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ABSTRACT 

 
Given the increasingly available machine translation (MT) services 

nowadays, one efficient strategy for cross-lingual spoken language 

understanding (SLU) is to first translate the input utterance from 

the second language into the primary language, and then call the 

primary language SLU system to decode the semantic knowledge. 

However, errors introduced in the MT process create a condition 

similar to the “mismatch” condition encountered in robust speech 

recognition. Such mismatch makes the performance of cross-

lingual SLU far from acceptable. Motivated by successful solutions 

developed in robust speech recognition, we in this paper propose a 

multi-style adaptive training method to improve the robustness of 

the SLU system for cross-lingual SLU tasks. For evaluation, we 

created an English-Chinese bilingual ATIS database, and then 

carried out a series of experiments on that database to 

experimentally assess the proposed methods. Experimental results 

show that, without relying on any data in the second language, the 

proposed method significantly improves the performance on a 

cross-lingual SLU task while producing no degradation for input in 

the primary language. This greatly facilitates porting SLU to as 

many languages as there are MT systems without any human 

effort. We further study the robustness of this approach to another 

type of mismatch condition, caused by speech recognition errors, 

and demonstrate its success also.  

 

Index Terms— spoken language understanding, cross-lingual, 

adaptive training, multi-style training  

 

1. INTRODUCTION 

 
Porting a spoken language understanding (SLU) service from one 

language to another is of increasing interests to the community 

recently [11][12][2][15][28][20]. It aims at porting the SLU service 

that is built for a primary language to a second language, where we 

usually have no or very limited data to train a full SLU system 

reliably.  

While there is a wide body of work on cross-lingual question 

answering (QA) and information retrieval (IR), mainly due to the 

shared task evaluations at the text retrieval conferences (TREC) [6] 

and the cross language evaluation forum (CLEF) [13], the work on 

cross-lingual SLU is rather limited to a few studies. In line with the 

previous work on QA, Jabaian et al. [12] proposed two strategies 

for SLU portability. The first one includes translating annotated 

corpora to the second language and training models for 

understanding examples in the second language. The second one 

instead translates the examples in the second language to the 

primary language and uses the primary language SLU models to 

analyze them. They also showed that training with additional noisy 

data increases robustness of models and a combination of the three 

modeling approaches results in the best performance [11]. 

In this paper, we focus on the second strategy, in which the 

input utterance is first translated into the primary language, and 

then the primary language SLU system is called to decode the 

semantic knowledge. Given the machine translation (MT) services, 

such as Microsoft and Google Online Translator [18][7], that are 

broadly available nowadays, the SLU service for the primary 

language can be efficiently extended to cover a variety of other 

languages with minimum cost using this strategy. 

However, due to errors introduced in the MT process, the 

performance of cross-lingual SLU is far from acceptable. Similar 

to the “mismatch” condition encountered in robust speech 

recognition [3][16], the SLU system in the primary language is 

usually trained on clean data, while the input is noisy data with 

translation errors. This training/testing condition mismatch causes 

severe performance degradation. Therefore, building SLU systems 

that are robust to translation errors is crucial for cross-lingual SLU. 

In [11], a smeared training data approach is proposed to address 

this issue. Assuming there are training data available in the second 

language, these data are first translated into the primary language, 

and then merged with other training data in the primary language 

to train the SLU model. Performance improvement on a cross-

lingual SLU task is reported. However, since extra data are used 

compared to the baseline (i.e., the extra training data translated 

from the second language), it is not clear how much the 

improvement is exactly from introducing MT distortion in training. 

Moreover, that approach depends on the availability of the training 

data in the second language. Therefore, it is costly and may be not 

suitable for languages that have no or very limited resource.  

In this work, without relying on any training data in the second 

language, we propose a method to adapt the clean training data in 

the primary language to the MT-distorted condition, so as to 

mitigate the training/testing condition mismatch problem for cross-

lingual SLU. In our method, we first translate the clean training 

data in the primary language into the second language and then 

translate them back, both through MT. By doing this, we 

intentionally inject translation errors into the original clean training 

data. We then train the SLU system on these MT-distorted data and 

therefore adapt the SLU model to be more robust to inputs that 

contain MT errors. Compared to [11], one advantage of this 

training approach is that it doesn’t require any data in the other 

languages, so we can port SLU to as many languages as there are 

MT systems without any human effort.  

