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Abstract—Cloud platforms involve multiple independently de-
veloped components, often executing on diverse hardware config-
urations and across multiple data centers. This complexity makes
tracking various key performance indicators (KPIs) and manual
diagnosing of anomalies in system behavior both difficult and
expensive. In this paper, we describe PerfAugur, an automated
system for mining service logs to identify anomalies and help
formulate data-driven hypotheses. PerfAugur includes a suite of
efficient mining algorithms for detecting significant anomalies
in system behavior, along with potential explanations for such
anomalies, without the need for an explicit supervision signal. We
perform extensive experimental evaluation using both synthetic
and real-life data sets, and present detailed case studies showing
the impact of this technology on operations of the Windows Azure
Service.

I. INTRODUCTION

Cloud platforms need to constantly improve their quality
of service to meet increasingly stringent performance and
availability requirements from customers. For these, the quality
life-cycle involves tracking various KPIs quantifying both
performance and availability, and detecting and diagnosing any
behavioral changes to the underlying system components.

While such detection and diagnosis is a non-trivial task for
any system, the heterogeneity and complexity of cloud services
makes this task particularly challenging. Cloud services con-
tinually deploy new software versions of system components
and are executed on a diverse set of hardware configurations,
often across multiple data centers. This heterogeneity and
complexity creates both outright service failures as well as
various regressions in performance/availability which manifest
themselves in increased latency and/or increased failure rates
of individual requests. While outright service failures are
typically rare and quickly detected by operations teams, these
types of performance/availability anomalies (which have also
been named chronics [1] or latent faults [2]) can remain unde-
tected for much longer periods as they typically only affect a
subset of requests and occur under complex sets of conditions
(which was also observed in [1]). Such anomalies may lead to
service level agreement violations and thereby have significant
financial implications for cloud service providers.

Anomaly diagnosis is made more difficult by the very
skewed performance counter distributions typically seen in
web services even for well-configured systems. Such skew was
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Fig. 1: An anomaly in VM deployment time detected by PerfAugur.

also observed in [3] and [4], especially for network round-
trip times, where the 99th percentile time can be orders of
magnitude larger than the median [5], [6]. Because of this
skew, anomalies typically cannot be diagnosed using only
a few instances of latent operations, since it is difficult to
distinguish transient anomalies (aberrations in system behavior
which occur under a unique and unrepeatable set of circum-
stances) from systemic anomalies (which are repeatable and
unlikely to be resolved without developer intervention).

Manual diagnosis of regressions involves multiple itera-
tions of analyzing service logs, formulating hypotheses based
on experience, and finally validating the hypotheses against
larger sets of data. This manual approach to diagnosis is not
only slow but can also be expensive. Diagnosing these types of
regressions would greatly benefit from an automated approach
capable of identifying both (a) significant changes in system
behavior relative to a baseline, and (b) system configurations
which are correlated with the observed changes. Automating
the first aspect allows subsequent ranking of various anomalies
by importance as well as an initial assessment of the impact of
fixing the root cause (i.e., deciding “Which problem should I
fix first?”). Automating the second assists with the formulation
of root-cause hypotheses and eliminates possible user bias
towards their own (potentially incorrect) intuition.

Example 1.1: Consider a scenario where a code-change re-
sults in a significant increase in the duration of virtual machine
(VM) deployments. Based on the service logs, PerfAugur not
only detects this change, but also identifies that it is most
pronounced for the instances with OS version 2.176 started
after ‘10/11/13 13:11:45’ (see Figure 1). With this knowledge,
the developer can then investigate the code-changes relevant
to OS version 2.176 around the specific time point.



Problem Statement: We shall refer to these types of con-
straints on OS version and time as predicates that identify an
anomalous subset of data. The problem we study in this paper
can be formulated as computing compact sets of predicates
that give rise to the most significant changes in behavior over
a baseline.

A. Challenges

Absence of Supervision Signal: Unlike outright failures
(which can often be identified from system logs), there is – in
the cases of systemic anomalies we observed in practice – no
simple and reliable way to identify the individual instances
that make up the anomaly up-front. This make techniques
that discover correlated predicates based on pre-labeled failure
cases or outliers (such as e.g, DRACO [1], Distalyzer [7], or
supervised anomaly-detection [8]) unsuitable for our scenario.

In the presence of the very skewed performance-counter
distributions we discussed earlier, systemic anomalies often
do not manifest themselves in the form of many additional
outlier data points, but instead result in a noticeable increase
in requests with moderately larger performance measures. A
real-life example of this is our first case study (see Section VI),
where a storage misconfiguration results in significant changes
in median latency, but very little change in the 95th percentile
(see Figure 10, left graph). As a result, the points making up
a systemic anomaly can often not be reliably identified using
one of the existing outlier detection techniques [8] up-front.
Two-step approaches, in which we first identify the instances
making up an anomaly using outlier detection techniques and
subsequently use these outliers as supervision data to identify
correlated predicates, are thus likely to perform poorly in these
scenarios. We substantiate this experimentally in Section V-A3.

Robustness against Outliers: As opposed to the two step
approach, we propose an approach that discovers predicates
and performance changes jointly, by searching over the space
of predicate combinations and comparing the difference be-
tween the distribution induced by a set of predicates and the
overall baseline distribution.

Note that this approach also needs to account for the high
data skew when comparing distributions: for example, using
simple statistics such as averages for these comparisons can be
problematic as they can easily be ‘dominated’ by a few outlier
values. Instead, our approach is based on robust statistics [9]
such as percentiles, which avoid this issue, and have become
common industrial practice in Service Intelligence. Here, we
define being robust to outliers using the notion of the break-
down point of an estimator [9]; intuitively, the breakdown point
of an estimator is the proportion of incorrect observations (e.g.,
arbitrarily large deviations) an estimator can handle before
giving an incorrect result.

Example “breakdown point”: Given m independent variables
and their realizations x1, . . . xm, we can use x̄ = (

∑m
i=1 xi)/m

to estimate their mean. However, this estimator has a break-
down point of 0, because we can make x̄ arbitrarily large just
by changing any one of the xi. In contrast, the median of a
distribution has a breakdown point of 50%, which is the highest
breakdown point possible.

Computational Overhead: There are primarily two
sources of computational complexity in mining such anomalies

robustly. First, robust statistics tend to be more expensive
computationally, especially with respect to incremental compu-
tation. To illustrate this, consider the case of updating the mean
of a distribution D = {x1, . . . xm} when adding t additional
points {xm+1, . . . xm+t}; the mean can easily be updated once
the sum of the new values sv =

∑t
i=1 xm+i (in addition to

m and t) is known. In contrast, updating the median requires
knowledge of both the exact values of {xm+1, . . . xm+t} as
well as at least t additional values in D. As a consequence,
many of the standard pruning “tricks” used in data mining
(such as the optimizations discussed in [10] for a similar
scenario) do not apply. Instead, different types of optimizations
which leverage the specific characteristics of robust aggregates
and the skewed distributions we see in practice are needed.

Second, testing all possible combinations of predicates for
anomalies leads to an inherent combinatorial explosion. Given
the size of underlying search space, the challenge is to develop
algorithms which strike a balance between the quality of the
mining result and computation cost.

