges
of the connecting path represent the co-author relation-
ship. Assuming the numbers of vertices in the first and sec-
ond sets are equal to M and N respectively, then the num-
ber of verification operations (represented by the pathJoin

operator) equals M ∗ N . Q3 is similar to Q2 but it re-
turns additional information about the connecting paths be-
tween each pair of vertices (pathJoinsID,dID,co−author:eID).
That is why Q3 is slightly more expensive than Q2. Q4 is
again similar to Q3. However, it only returns the infor-
mation of the shortest path between each pair of vertices
(sPathJoinsID,dID,co−author:eID). Evaluating the shortest
path over the graph topology is also slightly more expen-
sive than the general reachability verification (Q2 and Q3).
Q5 represents a more expensive variant of Q2 that general-
izes the reachability verification test for each pair of vertices
so that they can be connected by a sequence of edges of
any length where each edge in the connecting path can rep-
resent any relationship (pathJoinsID,dID:eID). Obviously,
allowing the edges of the resulting connecting paths to be
representing any relationship increases the number of visited
and verified paths and consequently the number of travers-
ing operations over the graph topology. Q6 and Q7 extend
Q3 by adding filtering conditions on the connecting paths
between each pair of vertices (the filterPath operator). In
particular, Q6 filters out the paths with more than 3 edges.
Q7 verifies that the author vertices for each of the result-
ing paths between each pair of vertices are highly prolific.
Our hybrid approach outperforms the optimized Neo4j im-
plementations for all of these queries by splitting the exe-
cution of the query plans between the underlying relational
engine and the available topology information in the main
memory. In particular, it leverages the efficiency of the re-
lational engine for retrieving each set of vertices, utilizes
memory-based topology information for fast execution of the

17

required traversal operations and avoids loading/accessing
unnecessary information that are not involved in evaluated
queries.

In our approach, the execution of the path filtering condi-
tion of Q7 is an expensive operation as it can be only applied
in a post-processing step after determining all the connect-
ing paths between each pair of vertices. This post-processing
step needs to issue an SQL statement that retrieves the val-
ues of the prolific attributes for all nodes of the connecting
paths as they are not available in the topology information
which are loaded onto the main memory and then filters out
all paths that contains any node that does not satisfy the
filtering condition over the retrieved attribute values. This
SQL statement can be depicted as follows:
SELECT Value FROM prolific WHERE id IN

([list of node identifiers that are members of the

connecting paths]);.
On the contrary, the cost of the post-processing execution
of the path filtering condition of Q6 (based on path length)
is rather cheap as it does not need to retrieve any data from
the underlying database during the memory-based process-
ing.
Q10 and Q11 are another two queries that involve recur-

sive join operations between two filtered set of vertices. In
particular, Q10 is seeking for two sets of papers where both
sets are filtered based on the same value-based predicate on
the keyword attribute and one of the sets is further filtered
to only those papers that are authored by a specific author.
Q10 verifies for each pair of vertices whether they are con-
nected by a path with a length that is less than or equal to
4 edges where all edges represent the citedBy relationship.
Q11 extends Q10 by further filtering the connecting paths to
only those paths where all of their edges are described as
external on their source attribute. While our approach
is faster on evaluating Q10, Neo4j is faster for evaluating
Q11. The main reason behind this is the expensive cost of
retrieving the external attribute of the edges of the con-
necting paths for further filtering them. Optimized Neo4j
implementation outperforms our approach in Q12 as well
where the query seeks for all authors that are connected to
two authors, X and Y, where the length of the connecting
co-author paths between the target authors and both of X

and Y do not exceed two edges and all edges of the con-
necting paths to X are described by noPapers greater than
2.

In general, one of the main limitations of our approach is
the inefficiency of evaluating path filtering predicates over a
set of paths resulting from evaluating path operators (e.g.
pathJoin, sPathJoin). The main reason behind this is that
we load onto the main memory only the graph topology
information (the attributes of the graph nodes/edges are
not loaded and only available in the underlying relational
database). Therefore, the evaluation of these predicates re-
quire late retrieval of the required values for the attributes
(using SQL statement of the form (SELECT ... IN ...))
of the set of nodes/edges over which the predicate condition
need to be applied. In practice, the efficiency of this retrieval
operation is affected by the size of this intermediate set. The
retrieval of these attribute values using the SQL statement
(SELECT ... IN ...) can not make effective use of the ex-
isting database indices. On the other side, Neo4j loads the
whole traversed nodes/edges information (attributes) onto
the memory during the execution of the graph traversal op-

Vertices Edges Att. Topology
Values Info.