In another related work, Misu et al. use MT to translate the 

training data from the primary language to the second language 

(i.e., the first strategy) and run a back-translation for the purpose of 
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data filtering [20]. On the other hand, combining multiple MT 

systems could lead to superior translation output [9][17], which 

could further improve the performance of cross-lingual SLU 

significantly as demonstrated in [5].  

Compared to previous work (e.g. [11][12]), we have also 

studied three important issues regarding the robustness of the SLU 

systems. First, to minimize the cost and take the full advantage of 

cross-lingual SLU, there is a demand for building one SLU system 

in the primary language to serve all requests from both the primary 

language and other foreign languages (via MT). Therefore, it is 

crucial to build a system that is robust to cross-lingual users 

without sacrificing the performance for users in the primary 

language. In this work, we carried out quantitative study to 

investigate the impact of MT-distorted training data on the 

performances for both the cross-lingual test and clean test 

conditions. The second issue we studied is how, if any, the MT-

distorted data helps the robustness of SLU models to other types of 

errors such as errors from automatic speech recognition (ASR). 

Moreover, for certain SLU tasks, there are extra knowledge 

resources available beside regular training data, such as named 

entity lookup tables, which provide valuable information for SLU. 

In this paper, we also studied the performance of the proposed 

approaches under this condition. 

We evaluate the proposed methods on a Chinese-to-English 

cross-lingual slot filling task. For evaluation, we created an 

English-Chinese bilingual ATIS database which is constructed by 

manually translating the English ATIS database into Chinese, 

including both the sentences and the annotations. Then we carried 

out a series of experiments to evaluate the proposed methods on 

this database. As the experimental results show, our method 

significantly improves the cross-lingual SLU accuracy on the slot-

filling task by up to 5% absolutely as measured in F1 measure, 

while the performance on the clean input in the primary language 

is kept without degradation. We further study the robustness of our 

approach to another type of mismatch condition caused by speech 

recognition errors, and observe significant improvements also.  

 

2. MULTI-STYLE ADAPTIVE TRAINING FOR 

CROSS-LINGUAL SLU  
 

2.1 Spoken language processing: A review 

 

Semantic parsing of input utterances typically consists of 3 tasks, 

domain detection, intent determination, and slot filling. Originated 

from call routing systems, domain detection or intent determination 

tasks are typically treated as semantic utterance classification, and 

originated from natural language to semantic template filling 

systems such as the DARPA ATIS, the slot filling task is typically 

treated as sequence classification. An example sentence with slot 

annotations is provided in Fig. 2 (English). 

In this work, we evaluate our methods on the slot filling task. 

The input is the sentence consisting of a sequence of words, and 

the output is a sequence of slot IDs, one for each word, tagged by a  

conditional random field (CRF) [14] based slot filling model, i.e., 

given the input word sequence   
         , the linear chain CRF 

models the probability of a slot sequence   
          as follows: 
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2.2 Multi-style adaptive training 

 

In cross-lingual SLU, we can first translate the input utterance 

from the second language to the primary language, and then call 

the primary language SLU system to decode the semantic 

knowledge. One benefit of this approach is that we only need to 

build and maintain one SLU system in the primary language. 

Given the machine translation (MT) services, such as Microsoft 

and Google Translators, widely available nowadays, this approach 

is particularly plausible when we need to port the SLU capability 

to a variety of new languages quickly with minimum cost.  

We illustrate this cross-lingual SLU strategy in Fig. 1.  In the 

figure, we denote by L1 and L2 as the sentences in the primary and 

the second language, respectively, and denote by L′1 and L′2 as the 

sentences in the primary language and the second language that are 

translated from the other language, respectively. S is the semantic 

slot sequences produced by the SLU system.  

One commonly referred setup of this cross-lingual SLU strategy 

is illustrated in Fig. 1(a) [12].  In training, the SLU system is 

trained on the data in the primary language. In testing, the 

utterance spoken in the second language is first translated into the 

primary language via MT, and then the translated utterance is fed 

into the primary SLU system to produce the semantic slots. 

However, in this setup, the SLU system is trained on MT-distortion 

free data while the input is MT-distorted data. This training/testing 

condition mismatch causes severe performance degradation.  

