
Insider: Towards Breaking Down Mobile App Silos

Vageesh Chandramouli, Abhijnan Chakraborty ∗, Vishnu Navda, Saikat Guha,
Venkata Padmanabhan, Ramachandran Ramjee

Microsoft Research India

Abstract
User data is siloed in mobile apps today. Where one app
may hold the user’s flight booking, another app the user’s
cab reservation, with little data sharing between the two,
resulting in a fragmented user experience. For instance, if
a user, who has just booked a flight using one app, wishes
to pre-book a cab from the airport, they would have to do
so by manually re-entering the data from the flight app (e.g.,
location, date, time) into the cab app.

To enable the user to retake control of their in-app data,
the Insider platform extracts structured user data from the
presentation layer of arbitrary apps, without any modifica-
tions to the app code or binary, and makes it easy for such
data to be shared across apps, when the user so desires. At
its core, ordinary users create and share models for the apps
they care about; the app model relates the data from the pre-
sentation layer of the app to attributes in a task template,
which corresponds to the specific tasks users perform in the
app (e.g., booking a flight). At runtime, Insider combines the
app model with the raw stream from the presentation layer
to produce structured and semantically-meaningful informa-
tion. Insider then publishes this information through a set of
APIs, enabling creation of novel apps that could not have
been built previously. For example, we prototype the auto-
matic population of information in a cab app after a flight
booking as well as three other such novel apps that rely on
cross-app data sharing. Finally, we report on a detailed eval-
uation of running Insider on 150 apps across 11 categories.
We show that we are able to successfully extract 83% of
the key attributes (e.g., UI widget corresponding to source
airport) from these apps. Further, we also track app version
changes during a 6 month period from Sep 2014 to Mar 2015
and find that even though 40% of apps were updated, only
6% of apps required rebuilding of the app model.

1. Introduction
All data generated by users today through their smartphone
apps remain siloed in the app. This includes data gener-
ated both explicitly, such as the user actually booking a
flight through the Expedia app, as well as implicitly, such as

∗ Presently at IIT Kharagpur

browsing the reviews of a few restaurants on Yelp. APIs ex-
posed by these data silos are designed to protect and extend
the silo’s control over the user’s data. For instance, Expedia
offers APIs for other apps to invoke new flight bookings, but
does not provide an API for other apps to take action on the
user booking. Arguably, information about a flight the user
paid for is data the user owns. Nevertheless, data silos make
it hard for users to take control of their own data and share it
with innovative new apps. For instance, the user today must
manually re-enter his flight information (e.g., arrival date,
time, city) into a cab app to make a cab reservation.

When it makes business sense to do so, two sufficiently
large app silos may negotiate deals where one app refers its
users to the other app in exchange for monetary compensa-
tion (called traffic acquisition costs), e.g., if Expedia were
to add a Lyft cab button on the booking page that launches
the Lyft app with pickup details pre-populated. Such deals
limit user choice, e.g., the user may prefer that their flight
information be shared with perhaps a small local cab service
in their city, who is unlikely to be in a position to negotiate
favorable terms with the data silo (i.e., Expedia in this exam-
ple). Overall, the current data sharing model between siloed
apps has the effect of removing choice for the user, whose
very data fuels the in-app data economy in the first place.

Our goal, in general, is to create a platform that enables
users to take control of their data contained within apps
and share it in an effortless manner with other (explicitly
authorized) apps. We believe that this approach not only
unleashes user choice but can also light up compelling new
experiences that would not be possible otherwise.

This paper focuses on three key design challenges we en-
countered in creating the Insider user data platform: 1) how
user data can be extracted with no effort on the developer’s
or user’s part, 2) what the data abstraction should be to en-
able meaningful sharing of user data across apps, and 3) de-
vising an approach to inferring app models for a large num-
ber of apps and maintaining these models automatically as
apps are updated. We discuss each of these challenges next.
Extraction. A naı̈ve approach to extracting user data from
apps is to ask app developers to instrument their app and
explicitly tag user data. However, as discussed earlier, siloed
apps have little business reason to proactively part with the

user’s data. Instead we believe that the user must take control
of their data. While there are various layers where app data
can be extracted (Section 2), we tap into the presentation
layer of the mobile to extract the raw user data since the
siloed app already contains UI logic to present the most
relevant data in a structured way to the user. We develop
Insider as a third-party app/service, which takes advantage
of the limited accessibility system service in Android, and
has the benefit of enabling easier deployment.
Abstraction. Representing the data as a document — a
loosely structured bag of words — we quickly realized is
only suited to the web, where the primary goal is to retrieve
information. Apps are often used to perform tasks (e.g., call
a cab), which inherently requires structured information e.g.,
the pick-up and drop-off locations are similar in a bag-of-
words abstraction but have crucial semantic differences.

Our data abstraction is that of a task. A task contains an
action (e.g., booked flight, viewed review) and a number
of action-specific attributes, e.g., origin, destination, flight
attributes for a booked flight action. Apps subscribe to tasks
that they are interested in (e.g., a cab app might subscribe to
a flight booking task). When the user books a flight in any
flight app, the user is notified of the option to share the flight
booking data with a list of apps that have subscribed to this
data. If the user explicitly gives permission to share his/her
flight booking data with a chosen cab app, the cab app is
then passed this information automatically, eliminating the
tedium of manual data re-entry.
Inference. While Insider is oblivious to the semantics of the
attributes in the task template, internally representing them
as generic key-value collections, Insider must nevertheless
provide a mechanism to label data extracted from the presen-
tation layer with semantically meaningful labels in the struc-
tured task template. An approach we rejected early on is the
use of natural language processing techniques for automated
extraction of app structure because of the enormous diversity
in UI modalities in task completion apps (Section 2).

Instead, we rely on a one-time guided human execution
where the user is asked to perform a task using the app.
Insider logs the presentation layer changes in the app from
the execution, infers the mapping from task attributes to
UI widgets and creates an app model, which can then be
shared with other interested users. Insider uses the generated
app model at runtime to extract user data from the app,
automatically label it with (opaque) semantic labels from the
task template, and allow seamless sharing of the extracted
information with other apps. Thus, the Insider app model is
similar to the IFTTT (If This Then That) [8] macros used for
automating tasks on phones, with the added ability to extract
and pass structured in-app data between apps and to do so
locally on the client (unlike IFTTT’s cloud-based approach).