B. Contributions

In this paper, we describe PerfAugur, a system for mining
service telemetry information to identify systemic anomalies
quickly and help formulate data-driven hypotheses as to the
involved components and root causes. In particular,

• We formally define the problem of mining systemic
anomalies based on robust statistics and propose algo-
rithms that address the challenges imposed by the size
of the search space and the computational overhead of
maintaining robust statistics.

• We evaluate the resulting detection accuracy as well as
overhead using various data sets and compare our ap-
proach to two well-known existing techniques, SCOR-
PION [10] and decision-tree based diagnostics [11].

• Finally, we demonstrate the impact of our system on
industrial practice via two real-life case studies of
investigations into Windows Azure telemetry.

Note that the approach described in this paper generalizes
to analytics tasks in other domains for which robust statistics
are required due to data skew/noise.

II. RELATED WORK

Outlier Detection: There exists a rich body of (unsuper-
vised) outlier detection techniques in data analytics literature
(see [8] for an overview). However, the problem formulation
studied in this paper is inherently different. We do not seek to
identify all sufficiently anomalous outlier data points; instead
we identify a compact set of predicates that induce a significant
change in behavior over the baseline. Note that for such change
to be significant, it does not require a large number of extreme
values in the performance counters of interest. As a result, two-
step approaches that first use outlier detection techniques to
identify individual outlier data points and subsequently seek to
identify predicates from these often fail to capture interesting
systemic issues with system performance.

Log-based Diagnostics tools: Recently, there has been
a large body of analysis tools that use machine-learning based



approaches for the analysis of performance logs, including
Distalyzer [7], the work of Cohen et al. [12] (which uses
Tree-augmented Naive Bayesian Networks to identify com-
binations of metrics and threshold values that correlate with
performance states (e.g., “SLO violated”)), the work of Chen
et al. [11] (which uses decision trees to mine paths that
distinguish successful from failed executions), and Fa [13]
(which uses anomaly-based clustering which clusters mon-
itoring data based on how much it differs from the failure
data), and Draco [1]. However, all of these techniques require
a supervision signal in form of failure data or a set of abnormal
instances in a separate log. This makes them unsuitable for our
problem setting and the type of exploratory analysis PerfAugur
is aimed at. In addition, most of the proposed techniques are
incapable of handling the range of data types and scoring
functions (used to quantify the significance of the change in
behavior over the baseline) that PerfAugur is able to deal with.

Clustering based mappings for known anomalies: There
is also been recent work to use clustering-based methods [13]
or specialized fingerprints [14] to map current performance
anomalies to one of a number of known failure states. Unlike
our work, these techniques are optimized for accurate and
fast matching and require signatures of known failures to
be effective; in case of unknown, novel failures, they, unlike
PerfAugur, provide little insight into potential root causes.

Other approaches: Two recent approaches, SCOR-
PION [10] and the work of Roy et al. [15] propose techniques
that “explain” outliers in aggregate queries by identifying
subsets of tuples that contribute most to the outlier aggregate.
While the approaches of both these papers are similar to
PerfAugur as both try to identify some form of predicates
which explain anomalous aggregate values, PerfAugur is tar-
geted at performance diagnostics and, as a result, uses special-
ized classes of aggregate functions based on robust statistics.
The predicate-search algorithms in PerfAugur are designed for
robust statistics specifically, where none of the optimizations
proposed in [10] and [15] apply. We experimentally compare
the performance and result quality of SCORPION to our tech-
niques in Section V.

A very different approach to “explaining” outliers in data
is described by Micenková et al. [16]. Here, the explanations
consist of the combinations of dimensions in which the out-
lier shows the largest deviations; these explanations are very
different and far less intuitive in the context of diagnostics.
Furthermore, it is not clear how to adapt these techniques for
the various categorical data types handled by our approach.
Müller et al. [17] describe a related approach that first identifies
relevant subspaces using statistical significance tests and then
uses these to rank outliers.

Aproximate Quantile Computation: There exist a num-
ber of techniques for the approximate quantile computation
(typically, in the context of data streams), e.g. [18], [19].
The algorithms in this paper incorporate the computation of
quantiles for all prefixes of an interval as a sub-step; PerfAugur
computes these exactly, by maintaining a min- and a max-heap
of the appropriate size (see [20]). Replacing this component
of PerfAugur with one of the approximate techniques would
reduce both the computational overhead (typically, by a loga-
rithmic factor) and the memory requirements.

Time VM Type DataCenter Latency
2014-01-19 03:14:17 IaaS CA 30 ms.
2014-01-19 03:15:09 PaaS NY 40 ms.
2014-01-19 03:15:57 PaaS CA 43 ms.
2014-01-19 03:16:07 PaaS CA 60 ms.

TABLE I: An example of a log relation.

III. ROBUST DIAGNOSTICS

Most cloud services use some form of measurement in-
frastructure that collects and compiles telemetry information
in a suitable form for further analysis. For simplicity we
assume that the telemetry information is maintained in a
single relation R with attributes A1, ..., Ak. Each tuple in this
relation corresponds to a single measurement of a particular
action. The set of attributes can be partitioned into two non-
overlapping sets Ae and Am such that Ae contains the set
of attributes which describe the system environment under
which actions are taken, and Am contains the set of attributes
each corresponding to a performance indicator. An example
of such a relation is shown in Table I. Each tuple in this
relation contains information pertaining to spawning a new
virtual machine. For this relation the set Ae consists of the
attributes timestamp, virtual machine type and the data center
location and the set Am simply contains the latency attribute.

Anomalies: Let Σ(R,Ai) be some statistical property
computed over values of the attribute Ai for all tuples in the
relation R (e.g., a median). Given such a statistical property
over a particular attribute Ai ∈ Am, an anomaly is a subset
of the measurements S ⊆ R such that Σ(S,Ai) differs
significantly from the baseline property defined by Σ(B,Ai)
over a baseline set B. In the absence of a pre-specified set B,
we use Σ(R,Ai) as the baseline measure.

Predicates: In this paper, we define predicates (denoted
θ) as conjunctions of equality predicates of the form Ae = v
or range predicates of the form vlow ≺ Ae ≺ vhigh, where
Ae ∈ Ae, v, vlow and vhigh are constants, and ≺ defines a
total order over the domain of the attribute Ae. Such predicates
effectively summarize the system environment under which
the anomaly occurs and therefore, characterize the conditions
which may be related to the cause of the anomaly. In the rest
of the paper, we refer to an environment attribute participating
in a predicate as a pivot attribute.

Robust Aggregates: For any subset S = σθ(R), where σ
is the relational selection operator, we can define how much
S differs from R with respect to one specific performance
indicator Am ∈ Am using suitable aggregate functions. For
the reasons outlined in Section I-A, we only consider functions
that are robust (denoted by Σr) to the effect of outliers in this
context, such as the median or other percentiles.

Scoring Functions: We use the robust aggregates as part
of so-called scoring functions to quantify the impact of an
anomaly S with respect to an underlying baseline distribution.
We use R as the baseline set in the following for simplicity;
however, our approach works identically when the baseline is
specified separately (e.g., as last month’s measurements). We
measure impact in terms of the change in distribution between
S and R for a given performance indicator attribute Am. A
scoring function takes these three parameters (R,S,Am) as
input and outputs a single number used for ranking anomalies.