Synthetic1
500K 2,5M 15M 21%

(V 500kE5AR50T150)
Synthetic2

500K 5M 17,5M 29%
(V 500kE10A3R50T150)

Synthetic3
1M 5M 30M 23%

(V 1000kE5A5R75T250)

Table 3: Characteristics of synthetic graph datasets

erations and thus the execution of the path filtering infor-
mation is much more efficient by paying of a higher mem-
ory consumption. One approach to overcome this limitation
in our approach is to load onto the main memory, the fre-
quently used attributes in path filtering conditions in addi-
tion to the graph topology. For example, for our query work-
load by loading the edge attributes source and noPapers,
the performance of our approach for queries Q11 and Q12

is improved by an average of %31 and thus we can outper-
form the Neo4j optimized implementation. Obviously, there
is a trade-off between the main memory consumption and
the performance that can be gained on evaluating the path
filtering conditions by loading more attributes of the graph
nodes/edges. In addition, effective determination of which
attributes should be loaded onto the memory would require
pre-known knowledge about the characteristics of the query
workloads. On the contrary, evaluating filtering condition
on the path length can be achieved very efficiently as the
path length information is computed during the traversal
operations for evaluating the path operators and does not
require any data retrieval from the underlying database.

5.2 More Results on Synthetic Datasets
We have also evaluated our approach and Neo4j imple-

mentations using synthetic graphs. A set of synthetic graph
datasets is generated by our implemented data generator
following the same idea of the R-MAT generator [8]. The
generator allows the user to specify the number of vertices
(V), the average number of outgoing edges for each vertex
(E), the average number of attributes for each graph node
or edge (A), the total number of distinct relationships (R)
and the the total number of distinct attributes (T) of graph
nodes and edges. We use the notation V vEeAaRrTt to rep-
resent the generation parameter of each dataset. Table 3 il-
lustrates the characteristics of synthetic graph datasets that
are used in our experiments.

The query workload of the synthetic graph datasets has
been generated using the 12 query templates (Figure 12)
of the real dataset where we used random assignment of
the queried graph attributes and edges in addition to ran-
dom literal values to generate the different query instances.
Similar to the experiments of the real datasets, each query
template is instantiated 20 times and each instance is ex-
ecuted 5 times. The average query evaluation times for
the 20 instances of each of the 12 query templates over
the synthetic graph datasets are shown in Figure 14. The
results of the experiments show the scalability of our ap-
proach with regards to the increasing sizes of either the
topology information or the data information of the graph
database. For example, the generation parameters of the
dataset Synthetic2 are equal to the generation parameters
of the dataset Synthetic1 with only one difference that the
value of the average number of outgoing edges for each ver-

18

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12

1

10

100

1000

10000

100000

1000000
Q

u
e
ry

 E
x
e
c
u

ti
o

n
 T

im
e
 (

m
s
)

 Hybrid

 Neo4jOptimized

 Neo4j

(a) Synthetic1

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12

10

100

1000

10000

100000

1000000

Q
u

e
ry

 E
x
e
c
u

ti
o

n
 T

im
e
 (

m
s
)

 Hybrid

 Neo4jOptimized

 Neo4j

(b) Synthetic2

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12

10

100

1000

10000

100000

1000000

Q
u

e
ry

 E
x
e
c
u

ti
o

n
 T

im
e
 (

m
s
)

 Hybrid

 Neo4jOptimized

 Neo4j

(c) Synthetic3

Figure 14: Average query evaluation times of synthetic datasets

tex (E) of Synthetic2 is double the value of the same pa-
rameter in Synthetic1. Such increase in the value of (E)
leads to an increase in the cost of all operators that involve
traversal operations over the graph topology (e.g. pathJoin

and sPathJoin) especially for the queries that do not re-
strict the traversal operation with a specified relationship
(e.g. Q5). The average percentage of increase (between
Synthetic2 and Synthetic1) in the execution times for eval-
uating the queries in our approach (16%) is less than the
average percentage of cost increase for Neo4j implementa-
tions (19% for optimized implementations and 32% for non-
optimized implementations) due to leveraging the advantage
of our approach in holding the whole graph topology infor-
mation in the main memory. The percentages of increase
in the execution times for evaluating the queries between
Synthetic2 and Synthetic1 for the different approaches are
computed using the following formula:

Time(Synthetic2)−Time(Synthetic1)
Time(Synthetic1)