One concern with this approach is the stability of app
model to app updates. To address this, we perform a com-
bination of static model checking and position/value-based

relearning to improve the longevity of the app model. For
example, we tracked the version changes of 150 apps from
September 2014 to March 2015 and found that 60 apps were
updated but only 9 app models need to be relearnt through
manual effort.

A key aspect of Insider is the creation of app models by
ordinary users, with no programming skills. To evaluate the
efficacy of this approach, we recruit crowd workers from
Amazon Mechanical turk as our “users”. We design and im-
plement a cloud-based app task execution platform that runs
an Insider-instrumented mobile OS in a VM in the cloud.
Crowd workers connect to it using a web browser on their
unmodified client device (e.g., phone, tablet or PC). We eval-
uate the extraction, abstraction, and learning mechanisms
on 150 apps across 11 categories by leveraging 686 crowd
workers and 1028 task executions in the cloud and find that
we were able to successfully extract over 83% of semanti-
cally meaningful attributes relevant to these apps.

Finally, we prototype four novel cross-app data sharing
apps. We automatically extract information from various cat-
egories of apps and prototype: 1) a history app that collates
and shows a timeline of user activities across task categories
such as shopping, movies, flight, etc., 2) a travel assistant app
that automatically schedules price alerts for flights searched
for (but not booked) and deletes the alert when the booking
is made, 3) a Limo Yo app that automatically launches the
user’s preferred limo app with pick-up time based on flight
departure (or arrival) and the drop-off (or pick-up) location
set to the appropriate airport when a flight is booked and 4)
a smart messaging app that presents a unified view of users
and messages combined from different messaging apps, a
demo of which is available on YouTube [12].

Overall, this paper makes three contributions. First, it
argues for de-siloing of user’s data from apps, and creating
a platform that enables users to take control of in-app data
and share it effortlessly with other apps. Second, it proposes
a data abstraction centered around tasks, and presents the
design and implementation of an architecture that achieves
this goal without requiring app modifications or user effort
beyond the one-time model creation. And finally, third, it
reports on our pilot deployment and experimental validation
across a wide range of apps and users.

2. Design Challenges
In this section, we discuss the key challenges we faced in
designing Insider.

The first challenge is how to extract in-app data. As
shown in Figure 1, there are a variety of locations where app
data resides. For example, one could tap app data at the ap-
plication layer by modifying the application binary in a way
similar to how AppInsight [20] modifies the app binary for
profiling performance. While developer involvement may
potentially be avoided in the binary instrumentation process
for extracting in-app data, one would still need developer

Application

UI

Memory

File System

Network

• High noise
• Encrypted
• App specific data

structures/file formats

}

• App modification
• Developer centric

• Structured data
• Low noise
• Open Accessibility APIs

Figure 1: Options for app data Extraction

consent for distributing such instrumented app binaries. As
discussed earlier, developers are not incentivized to allow
such modifications.

App data can also be inferred from network traffic. For
example, Narus [21] uses app’s network communication
traffic to learn about app usage. Apart from challenges with
network traffic encryption, the large amount of noise (e.g.,
extraneous communication sessions to advertising systems)
and app-specific encoding of information makes extracting
even high-level app information (e.g., the identity of the
app) from network traffic challenging [22], leave alone fine-
grained semantic information à la Insider. Tapping the mem-
ory or file system also suffers from similar issues.

Instead, we choose to extract data from the presentation
layer. Given the limited screen real-estate, developer typi-
cally choose to only display the most relevant information in
the UI, significantly reducing noise in the data. Further, in-
formation is presented in a structured way to make it easy for
users to consume it and execute tasks. Finally, the presence
of accessibility APIs in the OSes means that the presentation
layer information can be extracted without requiring any OS
or app modifications, thereby facilitating deployment.

The second challenge derives from our need to tap into
the presentation layer. While it simplifies deployment, the
sheer diversity in how app developers choose to present in-
formation through the UI makes even automated exploration
of apps using a monkey extremely challenging [18], leave
alone automated inference of semantic information.

For example, we show screenshots of three popular flight
booking apps, Expedia, Kayak and MakeMyTrip in Figure 2.
Notice that the Expedia app does not identify source or des-
tination explicitly (except through ascending and descend-
ing arrow icons), has no class of travel or one-way option,
and requests the departure and arrival dates to be input by
dragging the highlighted dates at the bottom of the screen.
On the other hand, Kayak identifies the “from” and “to”
airports, has separate options for one-way, round-trip and
multi-city, and multiple options for class of travel. Finally,
MakeMyTrip does not identify source or destination, allows
one-way and round-trip but no multi-city travel and has only

Figure 2: Three flight booking apps: Expedia, Kayak and
MakeMyTrip

two options for class of travel. Such significant variation
across apps makes it extremely challenging to infer seman-
tics or execute tasks programmatically. Hence, we settled on
having the user perform a one-time guided execution of the
app for creating the app model.

The next challenge is in designing an approach that is
simple enough that everyday app users, with no program-
ming expertise, can build accurate app models with ease.
We experimented with two different approaches for the user
guided one-time execution. The first approach was to ask the
user to point and label the semantically meaningful parts of
the UI. The second approach was a guided task execution-
based model where the user is asked to execute a set of
simple primary and secondary task instances for the app.
Surprisingly, even though the former approach is intuitive,
given the various ambiguities in UI interactions, we found
that the latter approach had a much higher efficacy in ex-
tracting an accurate app model, based on our evaluation with
crowd workers from Amazon Mechanical Turk (Section 7).

The final challenge arises from our desire to reduce user
effort in building app models. Having one or a small number
of users build the model for an app and then share it with
other users of the app helps amortize the effort. However,
updates to an app can render the model obsolete. Requiring
the user to perform a guided execution afresh would be
prohibitive since apps could be updated frequently. Instead,
we leverage static checking, and position and value-based
matching to automatically update app models in most of the
cases when apps are updated (Section 4.2).

3. Insider Overview
We now present a high-level architectural overview of the
Insider platform. We will refer to Figure 3 in our description.