Each scoring function has to quantify two aspects of impact:
(a) how different is the anomaly in terms of the change in
(the distribution of) Am, and (b) how many instances of
operation/objects are affected by the anomaly. Note that two
these factors trade off against each other: typically, the more
points are included in an anomaly, the smaller is the change in
distribution, and vice versa. Obviously, an anomaly covering
all points in R would in turn have the baseline distribution and
thus show no change at all.

To quantify the deviation in Am, we use a robust aggre-
gation function Σr to compute aggregates for the attribute
Am over all items in S as well as those in the baseline R.
Subsequently, we measure the degree of the anomaly as the
difference between these two values; we denote this difference
using the notation Σr(S,Am) ∼ Σr(R,Am). Note that the
choice of Σr as well as appropriate difference operator ∼
depends on the scenario and the type of the attribute of
interest. When A is of a numeric type, Σr is typically a
percentile and ∼ the absolute difference between the cor-
responding percentiles. On the other hand, for non-numeric
categorical attributes (such as error codes or the names of
failing function calls), we use the KL-Divergence [21] – a
standard measure of distance between probability distributions.
Here, the divergence is computed between the probability
distribution of values of Am in the baseline set (R) and the
anomalous subset (S). Note that the KL-Divergence is a robust
measure by default, as each individual item can not change
the overall probability distribution disproportionately. We will
discuss a real-life example of categorical attributes of interest
in Section VI.

To quantify how many instances of operations or objects
are affected by the anomaly we use a function of the size of
S. In practice, we typically use the natural logarithm of |S|,
giving us the following scoring function:

f(R,S,Am) :=
(

Σr(S,Am) ∼ Σr(R,Am)︸ ︷︷ ︸
Deviation from baseline

)× log |S|︸ ︷︷ ︸
Impact of # instances

.

Here, the use of the logarithm of the size of S (as opposed
to using |S| outright) favors anomalies that result in a larger
deviation from the baseline (but over smaller number of
instances). Note that the algorithms discussed in Section IV
are also applicable when other functions of |S| are used to
quantify the effect of the number of instances after some
suitable straight-forward modifications.

Diversity: Finally, in order to avoid providing multiple
similar explanations for same anomalies or multiple expla-
nations for the same set of anomalous measurements, we
need to incorporate a notion of diversity into the mining
task. For instance, the two predicates vlow ≺ Ae ≺ vhigh
and v′low ≺ Ae ≺ v′high, such that vlow ≈ v′low and
vhigh ≈ v′high, while different, convey almost identical infor-
mation. Presenting both to the user is unlikely to convey any
additional information. To incorporate this notion of diversity,
our framework supports the specification of a diversity function
fdiv(θ1, θ2) → {true,false} which returns true if the
anomalies explained by the predicates θ1 and θ2 are diverse,
and false otherwise. The mining algorithms proposed in Sec-
tion IV are independent of any specific diversity function.

While the exact definition of diversity may be user defined,

below we propose a simple and meaningful diversity function
that we will use in this paper going forward. Consider two
atomic predicates, θ1 and θ2, defined over the same environ-
ment attribute Ae. As explained earlier, the notion of diversity
must capture the degree of overlap between the two predicates.
While there are multiple metrics to measure such overlap
such as the Jaccard-distance between σθ1(R) and σθ2(R), an
extreme form of diversity is to disallow any overlap, i.e.,
σθ1(R) ∩ σθ2(R) = ∅. In this paper, we assume this as the
default notion of diversity for atomic predicates.

The same principle can be extrapolated to anomalies de-
fined by a conjunction of many atomic predicates. For such
multi-predicate anomalies, it is likely that only a subset of
the predicates also induce a relatively high-scoring anomaly.
Consider the following example: if all deployments using build
version 2.17 have abnormally high latency, then it is likely
that the subset of deployments that use build version 2.17 and
are deployed on cluster XYZ will also show high latencies.
Therefore, unless the latency spike is specific to cluster XYZ,
presenting an anomaly [Build = 2.17 ∧ Cluster =XYZ] in
addition to the original anomaly [Build = 2.17] does not
convey additional information and should be avoided.

Generalizing from the above, we define our default notion
of diversity to multi-atom predicates as follows. Let Aθ ⊆ Ae
be the set of environment attributes over which the atomic
predicates of θ are defined. We consider two explanation
predicates θ1 and θ2 diverse, if and only if, either Aθ1 * Aθ2
and Aθ2 * Aθ1 or, Aθ1 ⊆ Aθ2 or Aθ2 ⊆ Aθ1 and
σθ1(R) ∩ σθ2(R) = ∅. Intuitively, the first condition requires
each of the explanations to have at least one distinguishing
attribute. The second condition applies when the first condition
does not, and similar to the atomic predicate case, requires
them to explain non-overlapping set of measurements.

Problem Definition: Using the intuition introduced above,
we can now define task of mining a set of diverse anomalies:

Problem 3.1 (Diverse Anomaly Mining): Given a teleme-
try log R, a particular measurement attribute Am ∈ Am, the
required number of anomalies k, a scoring function for Σr,
f(S,R,Am) → R (denoted f(S) in short) and a diversity
function over explanations, fdiv(θ1, θ2) → {true,false},
the diverse anomaly mining task is to determine an ordered list
of explanations, L = [θ1, ..., θk], which satisfy the following
properties:

• For any 1 ≤ i < j ≤ k, fdiv(θi, θj) is true.

• For any i < j, f(σθi(R)) > f(σθj (R))

• Finally, for any θi ∈ L and θ /∈ L, either f(σθi(R)) >
f(σθ(R)) or there exists j < i such that f(σθi(R)) <
f(σθ(R)) < f(σθj (R)) and fdiv(θj , θ) is false.

Informally, the first condition requires all the top-k predi-
cates to be diverse. The second condition ensures that the list of
predicates is ordered according to their scores. Finally, the third
condition ensures that a high-scoring predicate is excluded
from the top-k anomalies only if there exists an higher scoring
predicate with respect to which the predicate is not diverse.



IV. ANOMALY MINING ALGORITHMS

In this section, we propose algorithms for the diverse
anomaly mining task. Our algorithms extract predicates which
identify the top-k highest-scoring diverse anomalies for a mea-
surement log R. First, we describe algorithms for identifying
anomalies defined by atomic predicates over a single attribute
in Ae, called the pivot attribute. Subsequently, we describe
algorithms for anomalies with multiple pivot attributes.

The particular algorithm used for mining anomalies de-
pends on the type of pivot attribute. We refer to pivot attributes
which have an inherent order over values such as numerical
and date-time datatypes as ordered pivots. On the other hand,
attributes which enumerate values from a certain domain like
cluster names and OS versions are called categorical pivots.
While for ordered pivots we extract range predicates of the
form vlow ≺ Ae ≺ vhigh, for categorical pivots, we extract
equality predicates of the form Ae = v, where Ae is the
pivot attribute. Identifying anomalies for categorical pivot
attributes is computationally easy since the problem reduces
to performing a group by over the pivot attribute followed by
computing each group’s score. Therefore, for the rest of the
section we specifically focus on algorithms for ordered pivots.