On the other side, the total number of vertices, edges and
attribute values of Synthetic3 dataset is twice the total
number of vertices, edges and attribute values of Synthetic1
dataset respectively. However, the average percentage of in-
crease (between Synthetic3 and Synthetic1) in the exe-
cution times for evaluating the queries in our approach is
31%. In principle, while the evaluation costs of the parts
of the query plans that can be pushed inside the relational
database can make use of its well-known scalability in op-
timizing the performance of processing large datasets (by
relying on its built-in indexing and query optimization tech-
niques), the evaluation costs for the parts of the query plans
which are executed by main memory operators increases lin-
early with the size of the processing datasets. For example,
in Q2, Q3, Q4, Q5, Q6 and Q7, increasing the size of the graph
database leads to an increase in the size of the input relations
of the main memory operator pathJoin and consequently
increases the number of join operations and the number of
graph traversal operations. the average percentage of cost
increase (between Synthetic3 and Synthetic1) in evaluat-
ing the queries using the optimized and non-optimized Neo4j
implementations are 38% and 44% respectively.

6. RELATED WORK
The field of graph data management has attracted a lot of

attention from the database research community in recent
years because of the emerging wave of new applications in

different domains. Several graph querying techniques have
been proposed in the literature for handling different types
of graph queries over large graphs such as: pattern matching
query [51, 52], reachability query [12, 26] and shortest path
query [11, 46]. SPath [51] and GADDI [50] are presented as
subgraph search techniques over large graphs. These meth-
ods rely on constructing some indices to prune the search
space of each vertex to reduce the whole search space. For
example, SPath [51] constructs an index by neighborhood
signature which utilizes the shortest paths within the k-
neighborhood subgraph of each vertex. GADDI [50] index
is based on neighboring discriminating substructure (NDS)
distances which needs to count the number of some small
discriminating substructures. Some other techniques have
been proposed for handling graph reachability queries [12,
26]. These techniques are mainly designed to efficiently
check whether there exist any path connections (sequence
of edges) from a vertex u to another vertex v in a large di-
rected graph. For example, Cohen et al. [12] labels a graph
based on the so-called 2-hop covers. In this method, each
hop is a pair (h, v) where h is a path in G and v is one of the
endpoints of h. Hence, if there are some paths from u to v,
there must exist (h1, u) and (h2, v) and one of the paths be-
tween v and u would be the concatenation of h1 and h2. The
3-hop indexing scheme [26] uses chain structures in combi-
nation with hops to minimize the number of structures that
must be indexed. Thus, it does not need to compute the
entire transitive closure. Instead, it only needs to compute
and record a number of so-called contour vertex pairs which
can be much smaller than the size of the transitive closure.
The TEDI indexing structure [46] has been proposed for
answering shortest path queries. TEDI is based on a tree
decomposition methodology where the graph is decomposed
into a tree in which each node represents a bag that contains
more than one vertex from the graph. Based on this index,
a bottom-up operation is executed to find the shortest path
between any two vertices in the graph.

In general, these techniques are mainly focusing on query-
ing the topological structures of the underlying databases
and usually ignore the attributes of vertices and edges in
the querying process. Each of these techniques assumes
a specific organization of its indexing structure which is
mainly designed and optimized for supporting a specific tar-
get type of graph queries without any consideration for the
requirement of the other types of graph queries. In addi-
tion, these techniques are very expensive in their memory
consumption so that they cannot scale to support very large

19

graphs. Moreover, they rely on a very expensive offline pre-
processing step for building their indexing structures. Usu-
ally, the maintenance of these indices is very expensive es-
pecially in the case of dynamic graph databases. However,
our approach can effectively utilize the information of any
of these indices (if available) to accelerate the physical eval-
uation of our logical operator.