3.1 Extraction
Insider taps in-app information at the UI layer as it provides
a rich view of the user’s activities inside any app. It turns out
that most modern OS platforms support accessibility APIs
to enable features such as audio narration of on-screen con-

App 1
(Foreground)

App 2
(Subscriber)

Insider Lib

App 3
(Subscriber)

Insider Lib

Cloud Model
Store

UI Scraper

Inference
Engine

Local
Model
Store

Task
Extractor

App Interface

Insider

Figure 3: Insider Overview

tent. We leverage these APIs to tap on-screen content from
unmodified 3rd-party apps. Specifically, using accessibility
APIs on (unmodified) Android (version 4.2), we record the
UI widgets displayed on the screen, along with their var-
ious properties, including value, position, activity ID (i.e.,
app page ID), whether the user interacted with the widget
(e.g., via touch, swipe, keyboard entry) and the timestamp
of the interaction. This yields the syntactic structure of the
on-screen app content. The UI Scraper module of Insider
shown in Figure 3 runs as a background service and scrapes
content from the foreground apps (App1 in the example).

3.2 Task Abstraction and Inference
Recall our earlier observation that unlike webpages, task-
oriented apps tend to be organized to help users complete
tasks. Each task leads to a page in the app that is organized
akin to a web form, comprising key-value pairs.

Insider uses training data to learn (opaque) semantic la-
bels for these key-value pairs. Insider builds app-specific
models (such as the one shown in Figure 4) that are used
to assign semantically meaningful labels to appropriate key-
value pairs. As mentioned, the training data is acquired by
asking a small subset of the users of an app (our evaluation
shows that 3 users suffice) to perform a guided task execu-
tion within the app.

The Inference Engine analyzes the logs from UI Scraper
to build the app model, which is then stored locally in the
Local Model Store. The analysis is completely carried out on
the client-side, and only the generated models are uploaded
to a central repository — the Cloud Model Store — from
where other users can download models for apps that are
installed on their devices. For less populat apps that do not
have an existing model in the store (or whenever a model
gets obsoleted in a way that cannot be fixed through our
automated process (Section 4.2)), the training process needs
to be carried out (again).

The training process involves the user executing a se-
quence of tasks in the app. An example of a (primary) task
template is: “Book a round-trip flight between any two cities
on any date”. A subsequent (secondary) task in the sequence

may be: “Book a round-trip flight between the same two
cities as before departing on the same day as before, but
change the return date.” The attributes shown in tele-
type font are (opaque) semantic labels that will be associ-
ated with the UI widgets in the app. In this example, Insider
would diff the values extracted from the presentation layer
across the primary and secondary tasks.

Ideally, there would be a change in the value of a single
UI widget, in which case that widget would be labeled as
“return date”. In practice, however, the values corre-
sponding to multiple UI widgets could change even when
only a single task attribute is changed. Section 4 details
the Insider mechanism for robustly inferring the attribute-UI
widget mapping even in such cases.

3.3 Insider Apps
Insider platform is designed to extract siloed user data from
within any foreground app and then give the user the option
of making it available to other 3rd party apps. To ensure that
the user is in full control of his data, our design is based on
two key principles – transparency and access control. At any
point in time, the user can look at which apps are subscribing
to notifications corresponding to which task categories, and
can update the permissions to (dis)allow such subscriptions.
We have developed a library that the developer can use
within his app to subscribe to specific task categories. When
such an app is launched for the first time, the user is notified
of the task categories that the app wishes to subscribe to, and
is asked either allow or deny permission. (This is akin to how
access control for hardware sensors is performed today.)

When a particular foreground app (App1 in the illustra-
tion) is running, the Task Extractor processes UI logs from
the UI Scraper and extracts semantically meaningful struc-
tured data using app-specific models available either locally
or downloaded from the cloud. Then, apps that subscribe to
the particular task are invoked via the Android Intent inter-
face and the structured data is transferred to the new app
(App2 and App3 in the example).

4. Learning Insider Models for Apps
Ordinary users can build app models for new apps by exe-
cuting a sequence of simple tasks inside the app as instructed
by Insider platform. The Inference Engine module in Insider
then processes the UI traces gathered from UI Scraper to
build a new app model, which is stored locally as well as
shared with other users via the cloud store. In this section,
we describe how the Inference Engine module maps UI data
to entities in the task abstraction template.

4.1 Semantics from Training Data
Insider includes a learning engine to glean the semantics of
the in-app content that is displayed on the screen, i.e., the
meaning of the various UI widgets and key-value pairs, or
at least the ones that matter. Gleaning such semantic in-

formation is challenging because of the lack of standard-
ization. Different “keys” could be used in different apps to
refer to the same semantic information, e.g., the keys “ori-
gin”, “source”, and “dep city” could all be used in various
flight booking apps to refer to the same semantic entity —
departure city. Sometimes the key is implicit, say denoted by
an image (e.g., separate icons for adult and child passenger
counts) or even just screen position (e.g., the UI widget for
the departure city is generally placed to the left of that for the
arrival city, without the need for either field to be labeled).

In view of these challenges, Insider uses training data to
learn the semantics of the app information that is displayed.
Such training data is obtaned from training tasks executed
by ordinary users running the app, who wish to help in
generating app models for new apps. By matching attribute
values set in the training task to those obtained from the
instrumentation of the presentation layer, Insider is able to
relate the in-app content to the attributes contained in the
task template.

We settled on the above methodology for training tasks
after much iteration. Our first attempt — having users sim-
ply point and label various UI elements — proved to be prob-
lematic, both in terms of inaccuracy (e.g., mislabeling) and
ambiguity (e.g., an individual UI element might defy a label
picked from a predetermined set). On the other hand, driving
an application to execute a task turned out to be more natural
for the workers. Such a “learning from example” methodol-
ogy has been applied with great success in other domains
as well, e.g., Excel FlashFill [4], wherein users provide ex-
ample data points and the system automatically learns the
intended formula.

4.1.1 Training Tasks
With regard to the nature of the training tasks themselves,
our initial attempt was to have an expert define one or more
tasks, with all of the attribute values specified. However, this
proved problematic since a particular app might not support
specific settings of an attribute (e.g., a flight booking app
targeted at the Indian market may not support non-Indian
airport codes, and likewise a shopping app would not allow
an item that is not in its catalogue to be added to the cart).