Notation: We use Am to denote the performance indicator
over which anomalies are to be detected, Ae to denote a
pivot attribute and θij as a notational shorthand for the range
predicate vi ≺ Ae ≺ vj , where vi and vj are the ith and jth
values of the pivot attribute in sorted order. We also use Sθ as
a notational shorthand for σθ(R).

A. Single Pivot Anomalies

We first propose an exhaustive algorithm for ordered pivots.
However, this brute force approach does not scale well to
very large data sets. To overcome this, we then propose
two additional algorithms: first, a order-of-magnitude faster
algorithm that extracts predicates such that the anomaly scores
are (at least) within a constant factor, α, of those mined
exhaustively. Second, an even faster algorithm which performs
well in practice and offers a performance guarantee which
depends on the data characteristics itself.

1) Naı̈ve: The exhaustive algorithm for identifying anoma-
lies on ordered pivots sorts the items by the pivot attribute, and
then scores the subset of items within every pair of start and
end-points. The computational complexity of this algorithm
depends on the cost of computing the scoring function. For
a median-based scoring function, this cost is O(|σθ(R)|),
where θ explains the anomaly being scored. However, the
cost of determining the median for an interval θi(j+1) given
the median for θij can be reduced to O(log |σθij (R)|), by
maintaining the medians of the interval incrementally with two
heaps [20] – a max-heap and a min-heap; this approach also
works for all other percentiles, all that changes is the fraction
of tuples in each heap. Given this incremental implementation
of the scoring function, the cost of the exhaustive algorithm
(for N = |R| items) becomes O(N2 logN).

2) Grid-Refinement: Next, we propose an algorithm which
offers a principled way to trade off the “accuracy” of the mined
anomalies for efficiency; instead of returning the highest-
scoring anomaly, the algorithm returns an anomaly whose

Q ← ∅ {A priority queue of anomalies sorted by an upper bound
on their score.}
Let N = |R|
Rs = Sort(R,Ae) {Sort instances by pivot attribute Ae}
Q.push(θ1N , 0,∞, N) {Initialize Q}
TopK ← ∅ {The result set.}
while Q 6= ∅ ∧ |TopK| < k do

(θ, s, u, g)← Q.dequeue
if s/u ≥ α then

if
∧
θi∈TopK(fdiv(θ, θi)) then

TopK.Add(θ)
else

for all r ∈ Refine(θ, g) do
Q.push(r)

return TopK

Algorithm 1: The α-approximate grid-refinement algorithm.

score is guaranteed to be within a factor α of the highest-
scoring anomaly (where e.g., α = 0.9). In return for relaxing
the score constraint, this algorithm performs orders of magni-
tude faster in practice. The speedup seen by this algorithm is
the result of exploiting two properties typically found in data
distributions seen in the context of cloud diagnostics:

“Small” Anomalies: First, for most datasets, anomalies
are expected to constitute a relatively small fraction of all
the items. The naı̈ve algorithm spends significant amount of
computation time in ruling out intervals which resemble the
baseline and are, therefore, non-anomalous. In contrast, the
new algorithm can rule out large fractions of the search space
quickly by bounding the score of the anomalies in it.

Stability of Robust Statistics: For the data distributions
typically seen in practice, robust statistics are relatively stable
with respect to the addition or removal of a small number of
points. To illustrate this, consider Figure 2 which shows an
example latency distribution, and the corresponding median.
Here, the middle portion of this distribution tends to be
“flat”, implying that the median does not change significantly
in response to the insertion or deletion of k points (which
can at most move the median by k points along the x-axis,
corresponding to only a small change along the y-axis). This
property of stability implies that the score of an anomaly
vlow ≺ Ae ≺ vhigh is expected to be approximately equal
to that of an anomaly defined by v′low ≺ Ae ≺ v′high if
vlow ≈ v′low and vhigh ≈ v′high. The algorithm exploits this by
using the score of one anomaly to compute tight upper bounds
on the scores of anomalies with similar predicates.

Intuitively, the algorithm uses grids of various levels of
coarseness to “zoom into” regions in the data containing high-
scoring anomalies. First, the algorithm analyzes the data at a
coarse granularity, choosing the values of vlow and vhigh only
from the points along the grid and computing upper bounds
on the possible scores of anomalies found at finer granularity.
Only for sub-regions where these upper bounds are sufficiently
high, do we then consider anomalies found at a finer grid
resolution, repeating the process until we discover an anomaly
with a score within a factor of α of the highest (potential)
score of all unseen anomalies. We illustrate this process in
Figure 3.

Refinement and Bounding: The Grid-refinement algorithm
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Let θlow,high at grid size g be the interval to be refined.
gr ← g/ConvergenceRatio {Refined grid size.}
Qrefined ← ∅ {The set of refined anomalies.}
for i← (low − g) : gr : low do

for j ← (i+ gr) : gr : (high+ g) do
sij = f(R,Sθij , Am)
uij = BoundScore(R,Sθij , Am, gr)
Qrefined.Add(θij , sij , uij , gr)

return R

Algorithm 2: Refinement procedure for a predicate θlow,high at grid
size g. Boundary-condition checks including handling of intervals
smaller than or equal to a grid size are omitted for simplicity.

is shown in Algorithm 1. The algorithm maintains a priority
queue of anomalies represented by 4-tuples (θij , s, u, g), where
θij is the interval, s is the score of the current interval, u
is an upper bound on the score achievable through arbitrary
refinement of the grid near the end-points of the interval
[vi, vj ], and g is the current grid size. The algorithm dequeues
anomalies from the priority queue in order of their upper bound
on scores; if the current score is within an α factor of the bound
on the scores, then we add it to the result set after checking the
diversity constraint. Otherwise, the interval is refined using the
“zoom in” procedure shown in Algorithm 2. During refinement
of an interval, for each possible refined interval at a finer grid
size, we compute the score of the anomaly as well as an upper
bound on the possible improvement achievable by “refining”
the grid, i.e., the maximum score possible for an anomaly when
using (a) an arbitrarily fine grid and (b) the endpoints vlow and
vhigh being within one grid size of the original “coarse” pair
of endpoints (see Figure 3). The algorithm terminates once the
top-k approximate anomalies are determined.

Bounding Scores: For correctness we require the func-
tion BoundScore to provide a sound upper bound on
the score of any given predicate, i.e., for any interval θij
at grid g, if Qrefined is the set of intervals obtained
by refining θij as shown in Algorithm 2, then ∀θi′j′ ∈
Qrefined, f(Sθi′j′ , R,Am) < u. We show one such method
of estimating the upper bound for scoring functions using
the median as the robust statistic of choice. Extending it to
arbitrary percentiles is trivial using a similar technique.

Let Sθij be an interval at grid size g for which the upper
bound is to be estimated. The specific method of refinement
shown in Algorithm 2 restricts the maximum deviation of the
median to 2g points since the refinement only allows addition

of points by expansion of the interval by at max g points
on either end of the interval. Let vk be the kth value in
sorted order of the attribute Am among the points in Sθij .
Therefore, vN/2 denotes the median value. Since the median
for any refinement can at most deviate from the median by 2g
points, the score for any refinement of the interval is bounded
by (vN/2+2g − vN/2) × log(|Sθij |). For typical distributions,
the change in median value, and therefore the gap between
the upper bounds and the (best) actual score for an interval,
is expected to be relatively small due to the stability around
medians illustrated in Figure 2. Note that both refinement and
computing an upper bound on scores for intervals of size equal
to one grid block need to be handled specially; the details are
omitted due to space limitations.