In order to mitigate the training/testing condition mismatch 

problem, we propose to adapt the distortion free training data in the 

primary language to the MT-distorted condition. Hereafter, we 

refer to the distortion free condition as clean condition and the 

MT-distorted condition as noisy condition for short. In our method, 

we first translate the clean training data in the primary language 

into the second language and then translate them back, both 

through MT. By doing this, we intentionally inject translation noise 

into the original clean training data. We then train the SLU system 

on these MT-distorted (noisy) data and therefore adapt the SLU 

model to be more robust to inputs that contain MT errors. In 

implementation, to recover annotations for the noisy training set, 

we performed a word alignment between the original clean data set 

and the newly-generated noisy data set, and then mapped the word 

level annotation from the former to the latter accordingly. Note that 

both of the clean and noisy sets are in the same primary language, 

therefore it is a monolingual word alignment is sufficient [9]. In 

this paper, we call this approach adaptive training, as in Fig. 1 (b). 

However, training the SLU system solely on the noisy training 

set, though matching the cross-lingual condition well, may lead to 

performance degradation for clean input in the primary language 

due to a newly introduced mismatch between the noisy condition 

model and the clean input. To address this issue, we further 

proposed a multi-style adaptive training approach. As illustrated in 

Fig.1 (c), the SLU system will be trained on a training set 

consisting of multiple styles of data, including both clean and MT-

distorted data. As will be demonstrated in the evaluation, this leads 

to a SLU system that is robust to various types of input. As shown 

in the experimental results, this method improves the performance 
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of cross-lingual SLU significantly, without performance 

degradation for clean input in the primary language. 

 

 

 

 
 

 

 

(a) Clean training for cross-lingual SLU 

 

 

 

 
 

 

 

(b) Adaptive training for cross-lingual SLU 

 

 

 

 
 

 

 

(c) Multi-style adaptive training for cross-lingual SLU 

 

Figure 1. Different training approaches for cross-lingual SLU.  

 

3. ENGLISH-CHINESE BILINGUAL ATIS DATASET 

 
Spoken language understanding (SLU) in goal oriented 

conversational systems aim to automatically identify the intent of 

the user as expressed in natural language and extract associated 

arguments (slots) [27]. This term has been mainly coined in the 

early 90s, by the DARPA (Defense Advanced Research Program 

Agency) Airline Travel Information System (ATIS) project. The 

ATIS task consisted of spoken queries on flight-related 

information. Understanding in this project was reduced to the 

problem of extracting task-specific arguments, such as Destination 

and Departure Date. An example utterance with annotations is 

shown in Fig. 2 (English). Participating systems employed either a 

data-driven statistical approach [19][22] or a knowledge-based 

approach [4][25][28]. An important by-product of the DARPA 

ATIS project was the ATIS corpus [23]. This corpus is the most 

commonly used data set for SLU research. In this paper, we use the 

ATIS corpus as used in He and Young [10], Raymond and 

Riccardi [24], and Tur et al. [26]. The training set contains 4,978 

utterances selected from the Class A (context independent) training 

data in the ATIS-2 and ATIS-3 corpora, while the test set contains 

893 utterances from the ATIS-3 Nov93 and Dec94 datasets. Each 

utterance has its named entities marked via table lookup, including 

domain specific entities such as city, airline, airport, and dates.  

In order to facilitate the research of cross-lingual SLU, we 

manually translate the whole ATIS database from English to 

Chinese. In ATIS, usually the same intention is expressed in 

multiple different ways to cover variation of valid expressions. For 

the same purpose, the human translator is instructed to translate the 

sentence as literally as possible, without sacrificing fluency and 

adequacy in the translation. The translator is also instructed to map 

the slot annotations of English words to corresponding Chinese 

words based on his best knowledge. One example of this English-

Chinese bilingual SLU database is illustrated in Fig. 2.  

 

English: 
Sentence  show flights from Boston to New York today 

Slots O O O B-dept O B-arr I-arr B-date 

Chinese: 
Sentence  显示 今天 从 波士顿 飞往 纽约 的 航班 

Slots O B-date O B-dept O B-arr O O 

 

Figure 2. Example of English-Chinese bilingual ATIS data set. 