Several graph query processing techniques were proposed
on large RDF graphs [1, 6, 31, 53]. In general, most of
these techniques have been mainly focusing on supporting
the graph matching mechanism of the SPARQL query lan-
guage. For example, the RDF-3X query engine [31] stores
the whole RDF graph in a three-column table (subject, pred-
icate, object) and tries to overcome the expensive cost of
self-joins by building indices over all 6 permutations of the
three dimensions that constitute an RDF triple. The query
optimizer relies upon its cost model in finding the lowest-
cost execution plan and mostly focuses on join order and
the generation of execution plans [30]. SW-Store [1] is an
RDF storage system which uses a fully decomposed storage
model (DSM) [13] where the RDF triples table is rewritten
into n two- column tables where n is the number of unique
properties in the RDF dataset. The implementation of SW-
Store relies on a column-oriented DBMS, C-store [41], to
store tables as collections of columns rather than as col-
lections of rows. In standard row-oriented databases (e.g.,
Oracle, DB2, SQLServer, Postgres, etc.) entire tuples are
stored consecutively. Abadi et al. [1] reported that storing
RDF data in column-store database is better than that of
row-store database while Sidirourgos et al. [40] have shown
that the gain of performance in column-store database de-
pends on the number of predicates in the RDF dataset.
DOGMA [6] is a disk-based graph index for RDF databases.
It represents a generalization of the well known binary-tree
indexing structure where each node occupies a disk page and
is labeled by a graph that captures its two children. There-
fore, if a nodeN has two children, N1 andN2, then the graph
labeling node N would be a k-merge of the graphs labeling
its children. The gStore index [53] stores an RDF graph as
a disk-based adjacency list table where each vertex in the
RDF graph is assigned a bitstring as its vertex signature
according to its adjacent edge labels and neighbor vertex
labels. Hence, an RDF graph is converted into a data signa-
ture graph. During query processing, the input query is en-
coded in the same way and a matching process is applied. In
general, RDF graphs represent a special kind of attributed
graphs that are considered in our approach. Therefore, our
graph representation and algebraic-based querying methods
are more general and can be easily adopted to answer queries
on large RDF graphs.

The idea of splitting the execution of database queries
between two different environments has been previously em-
ployed in the HadoopDB system [2] which has been designed
as a query engine with a hybrid architecture for processing
data warehousing queries and analytical workloads using the
MapReduce framework and relational database.

7. CONCLUSIONS
We presented G-SPARQL, a novel language for querying

attributed graphs. The language has a number of appeal-
ing features. It supports querying structural graph patterns
where filtering conditions can be specified on the attributes
of the graph vertices/edges. In addition, it supports various

forms for querying and conditionally filtering path patterns.
We presented an efficient hybrid Memory/Disk representa-
tion of large attributed graphs where only the topology of
the graph is maintained in memory while the data of the
graph are stored in a relational database. We developed an
algebraic compilation mechanism for our supported queries
based on an extended form of the standard relational algebra
and a split of execution mechanism for the generated query
plans. Experimental studies on real and synthetic graphs
validated the efficiency and scalability of our approach. As
a future work, we are planning to extend our approach to
support the recently introduced SPARQL 1.1 features such
as nested queries and aggregate queries.

8. REFERENCES
[1] D. Abadi, A. Marcus, S. Madden, and K. Hollenbach.

Scalable Semantic Web Data Management Using
Vertical Partitioning. In VLDB, 2007.

[2] A. Abouzeid, K. Bajda-Pawlikowski, D. Abadi,
A. Rasin, and A. Silberschatz. HadoopDB: An
Architectural Hybrid of MapReduce and DBMS
Technologies for Analytical Workloads. PVLDB, 2(1),
2009.

[3] F. Alkhateeb, J. Baget, and J. Euzenat. Extending
SPARQL with regular expression patterns. J. Web
Sem., 7(2), 2009.

[4] R. Angles and C. Gutiérrez. Survey of graph database
models. ACM Comput. Surv., 40(1), 2008.

[5] K. Anyanwu, A. Maduko, and A. Sheth. SPARQ2L:
towards support for subgraph extraction queries in rdf
databases. In WWW, 2007.

[6] M. Bröcheler, A. Pugliese, and V. S. Subrahmanian.
DOGMA: A Disk-Oriented Graph Matching
Algorithm for RDF Databases. In ISWC, 2009.

[7] D. Cai, Z.Shao, X. He, X. Yan, and J. Han.
Community Mining from Multi-relational Networks.
In PKDD, 2005.

[8] D. Chakrabarti, Y. Zhan, and C. Faloutsos. R-MAT:
A Recursive Model for Graph Mining. In SDM, 2004.

[9] A. Chebotko, S. Lu, and F. Fotouhi. Semantics
preserving SPARQL-to-SQL translation. DKE, 68(10),
2009.

[10] C. Chen, X. Yan, P. Yu, J. Han, D. Zhang, and
X. Gu. Towards Graph Containment Search and
Indexing. In VLDB, 2007.

[11] J. Cheng and J. Yu. On-line exact shortest distance
query processing. In EDBT, 2009.

[12] E. Cohen, E. Halperin, H. Kaplan, and U. Zwick.
Reachability and Distance Queries via 2-Hop Labels.
SIAM J. Comput., 32(5), 2003.

[13] G. Copeland and S. Khoshafian. A Decomposition
Storage Model. In SIGMOD, 1985.