Correctness: The algorithm satisfies the invariant that an
anomaly is added to the set of top-k anomalies if and only
if the anomaly’s score is within an α factor of the highest
scoring anomaly. Let Sθ be the first anomaly to be included
in the top-k by the algorithm shown in Algorithm 1. Also,
let Soptθ be the highest scoring anomaly. Also, let Sθ be an
anomaly at a grid resolution of g. Let Sβ be the anomaly
which contains Soptθ and has both endpoints at the grid with
resolution g. Since the algorithm dequeues anomalies accord-
ing to upper bounds on scores, we know that u(Sθ) ≥ u(Sβ).
By soundness of the bounding function and the refinement
procedure, we also know that u(Sβ) ≥ f(Soptθ , R,Am).
Therefore, u(Sθ) ≥ f(Soptθ , R,Am). Also, since the algorithm
chooses the anomaly, we know that f(Sθ, R,Am)/u(Sθ) ≥ α.
Therefore, f(Sθ, R,Am) ≥ α× f(Soptθ , R,Am).

3) Seed Expansion: The Grid-Refinement algorithm relies
on the stability of medians property (see Figure 2). However,
the distributions seen around much higher (or much lower)
percentiles are often less stable. We now propose an algorithm
for faster detection of anomalies aimed in particular at scoring
functions based on these percentiles, or for fast analysis of
very large data sets. This algorithm offers a significantly lower
asymptotic overhead (O(N1.5)) as well as significantly faster
wall-clock runtime. However, as opposed to Grid-Refinement,
which guarantees a constant approximation ratio, the scores
of the anomalies mined by the Seed Expansion algorithm are
within a data-dependent factor of the optimal anomalies.

The intuition behind this algorithm is based on anomalies
for high/low percentiles typically containing extreme (i.e.,
relatively high or low) values for the performance indicators; to



Let s be the index of the seed in sorted order of pivot Ae
lnew ← s; rnew ← s
MaxScore← −∞
while f(S[lnew,rnew ], R,Am) ≥MaxScore do
l← lnew; r ← rnew
MaxScore← f(S[lnew,rnew ], R,Am)
scorel ← f(S[l−1,r], R,Am)
scorer ← f(S[l,r+1], R,Am)
scorelr ← f(S[l−1,r+1], R,Am)
Let [lnew, rnew] be the interval corresponding to
max(scorel, scorer, scorelr).

return [l, r]

Algorithm 3: Expansion of a single seed point (l and r denote left
and right, respectively).

simplify exposition, we will make the assumption that we only
seek anomalies corresponding to large performance indicator
values. The algorithm first chooses the top-

√
N number of

points in order of value of the performance indicator; we call
these points seed points. For each seed point we now want
to determine whether it corresponds to an isolated transient
anomaly (which we want to ignore), or is part of a systemic
anomaly (which we want to detect). In the former case, we
expect the seed point to be a local extremum surrounded
(along the pivot axis) by many points that roughly resemble
the baseline distribution; in the latter case, we expect further
extreme measurement values in the neighborhood of the seed.

Smoothing: To avoid situations where all the seed points
chosen are transient anomalies, we apply an initial smoothing
step before choosing the seed values. Here, we first replace
each value vi of the performance indicator with the median
value among all values in an interval along the pivot-axis of
size c and “centered” at vi; we then chose the largest values
among these. This way, single outlier points within a region of
low values are not chosen as seeds, eliminating (single-point)
transient anomalies from consideration.

Given any seed point identified by the index s with the
pivot value vs, the algorithm initializes a single-item anomaly
with the predicate vlow = vs ≺ Ae ≺ vhigh = vs and tries to
expand this anomaly by adding points in each direction along
the pivot axis. If the seed point is part of a systemic anomaly,
we expect the score of the resulting anomaly to grow with
the expansion. On the other hand, if the seed corresponds to a
transient anomaly, we expect the score to decrease (eventually)
as points resembling the background distribution are added.

The procedure for expansion of a single seed point is
shown in Algorithm 3. The algorithm expands a seed until an
expansion does not result in an improvement in the anomaly
score. This expansion procedure is repeatedly invoked for√
N seed points. Seed points which are already included in

the expanded anomalies formed out of previous seed points are
excluded from consideration as seeds. The algorithm maintains
all expanded intervals in a sorted list from which the highest-
scoring set of k diverse anomalies (Section III) is returned as
the final result. The pseudocode for the complete algorithm is
omitted due to space constraints.

Score Approximation: The quality of the anomalies mined
by the seed expansion algorithm depends on how easily
distinguishable the anomalies are from the background dis-

tribution. We use two properties of the dataset to quantify
this distinctiveness of anomalies. First, the maximum gra-
dient (i.e. maxi(vi+1 − vi)) of the performance indicator
attribute with respect to the pivot attribute, denoted δmax.
Note that this measure is computed after smoothing, effec-
tively making this the maximum gradient over any interval
of size c. Second, let ∆ =

vN−vN/2
N/2 be the average gradi-

ent between the median and the maximum value. Also, let
α = δmax

∆ . Then it can be shown that if Sθ is the best
anomaly mined by the Seed Expansion algorithm and Sθopt
is the top scoring pattern mined by an exhaustive algorithm,
then f(Sθ, R,Am) ≥ 2 log(Nα)

α logN f(Sθopt , R,Am), where f is
the median-based scoring function and |Sθopt | ≤

√
N . While

we omit a formal proof due to space constraints, we briefly
explain the implications of such a bound. For a distribution
with a very pronounced anomaly, the value of α is expected to
be high since δmax is expected to be high. This in turn implies
that the approximation factor 2 log(Nα)

α logN evaluates to a lower
value since the contribution of α to the denominator dominates.
Therefore, as expected, if anomalies are more pronounced in
a distribution, the algorithm can identify the anomalies more
accurately, giving us the desired behavior of identifying the
most prevalent anomalies in a highly scalable manner.

B. Multi-Pivot Anomalies

Anomalies often occur due to system conditions which can
only be reliably captured by predicates over multiple attributes.
For example, response times for operations may degrade only
under high memory contention when there also are multiple
active threads on a machine. A brute force approach for
identifying such multi-attribute anomalies would be to check
all combinations of predicates for all subsets of environment
attributes, which is clearly computationally prohibitive. This
computational hardness is not unique to our problem, but
is an instance of a general class of problems observed in
other domains, such as optimal decision tree construction.
Similar to well-known techniques used in the literature for
similar contexts, our first approach is to construct multi-pivot
anomalies greedily.

In practice, the vast majority of anomalies are detected
well using greedy techniques, however, to detect anomalies
that are not, we next propose an algorithm that co-refines
pivots jointly across different attributes. Finally, we show how
we can leverage a property typically seen in real-life data
distributions (namely, a bound on the extent to which the score
of the highest-scoring anomaly characterized by l predicates
is reduced when we only consider a subset of the predicates)
to provide a tractable algorithm that gives quality guarantees
on the scores of the mined anomalies.