In view of these challenges, the expert defines one of
more task templates for each category (e.g., booking a flight
or adding items to a shopping cart), with placeholders for
one or more attributes. Table 1 shows a few examples of
task templates. The users each then execute a task conform-
ing to the specified template, with the attribute values of
their choice. They are then led through an automatically-
constructed sequence of secondary tasks, each involving ex-
ecuting the original task but with one or more of the attribute
values changed.
Primary task instances: We let the users pick the attribute
values for the specific primary task instances that they ex-
ecute. We rely on user’s ability to pick suitable values for
attributes that are admitted by an app, ignore attributes that

are not supported by the app (e.g., a particular flight book-
ing app might not allow the number of infants to be set), and
do what is necessary to interact with the UI widgets (e.g., to
set a date, some apps might present a textbox while others a
calendar widget).
Secondary task instances: Then, for the secondary (i.e.,
follow-on) task instances, we had the users re-execute the
task, with one or more attribute values changed. The base-
line for such secondary task instances was to have the worker
change exactly one attribute value from the previous task in-
stance they had executed. While this conservative approach
helps minimize ambiguity in deducing the relationship be-
tween the attributes and the UI elements displayed by the
app, it would mean that the number of secondary task in-
stances would be as many as the number of attributes.

To enable inferencing with fewer secondary tasks, or
equivalently to maximize the amount of information gleaned
from each secondary task, we use two techniques: (a) we
consider the entity type of each attribute in the task template
and allow multiple attributes to be changed simultaneously
in a secondary task, so long as they can be disambiguated
based on their entity types (e.g., the source airport and num-
ber of passengers can be changed simultaneously but the
source airport and destination airport cannot), and (b) even
when the entity type for two attributes is the same, we allow
these to be changed simultaneously so long as the change
happens in a controlled manner that enables disambiguation
(e.g., a secondary task could involve incrementing the num-
ber of adults by 1 and the number of children by a different
delta, say 2, or as an example of non-numeric attributes, a
secondary task could involve setting the source city to the
value of the destination city in the primary task, and the
destination city to a new value of the worker’s choice.
Verification task instances: Based on the execution of the
primary task and possibly secondary task(s), Insider builds
a semantic model for the app and also learns some specific
settings of attribute values supported by the app (e.g., the
airport codes that the app admits as input). We use this
learning to run one or more verification task instances at
the end, wherein all of the attributes values are specified
(drawn from the values we know are supported by the app)
and we look for consistency between the specified task and
the inferences made from its execution using the semantic
model built by Insider.

4.2 Inferencing from Training Task Data
The training tasks generate raw traces comprising the values
of all UI variables (e.g., textboxes) in the app. This trace is
filtered and processed in multiple steps, as shown in Algo-
rithm 1, to build the Insider app model. The model, which
is represented by the variable UIDiffset in the algorithm,
maps each attribute in the task template to the corresponding
UI variable(s). An example is shown in Figure 4.

Briefly, the inference algorithm processes the raw UI
traces from a user’s execution of the app. From each trace,

App category Task type Task template
Flight Primary Search for a one-way flight from a source city to a destination city on a certain date for a certain number of

passengers in a certain class of travel
Secondary Search for a one-way flight using the same attribute values as in previous task but only changing the source city
Secondary Search for a one-way flight using the same attribute values as in previous task but only changing the destination city
Secondary · · ·

Shopping Primary Browse for an item and add it to shopping cart
Secondary Delete the item from shopping cart
Primary Add a quantity of two of a different item to the shopping cart

Secondary Delete the items from the shopping cart
Recipe Primary Search for a recipe

Secondary Search for a different recipe
Transit Primary Search for a route from a source location to a destination using a certain mode of transport

Secondary Search for a route using the same attribute values as in the previous task but only change the source location
Secondary · · ·

Stock Primary Search for a stock quote
Secondary Search for another stock quote
Primary Search for a stock quote and add it to the favourite list

Secondary Search for another stock quote and add it to the favourite list
Hotel Primary Search for a hotel for people from start date to end date in a certain city

Secondary Search for a hotel using the same attribute values as in previous task but only changing the people count
Secondary · · ·

Weather Primary Search for weather conditions in city
Secondary Search for weather conditions in different city

News Primary Search for a news topic
Secondary Search for a different news topic

Music Primary Search for a song by artist in genre
Secondary Search for a song by using the same attribute values as in previous task but only changing the artist
Secondary · · ·

Social Primary Post a status on the social medium
Secondary Post a different status on the social medium
Primary Search for a topic on the social medium

Secondary Search a different topic on the social medium
Communication Primary Post a message to someone

Secondary Post a different message

Table 1: Task templates used by apps in our experiments. The attributes are shown in teletype and the actions are
underlined. The primary task templates are specified by an expert; the secondary ones are derived from it automatically.

Attribute name UI variable name

source flightsearch_from

destination flightsearch_to

date
fsDepartDayOfMonth
fsDepartDayOfWeek

passenger fsTravelerTextView

Task Template: Search for a
flight from {source} to
{destination} on a certain
{date} for certain number of
{passengers}

Model generated per App

Insider Inference Engine

+

UI elements mapped in
the Model

Figure 4: App Model Example

we first filter out the UI variables for which the developer
has not assigned a name and also variables whose values
are not text strings. The rationale is that for the relatively
small subset of variables that matter, developers typically
do assign a name. Further, in our experience, restricting to
variables with textual values did not eliminate any variables
of interest. Even UI widgets such as radio buttons tend to

Algorithm 1: Inference Algorithm
InferAppModel(UITrace)
begin

NumTasks = sizeof(UITrace)
NumAttributes = NumTasks-1
for i = 0; i <= NumAttributes; i++ do

UITrace[i] = FilterOutUnnamedAndNonStringVari-
ables(UITrace[i])
UITrace[i] =
FilterOutAllButFinalValueOfVariables(UITrace[i])

for i = 1; i <= NumAttributes; i++ do
UIDiffSet[i] = Diff(UITrace[i-1], UITrace[i])
i++

UIDiffSet =
FilterOutVariablesWithRepeatedOccurences(UIDiffSet)

have textual values (e.g., “Economy”, “Business”, etc. in the
context of class of travel), although we had to additionally
record the state of the radio button to know which textual
value was selected.