[14] T. Cormen, R. Rivest, C. Leiserson, and C. Stein.
Introduction to Algorithms. The MIT Press, third
edition, 2009.

[15] R. Cyganiak. A relational algebra for SPARQL.
Technical Report HPL-2005-170, HP Laboratories
Bristol, 2005.

[16] B. Elliott, E. Cheng, C. Thomas-Ogbuji, and Z. Meral

Özsoyoglu. A complete translation from SPARQL into
efficient SQL. In IDEAS, 2009.

20

[17] P. Gassner, G. Lohman, K. Schiefer, and Y. Wang.
Query Optimization in the IBM DB2 Family. IEEE
Data Eng. Bull., 16(4), 1993.

[18] G. Gou and R. Chirkova. Efficiently Querying Large
XML Data Repositories: A Survey. TKDE, 19(10),
2007.

[19] G. Graefe. Sorting And Indexing With Partitioned
B-Trees. In CIDR, 2003.

[20] T. Grust, M. Mayr, J. Rittinger, S. Sakr, and
J. Teubner. A SQL: 1999 code generator for the
pathfinder XQuery compiler. In SIGMOD, 2007.

[21] T. Grust, M. Mayr, J. Rittinger, and T. Schreiber.
FERRY: database-supported program execution. In
SIGMOD, 2009.

[22] T. Grust, S. Sakr, and J. Teubner. XQuery on SQL
Hosts. In VLDB, 2004.

[23] H. He and A. Singh. Graphs-at-a-time: query
language and access methods for graph databases. In
SIGMOD, 2008.

[24] J. Huan, W. Wang, D. Bandyopadhyay, J. Snoeyink,
J. Prins, and A. Tropsha. Mining protein family
specific residue packing patterns from protein
structure graphs. In RECOM, 2004.

[25] H. Jagadish, L. V. S. Lakshmanan, D. Srivastava, and
K. Thompson. TAX: A Tree Algebra for XML. In
DBPL, 2001.

[26] R. Jin, Y. Xiang, N. Ruan, and D. Fuhry. 3-HOP: a
high-compression indexing scheme for reachability
query. In SIGMOD, 2009.

[27] S. Klinger and J. Austin. Chemical similarity
searching using a neural graph matcher. In ESANN,
2005.

[28] U. Leser. A query language for biological networks.
Bioinformatics, 21(2), 2005.

[29] G. Malewicz, M. Austern, A. Bik, J. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski. Pregel: a system for
large-scale graph processing. In SIGMOD, 2010.

[30] T. Neumann and G. Moerkotte. Characteristic sets:
Accurate cardinality estimation for RDF queries with
multiple joins. In ICDE, 2011.

[31] T. Neumann and G. Weikum. RDF-3X: a RISC-style
engine for RDF. PVLDB, 1(1), 2008.

[32] P. Peng, L. Zou, L. Chen, X. Lin, and D. Zhao.
Subgraph Search over Massive Disk Resident Graphs.
In SSDBM, 2011.

[33] J. Pérez, M. Arenas, and C. Gutierrez. Semantics and
complexity of SPARQL. TODS, 34(3), 2009.

[34] H. Pirahesh, T.Cliff Leung, and W. Hasan. A Rule
Engine for Query Transformation in Starburst and
IBM DB2 C/S DBMS. In ICDE, 1997.

[35] E. Prud’hommeaux and A. Seaborne. SPARQL Query
Language for RDF, W3C Recommendation, January
2008. http://www.w3.org/TR/rdf-sparql-query/.

[36] S. Sakr. GraphREL: A Decomposition-Based and
Selectivity-Aware Relational Framework for
Processing Sub-graph Queries. In DASFAA, 2009.

[37] S. Sakr and G. Al-Naymat. Relational processing of
RDF queries: a survey. SIGMOD Record, 38(4), 2009.

[38] S. Sakr and A. Awad. A Framework for Querying
Graph-Based Business Process Models. In WWW,
2010.

[39] M. Sarwat, S. Elnikety, Y. He, and G. Kliot. Horton:
Online Query Execution Engine For Large Distributed
Graphs . In ICDE, 2011.

[40] L. Sidirourgos, R. Goncalves, M. Kersten, N. Nes, and
S. Manegold. Column-store support for RDF data
management: not all swans are white. PVLDB, 1(2),
2008.

[41] M. Stonebraker, D. Abadi, A. Batkin, X. Chen,
M. Cherniack, M. Ferreira, E. Lau, A. Lin,
S. Madden, E. O’Neil, P. O’Neil, A. Rasin, N. Tran,
and S. Zdonik. C-Store: A Column-oriented DBMS. In
VLDB, 2005.