 

4. EVALUATION 
 

4.1 Experimental condition  

 
In this section we carried on Chinese-to-English cross-lingual SLU 

experiments to evaluate the proposed methods, i.e., the primary 

language is English and the second language is Chinese. The 

database used in the evaluation is described in section 3. We use 

the linear chain CRF model as described in section 2.1 for slot 

tagging. Following [24], the CRF++ toolkit is used. 5-fold cross 

validation on the training set is employed to pick the best 

regularization factor for CRF training. The machine translation 

service used in the experiments is the online Microsoft Translator. 

It is a large scale general purpose MT system that provides state-

of-the-art translation service for about 80 language pairs. The 

performance of that MT system on the data set used in the 

experiments is presented in Table 1 in BLEU score [21]. It is 

interesting to see that the BLEU score of the MT-distorted training 

data, i.e., the training data after a round-trip MT, is higher than the 

cross-lingual test data which only goes through the MT process 

once. We find that because the same MT training data sets are 

usually used to train the translation models of two symmetric 

language pairs (e.g., English-to-Chinese and Chinese-to-English), 

it is possible that the translation error caused by mapping a source 

phrase to a wrong target phrase could lead to a correct source 

phrase when translating it back by phrase pairs learnt from the 

same translation samples. Nevertheless, substantial MT distortion 

is introduced as indicated by the lower-than-50% BLEU score 

(naturally, the clean data set has a BLEU score of 100% when 

using itself as reference). 

The experimental results of the proposed methods are presented 

in the following sub-sections. Unless specified, the baseline model 

in these experiments is trained on the clean training data as 

illustrated in Fig. 1(a).  

 

Table 1: BLEU scores of the MT-distorted training data and the 

Chinese-to-English cross-lingual test data, References are the clean 

training and test data in English, respectively. 

Data set BLEU 

MT-distorted training data 42.6% 

Chinese-to-English test data 33.4% 

 

4.2 Experimental results  

 

4.2.1 Experiments on adaptive training 

 

SLU MT 
L2 L′1 S 

L1 

SLU MT 
L2 L′1 S 

MT 
L1 

MT 
L′2 L′1 

SLU MT 
L2 L′1 S 

MT 
L1 

MT 
L1 L′2 L′1 

Training 

Testing 

Training 

Testing 

Training 

Testing 
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We first evaluate the performance of adaptive training as illustrated 

in Fig. 1(b). In the experiment, the lexical/n-gram features 

extracted from a 5-word window are used for CRF. Experimental 

results are shown in Table 2. After trained on the MT-distorted 

data, the model is adapted to the cross-lingual condition well. This 

leads to a 5.1% improvement in F1 score for the Chinese-to-

English cross-lingual test set. However, this approach also causes 

severe training/testing mismatch for the clean test condition, where 

the performance drops by 5.1%. 

 

Table 2: Slot-filling results on the Chinese-to-English (chs-to-enu) 

cross-lingual test set and the clean test set using adaptive training, 

reported in F1 score. 

Training set chs-to-enu input clean enu input 

Clean data only (baseline) 68.37% 92.57%  

MT-distorted data only 73.46% (+5.1%) 87.50% (-5.1%) 

 

4.2.2 Experiments on multi-style adaptive training 

 

We then evaluated the multi-style adaptive training method, with a 

focus on improving the performance on cross-lingual test while 

keeping the clean test performance from degradation. As illustrated 

in Fig. 2(c), starting from using solely the clean training data, we 

gradually add MT-distorted data for training. As shown in Table 3, 

the performance on the Chinese-to-English cross-lingual test set 

improves continuously when more and more MT-distorted data are 

added in, while the high accuracy on the clean test set maintains 

with almost no degradation. At the setting when all MT-distorted 

data are added, we observed a 5.3% improvement in F1 score, and 

only negligible degradation, -0.1%, on the clean test set. 

 

Table 3: Slot-filling results on the Chinese-to-English (chs-to-enu) 

cross-lingual test and the clean test set using multi-style adaptive 

training under different conditions, reported in F1 score. 