A variable’s value is logged in the raw UI trace whenever
it changes, so a variable might occur multiple times in the
trace (e.g., the user might set the passenger count to 1 and

then change it to 2, before hitting “submit”). So we filter out
all but the final value of each variable.

Next, we walk through the set of traces corresponding
to the primary task and the subsequent secondary tasks.
For each pair of successive tasks (which corresponds to the
user executing a task and then the same task again, but
with a change in the setting of one attribute, say i), we
compute the difference, UIDiffSet, comprising only the
variables whose values changed across the pair of tasks. This
difference set represents the candidate set of variables that
might correspond to attribute i.

We refine UIDiffSet by filtering out variables that
appear in the difference set for multiple attributes. Such a
repeated occurrence suggests thatthe changes occurring in
the variables from one task to the next are likely not due
to the change in the attribute value. For example, a variable
corresponding to the current time will see a change in value
each time and hence will occur in the difference set of all
attributes. However, clearly these changes are not due to
changes in the attribute value, hence this variable is filtered
out.

After all of this filtering, we have a refined difference set,
which only comprises variables that are likely to be related
to the corresponding attributes. However, there is still the
possibility of making an incorrect inference due to human
error, e.g., the task may have asked the user to change the
source airport but the user changed the destination airport
instead. To guard against this, we do not finalize the app
model when uploading it to the cloud-store. We let a small
subset of users (3 users, by default in our experiments)
execute training tasks for each app and look for a majority
agreement in the app models that are inferred by each user.
For instance, with 3 users, if a certain variable v appears in
the difference set for attribute i in the traces from at least
2 workers, it is retained; otherwise, it is filtered out. After a
few users have built the app model for a version of the app,
and uploaded them to the cloud store, the model is finalized.
Other users can simply consume the finalized version of the
app without needing the training phase.
Aliasing: We are now left with the Insider model for the app,
Attribute2UIMapping, which maps each attribute to
the corresponding UI variable(s). In many cases, an attribute
maps onto just one variable and we are done. In some cases,
the attribute could map onto multiple variables, which we
term aliasing. For example, when a user executes the task
of adding a new item to the cart in a shopping app, a textbox
corresponding to the item name and another one correspond-
ing to the price might both change. Furthermore, for the
small number of training tasks executed by users, the val-
ues appearing in both of these textboxes might be unique. In
such cases, Insider’s inference algorithm would not be able
to tell which of the two textboxes constitutes an appropriate
description of the item. In these cases, we use verification
tasks to help refine the app model: a verification task to “add

UITrace snippet:
function: package property variable name location text value
onDraw: com.expedia.bookings.widget.AlwaysFilterAutoCompleteTextView
VFEDCL..I id/departure airport edit text xy=(7,77) text=NYC-All Airports
onDraw: com.expedia.bookings.widget.AlwaysFilterAutoCompleteTextView
VFEDCLF.I id/arrival airport edit text xy=(204,77) text=Boston
Attribute2UIMapping:
(Attribute:Source, UIVariable:departure airport edit text),

(Attribute:Destination, UIVariable:arrival airport edit text)

Figure 5: UI widgets in Expedia app, UI trace snippet,
and Attribute2UIMapping inferred by Insider

Apple USB Superdrive to the cart” would be executed by the
user whereas one to “add $74.99 to the cart” would not be.

Finally, in a few cases, the Attribute2UIMapping could
map to the null set, say, because of a lack of consensus
among the (erroneous) user runs. This will result in Insider
being unable to learn the corresponding attribute to UI wid-
get mapping for that app.

Figure 5 shows a snippet of UI trace for a flight search
task inside Expedia app, which is uniquely identified by its
package name (com.expedia.bookings) and the activity ti-
tle(activity.FlightSearchActivity). The trace contains infor-
mation about the UI variables and the text values contained
in them. The Attribute2UIMapping table describes
the the app model inferred by Insider. The Inference Engine
automatically associates Source attribute with value ’NYC -
All Airports’ and Destination attribute with value ’Boston’
during this run.
Handling App Updates: Developers often update their apps
on the marketplace with new features and bug fixes. In In-
sider, the app models that we use to extract in-app data can
potentially get invalidated during such updates. This can
happen mainly due to either (a) change in variable names
and/or (b) changes in UI structure. Although, Insider does
not deal with an adversarial model, where the developer is
intentionally trying bypass Insider, we however employ a
number of techniques to deal with updates that are typically
seen in App Stores, without requiring the users to re-learn
the model.

We leverage additional information with each key-value
pairs in the app model such as normalized x,y location on
the screen and a set of values observed for the key during ac-
tual user runs. When an app update occurs, if the developer
changes the variable names (key names) and/or location on
screen, we look for the nearest key in spatial and value do-
main to find the new key corresponding to the task attribute.
In Evaluation section we show that this approach is able sig-
nificantly cut down the process of re-learning app models
during updates.

5. Insider Applications
This sections discusses four proof-of-concept apps we built
on top of the Insider platform. These apps mashup the user’s
data de-siloed from various travel and messaging apps in-
cluding Expedia, ClearTrip, Kayak, Skype, WeChat and
Line. Our sample apps “subscribe” to task completion events
that the Insider runtime extracts automatically as the user
uses the silo apps.

The “subscribe” part requires apps to explicitly declare
their subscriptions and for the user to consent to it (or not).
We use an approach patterned after how access to hardware
sensors is typically managed in mobile OSes, by having the
subscriptions be declared as part of the app manifest and
be presented to the user for their consent at app installation
time. The difference here is that instead of declaring hard-
ware sensors to which access is requested, apps declare user
actions from a defined list, e.g., flight booking, movie search,
etc.

There may be the concern that such an approach often de-
volves into a situation wherein users blindly hit “OK” and
proceed with installing an app, without quite understand-
ing what accesses the app is requesting. However, we argue
that this concern would be mitigated in the context of In-
sider because the user actions to which access is requested
are high-level, semantically-meaningful entities (e.g., “flight
arrival information”), which we expect the typical user can
relate to more easily than obscure hardware sensors (e.g.,
“location data”). This higher-level abstraction also enables
the application requesting access to spell out the reason for
its request, e.g., “This app is requesting access to your flight
arrival information to book a cab on arrival”. That said, we
defer to future work a user study to evaluate the effectiveness
of such notifications.