[42] F. Suchanek, G. Kasneci, and G. Weikum. Yago: a
core of semantic knowledge. In WWW, 2007.

[43] H. Tong, C. Faloutsos, B. Gallagher, and
T. Eliassi-Rad. Fast best-effort pattern matching in
large attributed graphs. In KDD, 2007.

[44] S. Trißl and U. Leser. Fast and practical indexing and
querying of very large graphs. In SIGMOD, 2007.

[45] C. Wang, J. Han, Y. Jia, J. Tang, D. Zhang, Y. Yu,
and J. Guo. Mining advisor-advisee relationships from
research publication networks. In KDD, 2010.

[46] F. Wei. TEDI: efficient shortest path query answering
on graphs. In SIGMOD, 2010.

[47] X. Yan, P. Yu, and J. Han. Graph indexing: a
frequent structure-based approach. In SIGMOD, 2004.

[48] S. Zhang, M. Hu, and J. Yang. TreePi: A Novel
Graph Indexing Method. In ICDE, 2007.

[49] S. Zhang, J. Li, H. Gao, and Z. Zou. A novel approach
for efficient supergraph query processing on graph
databases. In EDBT, 2009.

[50] S. Zhang, S. Li, and J. Yang. GADDI: distance index
based subgraph matching in biological networks. In
EDBT, 2009.

[51] P. Zhao and J. Han. On Graph Query Optimization in
Large Networks. PVLDB, 3(1), 2010.

[52] L. Zou, L. Chen, M. Özsu, and D. Zhao. Answering
pattern match queries in large graph databases via
graph embedding. VLDB J., 32(5), 2011.

[53] L. Zou, J. Mo, L. Chen, M. Özsu, and D. Zhao.
gStore: Answering SPARQL Queries via Subgraph
Matching. PVLDB, 4(8), 2011.

Appendix

21

Nodes Table

NgetAttValID,affilation:affiliation1

σaffiliation1=′%affiliation1%′

NgetAttValID,prolific:prolific1

σprolific1=′High′

πid:sID

NgetAttValID,affilation:affiliation2

σaffiliation2=′%affiliation2%′

NgetAttValID,prolific:prolific2

σprolific2=′High′

πid:dID

edgeJoinsID,dID,co−author:eID

EgetAttValeID,noPapers:NO

σNO>2

NgetAttValsID,name:Name1

NgetAttValdID,name:Name2

πName1,Name2

Figure 1: Q1

Nodes Table

NgetAttValID,affilation:affiliation1

σaffiliation1=′%affiliation1%′

NgetAttValID,prolific:prolific1

σprolific1=′High′

πid:sID

NgetAttValsID,name:Name1

NgetAttValID,affilation:affiliation2

σaffiliation2=′%affiliation2%′

NgetAttValID,prolific:prolific2

σprolific2=′High′

πid:dID

NgetAttValdID,name:Name2

pathJoinsID,dID,co−author

πName1,Name2

Figure 2: Q2

1

Figure 15: Algebraic Plan of Q1.

Nodes Table

NgetAttValID,affilation:affiliation1

σaffiliation1=′%affiliation1%′

NgetAttValID,prolific:prolific1

σprolific1=′High′

πid:sID

NgetAttValID,affilation:affiliation2

σaffiliation2=′%affiliation2%′

NgetAttValID,prolific:prolific2

σprolific2=′High′

πid:dID

edgeJoinsID,dID,co−author:eID

EgetAttValeID,noPapers:NO

σNO>2

NgetAttValsID,name:Name1

NgetAttValdID,name:Name2

πName1,Name2

Figure 1: Q1

Nodes Table

NgetAttValID,affilation:affiliation1

σaffiliation1=′%affiliation1%′

NgetAttValID,prolific:prolific1

σprolific1=′High′

πid:sID

NgetAttValsID,name:Name1

NgetAttValID,affilation:affiliation2

σaffiliation2=′%affiliation2%′

NgetAttValID,prolific:prolific2

σprolific2=′High′

πid:dID

NgetAttValdID,name:Name2

pathJoinsID,dID,co−author

πName1,Name2

Figure 2: Q2

1

Figure 16: Algebraic Plan of Q2.