Since the greedy algorithm is straight-forward (and similar
to traditional greedy decision tree construction algorithms), we
omit the details of this algorithm.

1) Co-refinment: A purely greedy algorithm for mining
anomalies may split a single anomaly into multiple anomalies
due to lack of foresight into the potential refinement by joining
with other pivots. For handling such corner cases, we propose
a co-refinement strategy: here, we first run the greedy mining
algorithm on a small random sample of the data with a
weighted scoring function where each data point is weighted



Rγ ← RandomSample(R, γ) {Choose a random sample w/o
replacement of size γ × |R|}
fγ(Rγ , S,Am) := (Σ(Rγ , Am) ∼ Σ(S,Am))× log( |R

γ |
γ

)
TopKCoarse← GreedyMine(Rγ , fγ , Am)
TopKRefined← ∅
for all θc ∈ TopKCoarse do
θr ← θc; g ← |θr|
while g >= 1 do

for all θir ∈ θr , where θr =
∧
i θ
i
r do

θ′r ← θ′r ∧ arg maxθ∈Refine(θir,g) f(Sθ, Sθr , Am)
θr ← θ′r;
g ← g/ConvergenceRatio

TopKRefined.Add(θr)
return TopKRefined

Algorithm 4: A sampling and co-refinement based scheme
for multi-pivot mining using a greedy mining procedure,
GreedyMine(R, f,Am, k), which returns the top-k multi-
pivot anomalies ordered by the scoring function f . We use θc to
denote the predicates on the sampled data and θr to denote the
predicates on the entire data.

by the inverse sampling ratio. This gives us an initial “rough”
set of anomalies. We then co-refine these anomalies using
the full data set as follows: we adopt an approach similar
to the Grid Refinement algorithm of gradually “zooming in”
to determine the exact interval boundaries for each predicate.
However, instead of refining attributes one after the other,
for each anomaly, we determine the best intervals across
all constituent pivot attributes at a particular grid-size before
drilling down to the next grid level (see Algorithm 4).

2) α-approximate Multi-Pivot Refinement: While comput-
ing the top-scoring anomalies for adversarial data distributions
is computationally prohibitive, we can leverage properties
typically seen in real-life data to obtain a tractable algorithm
with absolute guarantees on the anomaly score. First, to
illustrate these data properties, consider an example anomaly
which is best characterized by intervals along two different
pivot attributes. The heat-map representation of the anomalous
measurement values w.r.t. to the two pivot attributes for such
an anomaly is shown in Figure 5. The figure also shows three
percentile distributions; two for (predicates on) each of pivot
attributes when considered independently and a third for when
they are considered together. Clearly, the deviation between
the anomaly median and the background distribution, observed
when both the attributes are considered together, shifts towards
higher percentiles when only one of the pivots is considered.
This is due to the addition of non-anomalous points to the
anomaly. These non-anomalous points can only be filtered by
pivoting on the secondary attribute. By limiting the extent to
which this shift occurs, we can provide sound bounds for the
improvement possible in anomaly scores. We formally state
this assumption as follows:

Definition 4.1 (Maximum Refinement Ratio): Given a
multi-pivot anomaly delimited by l predicates over pivot
attributes, the maximum refinement ratio is the largest
constant γ such that there exists an ordering of the predicates

O such that
|S∧i+1θO(i+1)

|
|S∧iθO(i)|

≥ γ, where γ ∈ [0, 1].

Bounding Multi-Pivot Anomaly Scores: We assume that for a
given log relation R and a performance indicator attribute Am,
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Fig. 5: Shift in the anomaly percentile on projection of anomaly over
either of the two pivot attributes as compared to jointly over both.

the maximum refinement ratio γ is either known or is estimated
conservatively (γ = 1 being most conservative). Under this
assumption, given an l-pivot anomaly Sθl , it is possible to
get an estimate of the potential improvement in the anomaly
score by pivoting on additional attributes. Let n = |Sθl |. If
the maximum number of attributes in any anomaly is m, for
any l-attribute anomaly, the minimum size of an m-predicate
anomaly formed by extending Sθl has size at least nmin =
γm−ln. For the particular case where the aggregation function
is median, the maximum score obtainable by extending Sθl is
then bounded by

max
i∈[n/2,n(1−γm−l/2)]

(vi − vdn/2e)× log(2i).

This is because in the best case, all the points filtered by
additional pivots are lower than the median value Sθl , and
therefore cause a rightward shift of the median. As more
predicates over pivots are added to the anomaly, this estimate
becomes tighter.

As in the case of the single-pivot Grid Refinement algo-
rithm, by maintaining an upper bound over the best possible
l-pivot (unseen) refinements for anomalies with fewer pivots,
we can design an α-approximate multi-pivot mining algorithm.

We omit the pseudo-code for the multi-pivot anomaly
mining algorithm since it is structurally similar to the Grid
Refinement algorithm (Algorithm 1), except for the refinement
procedure and the initialization step.

V. EXPERIMENTAL EVALUATION

In this section we evaluate the efficiency and accuracy of
PerfAugur in comparison to SCORPION [10] and the decision-
tree based approach of [11]. In addition, we test the feasibility
of “two-step” approaches, which use outlier detection to pro-
vide the input labels for supervised techniques such as [7],
[12], [11], [13], [1], by evaluating the accuracy of this labeling
for real-life anomalies (Section V-A3).

Datasets: Since finding anomalies over ordered pivots
is computationally significantly harder than for categorical
pivots, we focus the experimental evaluation on ordered pivots.
In contrast, the case studies in Section VI will illustrate



examples with categorical pivots and both numerical as well
as categorical performance indicators. For our experiments we
use two types of data – actual log data and synthetically
generated data. The actual log data is real telemetry data
obtained from Windows Azure operations. For synthetic data,
we adopt an approach similar to that of SCORPION. We
create a relation R with d environment attributes and one
measurement attribute as follows. We draw “normal” values
of the measurement attribute from a distribution N (10, 10);
then, to create d-dimensional anomalies, we choose a region
of proportionate size in d-dimensional pivot space and assign
measurement values drawn from N (80, 10) for all points in
that space. Typically, these anomalies cover 10% of points.
In order to inject multiple anomalies, we use multiple, non-
overlapping copies of data generated as above.

Alternative Approaches: SCORPION generates predicates
which, given a user identified set of outlier and holdout (to
indicate the baseline) groups of observations, explain outlier
observations in the data. The non-robust scoring functions
used by SCORPION scores predicates by the extent to which
they “influence” the outlier groups but not the holdout groups.
The influence of a predicate is computed by measuring the
difference in the aggregate values before and after removing
the points satisfying a particular predicate. Because the various
performance optimizations described in [10] don’t apply to
robust aggregates, we use the naı̈ve implementation of Scor-
pion which performs an exhaustive search for such predicates.
While the naı̈ve implementation has a high computational
overhead, it is guaranteed to produce the best quality predicates
as per SCORPION’s scoring function.