We present four simple applications that take advantage
of the capabilities enabled by Insider:
History: History app enables users to see a timeline of ac-
tivites that have been performed inside various apps. It sub-
scribes to multiple task categroies such as shopping, movies,
cuisine search, flight, hotel, and rental car bookings. The app
allows searching feature to index into tasks using filters such
as time, keywords and task type. Note that none of the silo
apps provides this unified view across the other competitor
apps, nor offer APIs for third-party apps to directly mashup
information for the user’s convenience without any user ef-
fort.
Price Alert: The price alert app subscribes to the “flight
search” and “flight booking” events from multiple flight
apps. If it receives two or more “flight search” events for the
same origin and destination airports (on potentially different
dates), but does not receive a ”flight booking” notification
within a day of the search event, it automatically registers a
price alert for the range of dates seen in the search event. If
the price alert triggers with a price at least 10% lower than
the price seen from the search events, it notifies the user.

Alternatively, if it receives a “flight booking” event before
the price alert triggers, it deletes the alert.
Limo Yo: The limo yo app subscribes to the same events
as the history app. It infers the user’s home and office ad-
dress using location data at different times of day. When the
user books a flight from their home city, it provides a single-
touch limo booking that launches the user’s preferred limo
app with pick-up location set to their home or office address
(depending on the day of week and time of the flight), desti-
nation set to the airport, and pick-up time set based on travel
time estimates between home/office and the airport; return
flights to the home city result in a limo to home. In a non-
home city, it offers to book limos between the airport and ho-
tel (if a hotel booking event is received) and rental-car book-
ing event is not seen. The entire limo-booking experience
requires a single click, far less than the Uber app requires.
Smart Messaging: The Smart Messaging app subscribes to
messaging events, which trigger whenever a new message is
sent to or received from any messaging app. Insider infers
the application name, user name and the message content
whenever a messaging event is triggered. The Smart Mes-
saging app does a mashup of all messaging apps, wherein
a combined view of all users and messages can be viewed
in one place. In addition, for apps that support deep linking
(e.g., Skype), the smart messaging app can launch the corre-
sponding app and directly navigate to the appropriate page
in that app so that the user may continue his messaging in
that app, if he so desires. We have a uploaded a demo video
of the Smart Messaging app in YouTube [12].

In each of the above cases, it is important to note that
structured information is sourced from any app used by the
user, so long as an Insider model has been built for it. This
sets it apart from existing approaches wherein functionality
such as price alerts are tied to what the developer of a
specific app implements.

6. Implementation
We briefly discuss some noteworthy aspects of our imple-
mentation of Insider on Android.
Third-Party App to Tap Presentation Layer: Insider is
implemented as a regular third-party app for the purpose
of easily deploying it on unmodified Android phones. The
UI Scraper is implemented as a background user-level ser-
vice. As a one-time step during first launch, the user grants
Insider app permission to subscribe to events from the
AccessibilityService system service in Android.
Thereafter, the UI Scraper receives callbacks from the sys-
tem whenever an AccessibilityEvent is fired. This
class represents events such as touch, other gestures, and
changes in page content. The service logs the events that it
receives a callback for.

From the viewpoint of the AccessibilityService,
the displayed content is represented as a tree of Access-
ibilityNodeInfo nodes, which contain the ID of the

corresponding View widget, its value, and its screen po-
sition. Each AccessibilityEvent (e.g., button click)
refers to the event’s source, which is an Accessibility-
NodeInfo node. Thus, we are in a position to log all the
events of interest, together with the ID, value, and position
of the corresponding UI elements.

In order to keep Insider runtime to have a lightweight
footprint, the Task Extractor module is invoked to process
UI logs only when there exists app models for the currently
running foreground app. In addition, we also ensure that
there are subscribing apps for the tasks associated with the
foreground app.
Capturing operations: There can be multiple kinds of tasks
that can be performed in the same application. For exam-
ple, a shopping app supports adding an item to a cart or
deleting an existing item from the cart. Capturing the values
set in an app alone (e.g., the content of various textboxes)
is sometimes not sufficient to determine what task is being
performed. We may also need to capture the operations in-
voked (e.g., clicking the “add” vs. “delete” button in a shop-
ping app). So during training phase, if we are unable to dis-
tinguish between two or more tasks for the same applica-
tion, then we look for sequence of user interactions that are
unique to a particular task. We include such operations along
with the task attributes in our app model for the correspond-
ing task.
Application Interface: To make it simple for developers to
build apps with Insider, we have built a wrapper library that
can be included in the app to start subscribing for new tasks.
Inter-app communication is implemented via Intent interface
in Android. The applications interested in subscribing to
specific tasks first need to Register with Insider app. Insider
then takes users consent via a toast message before storing
the mapping between the app package and the task category
(each identified by a unique id). In addition, the subscribing
app also needs to specify the tasks requested in the manifest
file of the package. This allows Insider app to explicitly
check for compliance by reading the app’s manifest file.
When Task Extractor picks up a new task performed by the
user, it sequentially invokes OnData call for each app that
has subscribed to that task category.

7. Evaluation
We now evaluate Insider along multiple dimensions.

7.1 Overhead on the Client Device
Insider employs accessibility API to tap into in-app data.
We wanted to understand how much overhead this approach
imposes on compute and energy consumption.

We ran two popular mobile benchmarking suites avail-
able on Android Play store – Vellamo 3.0 and AndEBench.
We compared the scores for different benchmarks related
to 2D and 3D rendering, text based animations, page load
performance and Java runtime. We also enabled UI Scraper

when the benchmarking applications are running to evaluate
the overheads. Compared to no instrumentation, the phone
with Insider has 2% across all benchmarks for accessibility
APIs based approach. We also measured energy consump-
tion during these runs. Since Insider runtime is only active
when both the screen and the CPU are active, the average en-
ergy consumption increased by only 1% compared to no the
instrumentation case. Thus, running the accessibility APIs
based Insider runtime on phones has negligible impact on
both CPU and energy consumption, while also having the
advantage of deployability. This makes it suitable for real-
world deployment.

