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ABSTRACT 

Complex search tasks such as planning a vacation often comprise 
multiple queries and may span a number of search sessions. When 
engaged in such tasks, users may require holistic support in de-
termining the required task activities. Unfortunately, current 
search engines do not offer such support to their users. In this 
paper, we propose methods to automatically generate task tours 
comprising a starting task and a set of relevant related tasks, some 
or all of which may be necessary to satisfy a user’s information 
needs. Applications of the tours include helping users understand 
the required steps to complete a task, finding URLs related to the 
active task, and alerting users to activities they may have missed. 
We demonstrate through experimentation with human judges and 
large-scale search logs that our tours are of good quality and can 
benefit a significant fraction of search engine users. 

Categories and Subject Descriptors 

H.3.3 [Information Storage and Retrieval]: Information Search 
and Retrieval – selection process, search process 
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1. INTRODUCTION 
Web search engines return lists of items ranked by estimates of 
their query relevance. Information retrieval (IR) researchers have 
worked extensively on algorithms to effectively rank documents 
(c.f. [19]). In addition, some Web search engines now offer manu-
ally-curated lists of sites for particular tasks created by human 
editors. The Editors’ Picks feature of the Microsoft Bing search 
engine (bing.com/editors-picks) is one example of such function-
ality. However, individual items are often insufficient to satisfy 
complex needs such as understanding medical conditions, plan-
ning a vacation, or buying a home [2]. When attempting such 
tasks, people may need support that extends beyond a ranked list, 
and alerts them to the steps required for task completion [10]. For 
example, prior work [7][8] has shown that trails comprising a 
filtered set of documents arranged in sequence can help searchers. 

Tours and trails are frequently generated by human trailblazers 
[8][20]. While this approach aligns well with Vannevar Bush’s 
original vision in his seminal article entitled As We May Think [4] 
it may not scale to the broad range of search tasks that people can 
perform with search engines. Although trails can be generated 
algorithmically [10] , the methods proposed to date involve re-
stricted domains such as particular websites or hypertext corpora 
rather than Web search [7][22], specific URL paths [24] rather 
than more general level of abstraction (e.g., topical categories) 
which may be more widely applicable, or recommend one step at 

a time [10][14] rather than providing a holistic view of the tour, 
which might be useful to searchers, especially novices in the do-
main of interest. We need to address these shortcomings and pro-
vide users with scalable support for search task completion. 

In this paper we present and evaluate methods to automatically 
create multi-step task tours that can help users perform complex 
(multi-stage) search tasks. A task tour comprises a trigger task and 
set of other following tasks that the user can attempt in any order. 
For example, a task tour for the query [buying a home] as gener-
ated by our algorithm is: Real Estate Search (the trigger); Find a 

Realtor; Financial Services; Online Maps; Public Education, 
indicating many of the key tasks required when purchasing a new 
residence. When the trigger task is detected, say via a query 
match, search engines can show the tour could be shown on the 
search engine result page (SERP) accompanied by popular URLs 
or domains for each task, indications of what tasks remain to be 
completed, etc. As we will show, human judgments show that the 
task tours we generate are of high quality and a log analysis pre-
dicts significant utility from the deploying task tours at scale. 

The remainder of this paper is structured as follows. Section 2 
describes related work in areas such as modeling search activity 
and creating guided tours. Section 3 provides details on how we 
create the task tours. In Section 4 we describe the evaluation 
methodology and in Section 5 we describe our experimental re-
sults. We conclude in Section 6. 

2. RELATED WORK 
There are several areas of related work that are relevant to the 
research presented in this paper: (i) modeling search activity be-
yond basic querying, (ii) leveraging interaction sequences from 
search logs, (iii) creating trails and guided tours through infor-
mation spaces, and (iv) modeling search interests to provide step-
by-step recommendations to searchers. We now describe work in 
each of these related areas in more detail. 