Training set chs-to-enu input clean enu input 

Clean data only (baseline) 68.37% 92.57%  

Clean+  10% MT-distorted 70.76% (+2.4%) 92.54% ( 0.0%) 

Clean+  25% MT-distorted 71.46% (+3.1%) 92.45% (-0.1%) 

Clean+  50% MT-distorted 72.67% (+4.3%) 92.04% (-0.5%) 

Clean+100% MT-distorted 73.69% (+5.3%) 92.50% (-0.1%) 

 

4.2.3 Experiments on using extra Named Entity features 

 

Table 4: Slot-filling results on the Chinese-to-English (chs-to-enu) 

cross-lingual SLU test and the clean English test set using extra NE 

features, reported in F1 score. 

Training set chs-to-enu input clean enu input 

Clean data only (baseline) 76.88% 94.44%  

MT-distorted data only  79.26% (+2.4%) 91.23% (-3.2%) 

Clean+100% MT-distorted 79.78% (+2.9%) 94.00% (-0.4%) 

 

ATIS provides labels marked for named entities (NE) via NE table 

lookup (see section 3), which provide valuable information for 

SLU. In this section, we conducted experiments using additional 

features derived from these NE labels. The results are shown in 

Table 4. Compared the first row of Table 4 (baseline) to that of 

Table 3, adding the named entity features improves the slot filling 

accuracy substantially for both cross-lingual and clean tests. On 

top of this strong baseline, still, the proposed multi-style adaptive 

training further improves the slot filling accuracy on the Chinese-

to-English cross-lingual test by 2.9% absolute, with a small -0.4% 

degradation on the clean-input test. This demonstrates that the gain 

of the proposed method is complementary to gains from using NE 

features.  

 

4.2.4 Experiments on input with ASR errors 

 

We also evaluated the robustness of the MT distortion-adapted 

model on non-MT type errors. In this experiment, the input for 

SLU is the recognition hypothesis from a generic dictation ASR 

system and has a word error rate (WER) of 13.8%, while this is 

significantly higher than the best reported performances of about 

5% WER [29], this provides a more challenging and realistic 

framework. The experimental results are in Table 5. Interestingly, 

using solely the MT-distorted data for training does not help or 

hurt the performance on ASR-noise input. This is because the MT 

errors are different from the ASR errors, so the MT error patterns 

learned by the model may help some cases but hurt some others 

and the overall gain is neutral. However, after combined with the 

clean data in multi-style training, a 2.0% absolute gain in F1 score 

can be observed. The gain is smaller than that on cross-lingual 

tests, but still significant. These results indicate that information 

learned from MT-type of noise could improve the robustness of the 

model to other types of noise, too, but in a less effective degree.   

 

Table 5: Slot-filling results reported in F1 score. The test input is 

ASR hypothesis in English. 

Training set Without Named 

Entity  feature 

With Named 

Entity  feature 

Clean data only (baseline) 81.15% 84.66%  

MT-distorted data only  81.09% ( -0.1%) 84.24% ( -0.4%) 

Clean+100% MT-distorted 83.11% (+2.0%) 86.67% (+2.0%) 

 

 

5. DISCUSSION AND FUTURE WORK 

 
In this paper, we study the effects of a training/testing “mismatch” 

condition, due to MT errors, on cross-lingual SLU. In order to 

mitigate this mismatch, we develop a multi-style adaptive training 

method. Without relying on data in the second language, the 

proposed method adapts the clean training data in the primary 

language to the MT-distorted condition, so as to address the 

training/testing condition mismatch problem for cross-lingual SLU. 

The method proves highly effective as is demonstrated through a 

series of cross-lingual SLU experiments.  

The condition mismatch problem in cross-lingual SLU shares 

connection with similar problems in ASR and MT, and the 

methods in this paper are also motivated by similar solutions 

developed in speech recognition (e.g., unstructured and model-

domain adaptation [3]) and machine translation (e.g., domain 

adaptation by data selection [1]). In the future, one of our focuses 

will be on the cross-fertilization of robust modeling and adaptation 

approaches between cross-lingual SLU and ASR/MT. On the other 

hand, a full cross-lingual SLU system consists of multiple 

components including ASR, MT, and SLU. Inspired by work of 

end-to-end discriminative learning for the ASR and MT 

components in speech translation [8][30], end-to-end optimization 

of all three components jointly for cross-lingual SLU as an 

extension of the straightforward noise-adaptation method presented 

in this paper is another key direction of our future work.  
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