22

Nodes Table

NgetAttValID,affilation:affiliation1

σaffiliation1=′%affiliation1%′

NgetAttValID,prolific:prolific1

σprolific1=′High′

πid:sID

NgetAttValsID,name:Name1

NgetAttValID,affilation:affiliation2

σaffiliation2=′%affiliation2%′

NgetAttValID,prolific:prolific2

σprolific2=′High′

πid:dID

NgetAttValdID,name:Name2

pathJoinsID,dID,co−author:pID

serializePathpID:P

πName1,Name2,P

Figure 3: Q3

Nodes Table

NgetAttValID,affilation:affiliation1

σaffiliation1=′%affiliation1%′

NgetAttValID,prolific:prolific1

σprolific1=′High′

πid:sID

NgetAttValsID,name:Name1

NgetAttValID,affilation:affiliation2

σaffiliation2=′%affiliation2%′

NgetAttValID,prolific:prolific2

σprolific2=′High′

πid:dID

NgetAttValdID,name:Name2

sPathJoinsID,dID,co−author:pID

serializePathpID:P

πName1,Name2,P

Figure 4: Q4

2

Figure 17: Algebraic Plan of Q3.

Nodes Table

NgetAttValID,affilation:affiliation1

σaffiliation1=′%affiliation1%′

NgetAttValID,prolific:prolific1

σprolific1=′High′

πid:sID

NgetAttValsID,name:Name1

NgetAttValID,affilation:affiliation2

σaffiliation2=′%affiliation2%′

NgetAttValID,prolific:prolific2

σprolific2=′High′

πid:dID

NgetAttValdID,name:Name2

pathJoinsID,dID,co−author:pID

serializePathpID:P

πName1,Name2,P

Figure 3: Q3

Nodes Table

NgetAttValID,affilation:affiliation1

σaffiliation1=′%affiliation1%′

NgetAttValID,prolific:prolific1

σprolific1=′High′

πid:sID

NgetAttValsID,name:Name1

NgetAttValID,affilation:affiliation2

σaffiliation2=′%affiliation2%′

NgetAttValID,prolific:prolific2

σprolific2=′High′

πid:dID

NgetAttValdID,name:Name2

sPathJoinsID,dID,co−author:pID

serializePathpID:P

πName1,Name2,P

Figure 4: Q4

2

Figure 18: Algebraic Plan of Q4.

23

Nodes Table

NgetAttValID,affilation:affiliation1

σaffiliation1=′%affiliation1%′

NgetAttValID,prolific:prolific1

σprolific1=′High′

πid:sID

NgetAttValsID,name:Name1

NgetAttValID,affilation:affiliation2

σaffiliation2=′%affiliation2%′

NgetAttValID,prolific:prolific2

σprolific2=′High′

πid:dID

NgetAttValdID,name:Name2

pathJoinsID,dID:pID

serializePathpID:P

πName1,Name2,P

Figure 5: Q5

Nodes Table

NgetAttValID,affilation:affiliation1

σaffiliation1=′%affiliation1%′

NgetAttValID,prolific:prolific1

σprolific1=′High′

πid:sID

NgetAttValsID,name:Name1

NgetAttValID,affilation:affiliation2

σaffiliation2=′%affiliation2%′

NgetAttValID,prolific:prolific2

σprolific2=′High′

πid:dID

NgetAttValdID,name:Name2

pathJoinsID,dID,co−author:pID

filterPathpID,length<=3

serializePathpID:P

πName1,Name2,P

Figure 6: Q6

3

Figure 19: Algebraic Plan of Q5.

Nodes Table

NgetAttValID,affilation:affiliation1

σaffiliation1=′%affiliation1%′

NgetAttValID,prolific:prolific1

σprolific1=′High′

πid:sID

NgetAttValsID,name:Name1

NgetAttValID,affilation:affiliation2

σaffiliation2=′%affiliation2%′

NgetAttValID,prolific:prolific2

σprolific2=′High′

πid:dID

NgetAttValdID,name:Name2

pathJoinsID,dID:pID

serializePathpID:P

πName1,Name2,P

Figure 5: Q5

Nodes Table

NgetAttValID,affilation:affiliation1

σaffiliation1=′%affiliation1%′

NgetAttValID,prolific:prolific1

σprolific1=′High′

πid:sID

NgetAttValsID,name:Name1

NgetAttValID,affilation:affiliation2

σaffiliation2=′%affiliation2%′

NgetAttValID,prolific:prolific2

σprolific2=′High′

πid:dID

NgetAttValdID,name:Name2

pathJoinsID,dID,co−author:pID

filterPathpID,length<=3

serializePathpID:P

πName1,Name2,P

Figure 6: Q6

3

Figure 20: Algebraic Plan of Q6.