Modeling Search Activity: Models of information seeking have 
been developed that illustrate the value and necessity of moving 
well beyond the search result page. O’Day and Jeffries [12]  pro-
posed an orienteering analogy to understand users’ information-
seeking strategies. Their qualitative study relates to ours in de-
scribing the benefits of a system that considers the entirety of 
users’ trails through information spaces. Other models of infor-
mation search behavior have been proposed. Two well-known 
examples of such models are berrypicking [2] and information 
foraging [15]. Berrypicking describes the movement between 
information sources associated with dynamic information needs. 
Information foraging, derived from foraging for food in the wild, 
highlights how information seekers can use cues left by previous 
visitors to find patches of information in a collection, and then 
consume this information to satisfy their needs. 

Mining Search Sequences from Logs: Search logs containing 
the search engine interactions of thousands or millions of users 
have been mined extensively to enhance search-result ranking 
[1][9]. Moving beyond the use of aggregate interactions for a 
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single-query, Radlinski and Joachims [16] used connected se-
quences of similar queries as implicit feedback to improve result 
ranking. Rich log data, from sources such as browser toolbars, 
offer insight into user behavior beyond search engines. Trails 
comprising query and post-query page views can be mined from 
these logs [23] and used to help guide future searchers.  

White and Huang [24] performed a log-based study to assess 
search trails followed by users, and showed that users benefited 
from the intermediate pages as well as the origin and destination 
pages (terminal trail URLs). Bilenko and White [3] studied full 
trails mined from logs, including the origin, intermediate, and 
destination pages. They found that treating the pages in these 
trails as endorsements improved their ranking in search engines.  

Guided Tours and Trailblazing: Guided tours and trails have 
been proposed to help users situate themselves and navigate with-
in information spaces [4]. This approach has been used within the 
hypertext community or to support navigation within a Website 
[17]. Tours and trails can be created manually or automatically. 

Manually Generated: Hammond and Allison [8] and Trigg [20] 
proposed guided tours in hypertext to ease problems of user diso-
rientation. These tours comprised a connected sequence of cards 
that were presented to users in a pre-determined order. Wexelblat 
and Maes [21] introduced annotations called footprints that reveal 
trails through a Web site assembled by the site’s designer.  

Automatically Generated: Dispensing with human intervention, 
tours and trails can also be generated automatically. Guinan and 
Smeaton [7] generated a tour for a given query based on term-
matching for node selection and inter-node relationships (e.g., 
is_a, precedes) for node ordering. In a user study based on a hy-
pertext collection of lecture materials, they found that users fol-
lowed these trails closely—40% of the time participants did not 
deviate from the suggested trail. Wheeldon and Levene [22] pro-
posed an algorithm for generating trails to assist in Web naviga-
tion through a particular website. Study participants found trails to 
be useful and noted that seeing the inter-link relationship. 

We extend previous research in a number of different ways. First, 
we automatically generate task tours rather than relying on hu-
mans to generate them explicitly by creating them manually, or 
implicitly by mining previously followed trails from log data. 
Second, tours are created at the category level rather than the doc-
ument level, allowing us to detect higher-level patterns in search 
behavior, while also being insensitive to Web dynamism (e.g., 
changing content, dead links). Third, we focus directly on sup-
porting Web search rather than assisted Website navigation or 
navigation though restricted domains such as Wikipedia. Finally, 
we propose and utilize new methods for evaluating the quality, 
utility, and potential benefit of tours without costly user studies. 

3. TOUR GENERATION 
In this section we provide an overview of the data that we used to 
generate the tours, the labeling of the URLs with the topical cate-
gory information necessary to identify tasks, the construction of 
the task graph that relates the tasks to each other, the building of 
the tours using the graph, and finally the identification of triggers. 
Note that we assume that the order of the tasks following the trig-
ger task is undetermined. Imposing a sequence ordering on tour 
elements may be unnecessarily restrictive for the complex tasks 
that lack temporal dependence between their component steps. 