The original decision-tree based approach of [11] requires
a supervision signal (in the form of success/fail labels), which
is generally difficult to obtain in practice; here, however,
we avoid such labeling by re-phrasing the underlying task
as a regression problem, making the (numeric) measurement
attribute the variable to be approximated by the tree and using
a regression tree implementation based on [22] to compute the
tree. This way, the tree will partition the space into regions with
similar measurement values. We can now treat each partition
in the data induced by the tree as a potential anomaly. We
give this approach one additional “advantage” in that we set
the number leafs in the tree (= number of partitions) to the
number required to bound all anomalies in the synthetic data.
Both SCORPION and the decision-tree approach have a number
of tuning parameters; all our reported results are for the best
configuration obtained after tuning both algorithms.

Setup: All experiments are run on a Intel Xeon L5640
processor with 96 GB of main memory running Windows
2008 R2 Enterprise. All reported values except for brute force
algorithms are averages over more than 10 runs.

A. Experimental Results

For all our experiments, we compare the different algo-
rithms in two respects – computational overhead, and the
quality of the extracted anomalies. For quantifying quality, we
use F1-scores defined as 2·precision·recall

precision+recall measured w.r.t. the
known set of anomalous points injected synthetically. Since
the ground truth is not known for the real logs, we use the
ratio of scores of anomalies to those mined by Naı̈ve as the

Naı̈ve Seed Grid (0.8, 0.9, 0.95) SCOR. DT
Synth. 0.95∗ 0.83 0.83 0.86 0.89 0.75 0.36
Real 1.0 0.77 0.98 0.98 0.99 - -

TABLE II: Comparison of quality of anomalies mined over 100k
items. For synthetic data where anomalies are known, we use F1

scores. For real data, we use the ratio(SR) of the anomaly score to
those mined by Naı̈ve. *Reported values for Naı̈ve are for 10k items,
as computation for 100k items did not complete.

quality metric. While PerfAugur supports scoring functions
based on arbitrary percentiles, due to lack of space, we show
experiments for scoring-functions based on medians only.

1) Experiments on One-Pivot Anomalies: In the first set
of experiments, we study the behavior of the five algorithms
(Naı̈ve, Grid-Refinement, Seed Expansion, SCORPION, and
decision-tree (DT)) for discovering top-scoring anomalies for a
single (ordered) pivot under different data distributions; for the
Grid-refinement algorithm, we also vary α, the approximation-
ratio of the scores of the returned anomalies.

Scalability: For this experiment, we increase the number
of items from 10k to 100k, introducing a new anomaly for
every 10k items. Figure 6 shows a comparison of the overhead
for mining the top anomaly with increasingly larger numbers of
items. Seed Expansion and DT algorithms are about 3-4 orders-
of-magnitude faster as compared to Naı̈ve and SCORPION.
Similarly, for any approximation ratio, the Grid Refinement
algorithm is around two orders of magnitude faster than Naı̈ve
and SCORPION. The corresponding values of F1-scores for
100k items are shown in Table II. In comparison to SCORPION
and DT algorithms, all of our algorithms have significantly
higher F1-scores as shown in Table II.

Over real data, almost all of our algorithms are able
to find an anomaly with almost the same score as those
mined by Naı̈ve. Since scoring metrics for SCORPION and
DT are incomparable to our scoring function, it is not a fair
comparison to evaluate their quality over real data using this
approach.

Robustness: We next test the robustness of the algorithms
as we add random noise simulating transient anomalies. We
construct a synthetic dataset of size 4k containing a single
anomaly. We then mine for the top-1 anomaly while varying
the percentage of noisy points up to 30%. The overhead and
quality results are shown in Figures 7 and 8.

While SCORPION and DT perform well in the absence
of noise, their performance degrades rapidly as we add noise
(Figure 8). In contrast, the Grid Refinement, Seed Expansion
and Naı̈ve algorithms, are able to tolerate up to 25% noise
without significant degradation in quality. Moreover, the Grid
Refinement algorithm requires more time as the percentage of
noisy points increases to satisfy the guaranteed approximation
ratio. Also, the higher the value of the approximation ratio α,
the longer the time required to achieve it. In contrast, Seed
Expansion is independent of the noise values as the number
of seed points used is dependent on the data size only.

2) Experiments on Multi-Pivot Anomalies: In this set of
experiments, we study the behavior of the four multi-pivot
anomaly mining algorithms (α-Approx, Greedy Multi-pivot,
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Fig. 9: Evaluation of multi-pivot mining algorithm.

Sample and Co-refinement (SC) and decision-tree (DT)). In
our experiments, for α-Approx, we use α = 0.7 and γ = 0.7.
For Greedy Multi-pivot and SC, we use the Grid-refinement
algorithm as an atomic predicate miner with α values set to
0.8 and 0.9. For SC, we use a sample size of 2%. Finally,
since the Naı̈ve implementation of SCORPION suffers from
combinatorial explosion, we are unable to compare against
SCORPION for multi-pivot anomalies.

To simulate transient anomalies, we add 20% noise values
drawn from N (400, 10). Furthermore, in practice we have
observed that for many data sets, a small fraction of perfor-
mance measurements are disproportionately high (partially due
to time-outs, instrumentation errors, etc.). To simulate these
measurements, we sample 2% of the data (independently of
whether these are part of the anomaly or not) and scale up
their performance indicator by 100x.

Scalability: For this experiment, we use items with a
single performance indicator and three pivot attributes. The
anomaly is most precisely identifiable with three different
predicates; one over each pivot attribute. We first study the
behavior of the algorithms as we increase the number of items
in the set from 3k to 30k. The data set contains 1 anomaly
per 3k items. We evaluate the quality of the algorithms by
comparing the average F1-score of the top-k anomalies in the
dataset. The results are as shown in Figures 9a and 9b.

While DT is the fastest of all algorithms, the F1-score of

the mined anomalies is quite low and it often misses some
of the top-k anomalies all together. However, the Greedy
and SC strategies scale well with the number of points and
return all the anomalies as indicated by the high F1 scores.
Finally, the α-approx multi-pivot algorithm also has high
values of F1 scores but takes significantly longer to guarantee
the desired approximation ratio. While the behavior of Greedy
and SC are almost similar, it is possible to construct adversarial
distributions in which Greedy performs poorly but, due to
co-refinement, SC performs reasonably well. A recommended
strategy is to use an ensemble of both. Due to lack of space,
we are unable to present this experiment.

Varying the dimensionality: In this experiment, we study
the behavior of algorithms with increasing dimensionality of
the dataset. As explained in Figure 5, the higher the dimen-
sionality, the more obscure the anomaly in its projection along
any one pivot attribute, making it more difficult to detect.

For this experiment we keep the number of items in the
dataset constant at 10k with a single anomaly. As shown in Fig-
ure 9c, with increasing number of pivot attributes, the quality
of anomalies mined by DT decreases. However, for more than
one dimension, the quality of the anomalies mined by each
of the other algorithms is relatively unchanged; particularly so
for the α-approx. algorithm. This can be attributed partly to
the use of robust statistics and partly to the fact that even at
higher dimensions, the projections of the attribute over any
pivot attribute is still “anomalous” enough to be picked up by



the greedy approaches.