24

Nodes Table

NgetAttValID,affilation:affiliation1

σaffiliation1=′%affiliation1%′

NgetAttValID,prolific:prolific1

σprolific1=′High′

πid:sID

NgetAttValsID,name:Name1

NgetAttValID,affilation:affiliation2

σaffiliation2=′%affiliation2%′

NgetAttValID,prolific:prolific2

σprolific2=′High′

πid:dID

NgetAttValdID,name:Name2

pathJoinsID,dID,co−author:pID

filterPathpID,AllNodes(@profilic=′High′)

serializePathpID:P

πName1,Name2,P

Figure 7: Q7

4

Figure 21: Algebraic Plan of Q7.

πid:Paper

NgetAttValPaper,keyword:value1

σvalue1=′%keyword%′

getEdgeNodesPaper,partOf :eID1,Issue

getEdgeNodesissueID,parOf :eID2,Journal

Nodes Table

πid:Journal

NgetAttValJournal,code:value2

σvalue2=′%code%′

1Journal=Journal

πid:Author

NgetAttValAuthor,prolific:value3

σvalue3=′High′

edgeJoinPaper,Author,authorOf :E

EgetAttValE,seqNo:value4

σvalue4=1

πAuthor,Paper,Issue

NgetAttValAuthor,name:Name

NgetAttValPaper,title:Title

NgetAttValIssue,year:Y ear

πName,Title,Y ear

Figure 8: Q8

5

Figure 22: Algebraic Plan of Q8.

25

Nodes Table

πid:P

NgetAttValP,keyword:value1

σvalue1=′%keyword%′

NgetAttValid,prolific,value2

σvalue2=′High′

getEdgeNodesid,authorOf :eID,id2

πid:Au1,id2:P1 πid:Au2,id2:P2 πid:Au3,id2:P3

edgeJoinP,P1,citedBy

edgeJoinP,P2,citedBy

edgeJoinP,P3,citedBy

NgetAttValP,title:Title

NgetAttValAu,name:Name1

NgetAttValAu,name:Name2

NgetAttValAu,name:Name3

πTitle,Name1,Name2,Name3

Figure 9: Q9

6

Figure 23: Algebraic Plan of Q9.

Nodes Table

πid:X

NgetAttValX,name:value1

σvalue1=′%name%′

NgetAttValid,keyword,value2

σvalue2=′%keyword%′

NgetAttValid,title,value3

πid:P1,value3:T1 πid:P2,value3:T2

edgeJoinX,P1,authorOf

pathJoinP1,P2,citedBy:pID

filterPathpID,length<=4

πT1,T2

Figure 10: Q10

Nodes Table

πid:X

NgetAttValX,name:value1

σvalue1=′%name%′

NgetAttValid,keyword,value2

σvalue2=′%keyword%′

NgetAttValid,title,value3

πid:P1,value3:T1 πid:P2,value3:T2

edgeJoinX,P1,authorOf

pathJoinP1,P2,citedBy:pID

filterPathpID,length<=4

filterPathpID,AllEdges(@source=′External′)

πT1,T2

Figure 11: Q11

7

Figure 24: Algebraic Plan of Q10.

26

Nodes Table

πid:X

NgetAttValX,name:value1

σvalue1=′%name%′

NgetAttValid,keyword,value2

σvalue2=′%keyword%′

NgetAttValid,title,value3

πid:P1,value3:T1 πid:P2,value3:T2

edgeJoinX,P1,authorOf

pathJoinP1,P2,citedBy:pID

filterPathpID,length<=4

πT1,T2

Figure 10: Q10

Nodes Table

πid:X

NgetAttValX,name:value1

σvalue1=′%name%′

NgetAttValid,keyword,value2

σvalue2=′%keyword%′

NgetAttValid,title,value3

πid:P1,value3:T1 πid:P2,value3:T2

edgeJoinX,P1,authorOf

pathJoinP1,P2,citedBy:pID

filterPathpID,length<=4

filterPathpID,AllEdges(@source=′External′)

πT1,T2

Figure 11: Q11

7

Figure 25: Algebraic Plan of Q11.

Nodes Table

πid:Y πid:X πid:Z

NgetAttValX,name:NameNgetAttValY,name:value1 NgetAttValZ,name:value2

σvalue1=′%name1%′ σvalue1=′%name2%′

pathJoinX,Y,co−author:E1 pathJoinX,Z,co−author:E2

filterPathE1,length<=2 filterPathE2,length<=2

filterPathE1,AllEdges(@noPapers>2)

1X=X

πName

Figure 12: Q12

8

Figure 26: Algebraic Plan of Q12.

27