3.1 Data 
The data we used for this study was a sample of the anonymized 
logs of all URL visits by users who opted in to provide data logs 

through a widely-distributed browser toolbar. We used a sample 
of 10,000 different users over a two-month time period from Feb-
ruary 2012 to March 2012 (drawn from a larger sample of mil-
lions of users). The data from one month was used to create the 
task tours and the data from the other month was used in a log-
based study to validate the findings for unseen data (more on this 
later in the paper). While constructing the dataset, we excluded 
users with few page visits (less than 50 per month). We also ex-
cluded a small number of users who had too many visits (over 
1000 per day) to make sure that our analysis is not biased toward 
the behavior of a small set of users. The dataset contained millions 
of visited URLs and was segmented into sessions.  

3.2 Labeling URLs 
There have been many studies in the literature on task type or task 
intent classification (e.g., [11]). Those studies have developed 
schemes to classify tasks into categories such as: Fact finding, 
Information gathering, Undirected browsing, Transaction, etc. 
While these categories may be useful for different scenarios, they 
are not particularly useful for our scenario. The main reason for 
this is that these are very high level categories that correspond to 
task types rather than to the information need behind the task. 

Other studies have looked at page topicality, but with millions of 
pages in our dataset, it is impractical to download and use the text 
in the Web pages. Conversely, we could have looked at URLs or 
domains but that would be very limited due to data sparseness. To 
address this challenge, we used the Open Directory Project 
(ODP), also referred to as dmoz.org. ODP is an open Web directo-
ry maintained by a community of volunteer editors. It uses a hier-
archical scheme for organizing URLs into categories and subcate-
gories. Many previous studies have used ODP to assign topical  
categories to URLs (e.g., [18]). These studies have focused on the 
top two level categories (e.g. Recreation: Travel). This is suffi-
cient for page topicality, but it is not enough for our purposes. 
Instead, we used the top three level categories or the top four level 
categories if they exist. This results in breaking a task like Recrea-

tion: Travel into many more granular tasks, e.g., Recreation: 

Travel: Transportation: Air, Recreation: Travel: Lodging, etc.  

Given the large number of URLs in our set we needed to label 
them automatically. We performed automatic classification of 
URLs into ODP categories via an approach similar to [24]. URLs 
in the directory were directly classified according to the corre-
sponding categories. Missing URLs were incrementally pruned 
one level at a time until a match was found or a miss declared.  

3.3 Task Graph 
Recall that our goal is to find a good task tour to support the cur-
rent search task. A good tour will contain many coherent tasks 
that together help the user achieve her complex task. A natural 
thing to do would be to construct a graph over the tasks and find a 
coherent set of tasks using this graph. Since, there are no edges 
between tasks; we needed to figure out a way to connect relevant 
tasks. Two tasks A and B are relevant for our purpose if users are 
likely to perform both A and B together. 

We construct a graph  where  is the set of all tasks 

in the dataset.  is the set of possible associated tasks.  

is a function that assigns to every pair of tasks 

 a weight  representing their association strength. 

There are many measures that have been used in the literature to 
assess the association between two variables. One of the widely 
used measures is the pointwise mutual information (PMI). The 

PMI of any two discrete variables  and  quantifies the discrep-
ancy between the probability of their coincidence given their joint 



distribution and the probability of their coincidence given only 
their individual distributions, assuming independence. Formally 

 can be defined as: 

 

The PMI value is 0 if the two variables are independent. Positive 
values of PMI indicate positive association while negative values 
indicate negative association.  

Now that we have an association measure, we discuss how we 
create a variable corresponding to every task that appears in our 
dataset. We construct a set of records where every record consists 
of  binary attributes, where  is the number of tasks in the da-

taset. Every record corresponds to a user  and a time period  

resulting in  records where  is the number of time peri-

ods and  is the number of users. An attribute is set to one if the 
corresponding user performed this task in the corresponding time 
period. We set the length of the time period to two days in our 
experiments which resulted in 30 overlapping time periods for 
March and 28 for February. 