7.2 Extraction Accuracy
For the purpose of evaluating Insider with large number of
users, we recruited 686 crowd-workers on Amazon MTurk
platform. Since, these users are mostly desktop workers, we
ran Android x86 AOSP on cloud VMs and made them ac-
cessible to the crowd-workers in a browser window using
VNC streaming. Our setup consisted of 40 VMs running on
a public cloud provider for a period of 9-months. We evalu-
ate the effectiveness of Insider in its central objective, which
is to extract structured and semantically-meaningful infor-
mation from app executions. To perform this evaluation, we
first build a model for an app by launching training tasks
with 3 separate crowd workers and apply our inferencing al-
gorithm on the data. Next, we launch multiple verification
tasks to check the correctness of the learned mapping be-
tween UI variables to corresponding attributes in the task
template. For each verification task, we know the specific
task instance provided as input (e.g., “search for a flight from
London to New York on December 1 for 3 passengers”). We
then use the Insider model already built for the app to verify
if the UI widgets identified in the app model has the corre-
sponding values specified in the verification task. If the two
match, Insider is deemed to have successfully extracted the
corresponding attributes for that app.

Note that this is a conservative evaluation since we could
have cases where Insider has a correct model and recon-
structs the task details correctly, yet the verification task fails
because of human error during the verification task (e.g., the
worker may have searched for a flight from London to New
Delhi instead of New York). On the other hand, it is highly
unlikely that Insider inferred an incorrect app model during
training and somehow the verification task, executed by a
different worker, also recreated the same error in execution.

We evaluate Insider on 150 different apps that span 11 dif-
ferent task completion categories. Our metrics are extraction
accuracy (percentage of UI widget to task attribute mapping
learnt correctly, i.e., that pass verification) and false positives
(percentage of UI widgets to task attribute mapping that fails
verification), computed after the training phase. Note that all
the false positives get eliminated after the verification step.

The results are shown in Table 2. The total number of
attributes that can be learnt from these 150 apps is 285,

Number of apps 150
Total number of attributes in all apps 285
Number of attribute to UI mapping learnt correctly (accuracy) 237 (83.2%)
Number of attribute to UI mapping learnt incorrectly (false positive) 34 (11.9%)
False positive after verification 0%

Table 2: Extraction accuracy of Insider

accounting for the fact that all task attributes specified in
the task template are not present in all the respective apps.
We find that insider is able to extract 237 attributes correctly
resulting in an extraction accuracy of 83.2%. We also find
that Insider incorrectly learns UI mappings for 34 attributes
for a false positive rate of 11.9% but these are removed from
the app model once they don’t pass the verification step.

Figure 6 shows a breakdown of accuracy and false posi-
tive values for each individual category as well as overall be-
fore the verification step. While there is variation in extrac-
tion accuracy across the different categories, we note that all
app categories have an extraction accuracy of at least 60%.

We analyzed the traces to understand the reasons for In-
sider being unable to extract the remaining 17% of attributes.
Extraction errors arise for a variety of reasons. For example,
there is the inherent error due to relying on crowd-sourced
human workers. A second source of errors is due to the
differences in apps’ UI design that impede our automatic
framework from extracting effectively. For example, one of
the lessons we learned from some of our early evaluations
was that some of the heuristics about UI design that was
built into Insider’s earlier extraction algorithm turned out to
be incorrect. Insider worked under the assumption that most
UI variables of interest will have a unique identifier associ-
ated with it. However, we noticed that for some apps, many
UI variable names were reused in the same app screen. As a
result, Insider’s earlier inference algorithm treated them as a
single variable and extracted a single final value from one of
the many variables present on the screen. If this value does
not change between two secondary tasks, it gets eliminated
from further consideration. Another reason for missing vari-
ables is that for certain UI elements like radio-buttons and
check-boxes, between two secondary tasks, the text values
associated with the UI variables don’t change but their inter-
nal properties do. Insider’s earlier inference algorithm only
looked for changes in the values and hence eliminated these
variables. To address the above two drawbacks, we aug-
mented the UI variable name with the location property (top
left, top right), and augmented the UI variable value with
the internal state (e.g., isEditable, isSelected, and isClicked),
which then improved our extraction accuracy. Nevertheless,
note that even having partial attribute related information for
a few apps can still be beneficial (e.g., extracting the source,
destination airport and date, but missing the number of pas-
sengers can still be effective for a price alert app).

Finally, the reason for false-positives in the inferencing
algorithm is the aliasing effect described in Section 4. We

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (

%
)

Accuracy False Positives

Figure 6: Accuracy across app categories

eliminate these false positives from the app model by in-
voking verification tasks. This process is analogous to taint
tracking where we provide values for certain attributes and
ask the human worker to perform the task. If we see the val-
ues appear in the UI variables in our app model then the ver-
ification step is successful. Otherwise, we eliminate these
variables from our model. By employing such verification
tasks we were able to eliminate all false positives.

7.3 Updating Model for New App Versions
Mobile apps tend to be updated frequently, so having to
update Insider’s model as well each time would add to the
cost. We performed two kinds of analysis to study the impact
of app version updates.

Number of apps 150
apps with version updates 60 (40%)
apps requiring app model update 9 (6%)

Table 3: Study of app version updates from Sep 2014 to Mar
2015 and their impact on the learnt app model

First, we ran the MTurk experiments to build app models
for 150 apps in two stages, 94 apps in September 2014,
and 56 more apps in November 2014. In early March we
performed a longitudinal study on the 150 apps, tracking the
validity of the earlier learnt Insider app model over time. As
shown in Table 3, out of the 150 apps, 60 apps had a newer
version released in the span of 6 months. Our robust model
detection technique of the updated apps revealed that only 9
of the 60 apps required a new app model to be learnt as they
had completely new UI structure. Thus, only a small fraction
of the apps (6%) required new training tasks to be deployed

#Task Groups 1 3 5 7
Accuracy (%) 77.55 89.80 89.80 89.80

Table 4: Accuracy vs. #Task Groups

to relearn the app model in a span of 6 months. Even for
these 9 apps, only 5 apps had extensive UI changes that
rendered all the attributes learnt in the previous app model
ineffective; for the other four apps, the previous app model
was still effective except for one or two attributes that needed
relearning.