3) Experiments on Two-Step Approaches: In this exper-
iment, we tested the feasibility of “two-step” approaches
discussed in Section II, which first use outlier detection tech-
niques to identify anomalous tuples in the data set and then
use these as supervision signal for a supervised technique.
Note that for this approach to be successful it needs to reliably
identify a significant fraction of the values that make up the
anomaly first, otherwise the subsequent detection of correlated
predicates is likely to fail. Therefore, we tested how well
different outlier detection mechanisms perform at identifying
the data points that correspond to different performance re-
gressions seen in the Windows Azure. We use two real-life
incidents with known causes here, which means that for these
cases we have exact knowledge of which points are part of the
anomaly. The first data set corresponds to anomalies based on
slow storage endpoints (which we will describe in detail in the
case study in Section VI), and the second data set corresponds
to a spike in connection failures due to a software issue.

For both datasets simple outlier-detection techniques that
use a constant threshold (such as e.g., a 3σ distance from
the average) perform very poorly when labeling anomalies, as
they are insensitive to the local ‘context’ (such as changes in
the expected latency at different times), yielding, depending
on how these thresholds were set, either nearly no tuples
labeled as anomalous (when using a 3σ threshold) or, for lower
thresholds, mostly generating false positives.

As a consequence, we instead used the well-known LOF
technique [23], which takes local context into account, and
identifies outliers based on local density measured. This tech-
nique uses only a single tuning-parameter – the MinPts
parameter governing the size of the local neighborhood –
which we varied between 0.05% and 2% of the data set size.
We also slightly varied the cutoff-threshold used on the outlier
factor output by the algorithm (between 1.1 and 1.3).

For the first data set, we found that LOF was able to
identify a large faction of the anomalous tuples (depending
on the parameter settings, between 77-93%), yet identified a
much larger fraction of the non-anomalous tuples as outliers
(between 37-40% of the entire data set). For the 2nd data set,
only 7-53% of the anomalous tuples were correctly labeled,
whereas the false positives remained similarly high. As a
consequence, we cannot expect a two-step approach based on
these outliers to function well for this data.

While this experiment only examines a very limited number
of data sets and outlier detection approaches, it does illustrate
the difficulty of decoupling the identification of outlier values
and mining of the correlated predicates. In contrast, PerfAugur
performs both steps jointly and was able to identify, in both
datasets, both the known anomalies (among the top 5 anoma-
lies found) as well as predicates pointing to the correct root
cause.

VI. CASE STUDIES

To complement the experimental evaluation on synthetic
data sets, we describe two case studies illustrating the impact
of PerfAugur for two investigations into Windows Azure
telemetry.

Case Study 1: “VM deployment latency regression”. One
of the KPIs for cloud service providers is the latency at which
virtual machines are deployed, as it is imperative to ensure
a consistent user-experience. Starting on 7/9/13, we observed
a very significant latency regression in one of the clusters,
with latencies at the 70th percentile increasing to ∼34 minutes.
When this regression was first observed, PerfAugur was not yet
available; thus, the initial analysis involved manual analysis of
service logs in an attempt to identify the root cause by testing
individual hypotheses.
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Fig. 10: Top PerfAugur Output for Case 1, identifying storage node
IP and return code as indicative of the performance regression.

These hypotheses centered on the suspected root cause
being issues in the network stack (e.g., an update to the data
center router software, an update to the routing rules and issues
with cross cluster network latency), but did not find the cause.
Subsequently, a second cluster exhibited a similar regression.
At this point, engineers from several independent teams were
pulled in and began investigating, with focus on recent node
OS updates, background node servicing and the storage stack;
again, these investigations did not yield the root cause. The
regression was then observed in a 3rd cluster.

Finally, after spending several engineer-weeks of investi-
gation across many teams to isolate the issue, engineers found
that in the impacted clusters, a subset of the storage endpoints
were experiencing poor throughput. This caused I/O requests
performed as part of the VM deployment to have significant
delay, and thus delayed the overall VM deployments. Sub-
sequently, the nodes backing these storage endpoints were
isolated and a further investigation revealed a BIOS update
that resulted in very low server fan speeds in certain situations,
causing insufficient cooling and ultimately high temperatures
in the blades. This high temperature led to the CPUs throttling
clock speed to reduce heat output. As a result, CPU utilization
on such nodes could not reach the target of 100%, which
resulted in the observed delays.

Once the set of problematic storage endpoints was isolated,
the diagnosis of the underlying root case was rapid. However,
finding these endpoints required significant time and effort, in
part because the fault was not directly tied to a code check-in,
in part because the fault only surfaced with a fan configuration
unique to that data center, and most importantly because the
developers had never seen this regression before.

We used PerfAugur to analyze the same telemetry data,
requiring less than 10 minutes for processing. PerfAugur
directly identified the individual storage endpoints, with pred-
icates of the form “StorageEndPointIP = A.X.Y.Z”, in the top
anomalies. In addition, PerfAugur mined a secondary cause of
the regression: OS pre-fetch failures (predicate: “Return code



= -2147023436”) due to timeouts at the storage endpoints,
which had been missed before. Starting from this output,
identifying the BIOS update as the root cause would have been
relatively easy, saving weeks of investigation time.

Case 2: “Understanding the long tail”. For our cloud
service, the “tail” performance (i.e., high percentiles) of VM
deployment operations is crucial, as customers are sensitive
to the consistency of the observed performance [24]. In
summer 2013, we observed a large differential between the
latency at the median (∼5 minutes) and the “long tail” (at
the 99th percentile, ∼20 minutes). However, the analysis
of the deployments “in the tail” is made difficult by the
fact that the corresponding instances are made up of many
different (but individually rare) systemic anomalies as well as
independent transient anomalies. Historically, developers have
chosen issues to fix based on anecdotal evidence, often leading
to little or no movement in the tail.

By setting the (categorical) performance indicator to be
the (distribution of) “dominant” sub-operations (i.e., among
all operations involved in a deployment, the sub-operation
taking the most time), we were able to automatically identify
partitions for which this distribution changed the most over
the baseline. We were now able to identify (a) the change in
distribution of dominant sub-operations in “tail” deployments
and (b) which other conditions correlated with specific sub-
operations becoming the bottleneck. One outcome of this
analysis was that we discovered the gap between the creation
of a VM and the start of its execution to be the dominant sub-
operation for a large partition of the data, which in turn lead
to the discovery of a new bug in the deployment code.

Summary: Clouds services have KPIs that they need to opti-
mize. These optimizations start with an initial diagnosis, fol-
lowed by code improvements. Currently, the initial diagnosis
phase is often comprised of trial-and-error with simple analytic
models, yet still requires multiple engineer-weeks of effort.
With PerfAugur, this diagnosis is often completed in minutes,
requires no custom development or repeated justification of
methodology; moreover, PerfAugur helps overcome human
limitations in both the space of hypotheses that is explored
as well as the time that is required.

PerfAugur in production: PerfAugur is currently actively
used on production data in order to detect performance re-
gressions (using the previous week’s data as baseline), detect
abnormal increases in error codes (which in turn has allowed
us to detect issues with the production system pro-actively)
and to support root-cause analysis.

VII. CONCLUSION

In this paper, we presented PerfAugur – a system for auto-
matically detecting anomalous system behavior and generating
explanations in the form of system conditions which co-occur
with anomalous operations. While our system was specifically
targeted towards service diagnostics in cloud platforms, the
algorithms presented here are relevant for any scenario where
the underlying data skew and noise requires the use of robust
statistics.
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