Given these records, we treat every binary attribute as a random 
variable and proceed with calculating the normalized pointwise 
mutual information. Before measuring NPMI, we discard all pairs 
that occurred for less than 100 times in the dataset. This is used to 
filter out infrequent and noisy associations. 

3.4 Building Task Tours 
Given the task graph we described in our previous section, let us 
revisit our overall objective which is building tours of tasks to 
guide users toward the completion of complex Web tasks. One 
way to do that would be to start at an arbitrary task and then move 
to the most strongly connected neighbor and so on.  

However, this simple method does not necessarily yield a good 
tour. Suppose the user was searching transportation to a certain 
destination, she may get tours that resemble the following: 

  

  

These tours are certainly not useful because there is no strong 
association between looking for travel transportation and business 
directories, neither is there one between travel transportation and 
reading the news. Note that each transition when checked out of 
context is reasonable. For example many people need to check the 
weather when traveling and many people read the news after 
checking the weather, often on the same website. 

The problem here is that links between pairs are coherent but the 
whole tour is not. To find more coherent tours, we need to extract 
groups of nodes that have denser connections internally and 
sparser connections between groups. This is a typical community 
finding problem where tasks are divided into coherent disjoint 
groups. The drawback of this approach is that every task can be a 
member of one group only. Common tasks like “Checking the 

Weather” or “Check Online Maps” can naturally belong to more 
than one tour. An alternative approach would be to extract over-
lapping communities from the task graph. Figure 2 shows how the 
task graph could be divided into overlapping communities repre-
senting tours. In the figure, nodes correspond to tasks, edges are 
the association between tasks, and the shaded regions are tours. 

To find overlapping communities we used a modified clique tem-
plate rolling technique based on [13]. Before we describe the al-
gorithm, we define some of the terms that we will use.  

               
 

Figure 1: Overlapping communities in the task graph. 

Our algorithm first extracts all cliques of size  (k-clique) from 
the task graph. Once the cliques are identified, a clique-clique 
overlap matrix is constructed. The clique overlap matrix is a 
symmetric matrix with each row and column representing a 
clique. The matrix elements are  if the corresponding cliques 

share  common nodes and  otherwise. We then run compo-
nent analysis on the clique-clique overlap matrix to identify con-
nected clique components. Every component is a maximal union 
of adjacent cliques. We select  which means that tours will 
be given by the union of triangles that can be reached from one 
another through a series of shared edges. To allow tours of size , 

we add to the pool of tours cliques of size  if they are not sub 
components of tours with larger sizes. 

Obviously not all tasks can trigger a tour (e.g. “Check the Weath-

er” should not trigger the travel tour). To solve this problem, we 
define the triggering score of a task t as the sum of the conditional 
probabilities of all other tasks given t. The task with the highest 
score is designated as the trigger. 

4. TOUR EVALUATION 
As a result, we evaluated our methods by building task tours using 
real data and leveraging human judgments to assess the validity 
and usefulness of our findings. We are interested in assessing the 
correctness and usefulness of the extracted tours. As a result, we 
conducted user studies to answer the following research questions: 

RQ1. Validity of the task graph: Do the links in the task graph 
connect relevant tasks?  
RQ2. Coherence of the tours: Are the tasks that together define 
the tours coherent?  
RQ3. Utility of the tours: Do the tours cover most of the tasks 
related to the complex task? 

We attempt to answer these questions by conducting a rating 
study using Amazon Mechanical Turk (MT) to rate the results. As 
is necessary with a study on a remote crowdsourcing platform, we 
took several precautions to maintain data integrity. We restricted 
annotators to those based in the US because our logs came from 
users based in the US. We restricted annotators to those who per-
formed more than 1000 tasks and achieved more than 95% ap-
proval rate for their previous work. Moreover, we used hidden 
quality-control questions to filter out unreliable workers. Two 
annotators work on every instance and report their average scores.  

4.1.1 The Task Graph 
The objective of the first experiment was to evaluate the quality of 
the links in the task graph. We generated edges connecting related 
tasks using the following techniques: 

 

 

 

 

Task 

Task 

Tour 



• Proposed Method: As described in Section 3, we used normal-
ized pointwise mutual information to assess the association be-
tween tasks. Two tasks were deemed relevant if the npmi value 
was greater than 0.1. Generally, tasks are considered related if 
the value is greater than 0. We used a slightly higher threshold 
to filter out barely related tasks if any exists. 

• ODP Hierarchy: The ODP data imposes a hierarchy over all 
categories. We used this hierarchy to find related tasks. Two 
tasks are considered related if they share a common ancestor 
other than the root node. 

• Random: This is a simplistic baseline that links tasks in the 
task graph randomly. Note that this was restricted to the nodes 
that already existed in the task graph. 

For every task in the task graph, we showed an external annotator 
the ODP label and a list of the top three most frequent domains 
related to this label the first month of log data, and asked the an-
notator to come up with one sentence describing the task. For 
example, when presented with: 

Label: Recreation: Travel: Transportation: Air 

URLs: www.delta.com, www.aa.com, www.united.com 

The annotator devised the following description: “Search for an 

air travel fare”, which may then be generalized into the task “Air 

Travel” for inclusion in the tour. 

The MT workers, hereafter referred to as “turkers,” were given a 
pair of tasks and asked to judge the relevance of the two tasks. 
The turkers had the description of every task and top 3 most fre-
quent URL domains related to it. The workers were asked to judge 
the relevance of the tasks on a three-point scale: 

• Highly Relevant (rating=3): Users interested in one task are 
very likely to be interested in the other as well. 

• Somewhat Relevant (2): Users interested in one task are 
somewhat likely to be interested in the other as well. 

• Not Relevant (1): Users interested in one task are unlikely to 
be interested in the other as well. 

We used Cohen’s kappa to assess the annotator agreement. The 
value was 0.78 for the task relevance annotation task. This is con-
sidered an “excellent” agreement according to [6]. 

4.1.2 The Tours 
The objective of the second experiment was to evaluate the quali-
ty of the generated tours generated with the following methods: 

• Proposed Method: As described in Section 3, a clique tem-
plate rolling technique was applied to the task graph. 

• Task Graph Path: For every tour generated using the pro-
posed method, we generated another tour that has the same size 
and starts with the same trigger. Additional tasks are added to 
the tour by selecting the task with the strongest connection to 

the current task, represented in the task graph as . This pro-
cess is repeated until we reach the desired size. 

• ODP Hierarchy Path: Tours are generated using the same 
technique described in the previous point. The only difference 
is that tasks are linked based on the ODP hierarchy. Two tasks 
are considered relevant if they share a common ancestor. The 
strength of the connection is the number of levels between the 
common ancestor and the root. When selecting the next task, 
ties are broken by selecting the most popular task in our dataset. 

The workers were given the tours one at a time. For each task, the 
description of the task and a list of the most popular URLs were 
shown to turkers. The tour trigger was marked. The rest of the 
tasks were ordered according to the triggering score (

 from earlier) or the tour generation order. We did not tell the 

workers that the tasks are ordered, neither did we ask them to 
judge the ordering. The turkers were asked to judge the coherence 
of the tours on a three-point scale: 

• Highly Coherent (rating=3): All tasks in tour are coherent. 

• Somewhat Coherent (2): Most tasks in tour are coherent. 

• Not Coherent (1): Most tasks in the tour are incoherent or 
could not understand the information need behind the tour. 

They were also asked judge coverage also on a three-point scale:  

• Excellent Coverage (rating=3): The tour covers all the possi-
ble aspects of the complex task. 

• Good Coverage (2): The tour covers most of the possible as-
pects of the complex task, but some aspects are missing. 

• Bad Coverage (1): Most aspects not covered / tour incoherent.  

The kappa value for coherence and coverage were 0.52 and 0.5 
respectively. This is considered “fair to good” agreement [6]. 

5. FINDINGS 
We now present the findings of our study, broken out by the four 
research questions. We begin with the validity of the task graph. 

5.1 Task-Graph Validity  
Figure 2 shows the percentage of highly relevant, somewhat rele-
vant, and not relevant task associations for the proposed method 
and the two baselines. We notice that almost 80% of the associa-
tions identified by the proposed method are either highly relevant 
or somewhat relevant. This percentage drops to 32% for the ODP 
hierarchy baseline and 18% for the random baseline. The results 
show that using the ODP hierarchy is not good enough for identi-
fying associations and that the proposed method is doing a very 
good job in finding relevant task. A χ2 test has shown that the 

difference between proportions is significant at the p <  level.  

The reason behind bad performance of the ODP hierarchy base-
line is that many related tasks have different ancestors in the ODP 
hierarchy. For example “searching for school districts” and “real 
estate search” are clearly related but have completely different 
ancestors in the ODP hierarchy. On the other hand some tasks that 
belong to the same high level ODP category are not related (e.g., 
“Job Search” and “Real Estate Search” are both in Business). 

5.2 Tour Validity 
We evaluated the validity of the generated tours using several 
metrics. The first is “coherence” which evaluates how well the 
tasks in the tour belong together. The second is “coverage” which 
evaluates how well the tour covers different aspects of the com-
plex task. The last is the quality of the tour trigger identification. 
The latter is important since all users exposed to task tours in the 
search engine will see the tour trigger, irrespective of how the 
other tasks in the tour are presented at the search interface. 

Figure 3 compares the coherence of the proposed method and the 
two baselines. The figure shows that 92% of the tours generated 
by the proposed method are either highly or somewhat coherent. 
This percentage drops to 73% for the first baseline that uses the 
task graph but extracts paths with strong pairwise connections 
rather than communities. This shows that the value of the com-
munity finding step in identifying coherent tours. The percentage 
further drops for the third baseline to less than 50%. The third 
baseline does not use the task graph but uses the ODP hierarchy 
instead. This confirms that the task graph models the task associa-
tion in a much better way compared to the ODP hierarchy. 

Next we move to coverage where we tried to evaluate how well 
the tours cover the different aspects related to the complex tasks.  
The results are shown in Figure 4. Like coherence, the coverage 



of the tours generated by the proposed method is much better than 
the coverage of the tours generated by the baselines. Unlike co-
herence, the percentage of tours with excellent coverage is con-
siderably less with most of the mass falling under the “good cov-
erage” category for the proposed method and the “bad coverage” 
category for the baselines. The performance with respect to coher-
ence in general is better than the performance with respect to cov-
erage. Better coverage may be achieved by using larger datasets 
that would allow less frequent tasks to appear with sufficient fre-
quency that would allow more tasks to make it to the task graph. 
We also broke down the results into the long and short tours. As 
expected, longer tours have much better coverage than short tours. 
A χ2 test has shown that the differences between proportions in 

Figure 3 and Figure 4 are significant at the p <  level.  

6. CONCLUSIONS 
Search engines offer limited support for tackling complex search 
tasks. In this paper we have described and evaluated novel meth-
ods for automatically generating task tours to support the comple-
tion of complex tasks by outlining important elements. Our meth-
od automatically identifies the key tasks required, including de-
termining the task from which the tour should start, based on task 
transition evidence mined from log data. We evaluated our meth-
ods using human judges and the results suggest that the tours gen-
erated by our method are of good quality. In future work we will 
incorporate task tours into SERPs to help users and evaluate their 
utility directly for different search scenarios. The indications from 
our study are that task tours will provide useful direction to users.  
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Figure 2: Task associations for our method and the baselines. 

 
Figure 3: Tour coherence for our method and the baselines. 

 

Figure 4: Tour coverage for our method and the baselines. 

 