Second, we compiled a total of 34 versions of 4 popular
flight booking apps – Expedia(8), TripAdvisor (4), Kayak
(13), and Orbitz (8) spanning a period of over 24 months
downloaded from a well known archive [2]. Note that some
of the older versions no longer run correctly. Nevertheless,
when we statically analyzed the app binaries (APK files),
we found that developer-assigned variable names matching
those in the Insider model built for the latest version of
the app, were present in all previous versions of the apps
except in the case of Orbitz app, where apps dated more than
15 months earlier had those variable names missing. This
suggests that the app model and the mapping of attributes to
variable names likely remains valid across multiple versions.
In other words, the Insider model would not have to be learnt
afresh despite the version updates, which is good news.

7.4 Varying the Number of Training Task Groups
The evaluation presented in Section 7.2 was based on Insider
models built using 3 training task group per app, each exe-
cuted by a different human worker (a primary task instance
and the corresponding secondary instances constitute a task
group.) Can we get away with fewer training tasks groups or
is there a benefit in having a larger number of training task
groups? This boils down to a question of how dependable
human workers are in executing Insider tasks correctly.

For a subset of 10 flight apps, we evaluate this question by
varying the number of training task groups for each app from
1 to 7, and quantifying the extraction accuracy of Insider
using the methodology noted in Section 7.2. As seen in
table 4, increasing number of human workers per app from
1 to 3 improves accuracy, however it does not provide gains
beyond 3 workers. Note that cost of training per app will
increase with number of task groups. Thus we choose a
minimum value of 3 task groups per app to strike a balance
between accuracy and cost of training.

8. Discussion
We discuss a couple of extensions to the base Insider system,
aimed at reducing the amount of human effort needed.

8.1 Leveraging Implicit Training Data
In our discussion thus far, all of the training data was gen-
erated explicitly by having human workers execute tasks.

However, there is also the opportunity to obtain training
data implicitly, specifically in cases where a user session
involves a completed transaction that results in an external
manifestation such as a confirmation email. Such confirma-
tion emails, conforming to a standardized format [11], are
already used by services such as Google Now and Microsoft
Cortana to learn about bookings and such made by users.
Insider matches this information with that obtained from UI
instrumentation, to learn the semantics of the in-app content.
If any ambiguity remains after the matching step, say be-
cause the same value occurs multiple times in a transaction
(e.g., 01 passengers travelling on 01 July), data from con-
firmation emails for additional transactions, whether by the
same user or a different user, can help with disambiguation.
Once the mapping between UI elements displayed and the
components of the structured confirmation email has been
established, Insider is in a position to glean the semantics
of in-app information, even when these do not result in a
completed transaction (and hence there is no confirmation
email).

The attraction of working with such implicit training data
is that it does not impose any additional human burden for
generating the data. The main limitation, though, is that it
requires the app developer to make the relevant information
available in a standardized format. Consequently, the list of
supported apps is still modest in size; e.g., the list for Google
Now, available at [9], shows fewer than one hundred apps.

We evaluated one such app called Chope App for on-
line restauant reservation which sends a confirmation email
with well defined schema.org template (21 attributes). Us-
ing a simple value based matching algorithm, 15 UI vari-
ables were accurately mapped to appropriate task attributes
defined in the schema. The remaining matches required more
sophisticated string matching functions which ignore some
extra delimiters that get embeded in the email text. Overall,
the implicit training approach turned out to be very promis-
ing for the apps that use structured confirmation emails.

8.2 Reducing the Number of Secondary Tasks
Our evaluation thus far has had as many secondary tasks
launched as there are attributes, each such task involving
varying the value of just one attribute while keeping the rest
unchanged. However, as noted in Section 4.1.1, we can cut
down the number of secondary tasks by using entity type
information to perform some disambiguation.

We consider the effectiveness of such an approach here in
the specific context of airport entities in flight booking apps.
Rather than launching separate secondary tasks to identify
the origin aiport and the destination airport, we launch a
single secondary task to identify the origin airport and at-
tempt to automatically identify the only other airport entity
appearing in the app as the destination airport. We find that
such disambiguation produces correct results in 25% of the
flight apps. This suggests that using entity type information

is promising for cutting down the number of secondary tasks,
although we defer an extensive evaluation to future work.

9. Related Work
Table 5 summarizes the prior work on gleaning informa-
tion from mobile app usage and the approach taken by In-
sider. AppInsight [20] instruments app binaries to do fine-
grained tracking of the app’s execution at the level of indi-
vidual functions. Such instrumentation has been used for a
variety of purposes, including performance profiling [19]),
content-based advertising [17], and automated testing [18].
While binary instrumentation could, in principle, be done
without depending on the developer, in practice it is diffi-
cult to distribute instrumented app binaries without the de-
veloper’s consent.

Flurry [5] and Google Analytics [6] are popular services
used by developers to learn about the usage and performance
of their apps in the field. These involve instrumenting the
app’s source code and linking to a special library. The granu-
larity of tracking is under the developer’s control, with finer-
grained tracking resulting in a larger overhead, e.g., in terms
of network traffic.

Narus [21] analyzes an app’s network communication to
learn about app usage. This approach has the advantage of
not requiring any instrumentation or presence on the client
device, and also providing a view cutting across apps. How-
ever, it requires a vantage point in the network that can ob-
serve all traffic. Even with such a vantage point, the grow-
ing trend towards end-to-end encryption would stymie any
attempt to glean information from network traffic. Neverthe-
less, gleaning information about apps from network traffic
continues to be an active area of research [22].

A second strand of prior work centers on automated
traversal of apps using a “monkey”. Such monkeys have
been used to explore the state space of an app, often ex-
haustively, for such purposes as testing [18], discovering
ad fraud [16], and finding privacy leaks. The key challenge
is in instructing the monkey to interact with UI widgets in
an appropriate way, to make forward progress and to do so
efficiently (e.g., without traversing the same app screens re-
peatedly). Customized monkeys have been developed for
each analysis like the ones noted above. However, there has
also been recent work on a generic framework for UI au-
tomation that allows a flexible combination of exploration
and analysis [15].

While sharing the focus on the in-app context, our work,
Insider, differs from the above strands of work in some sig-
nificant ways. Insider takes a task-oriented approach, both
in terms of gleaning semantically-meaningful information
about tasks based on the user’s in-app activity (instead of just
focusing on such metrics as app launches and page views),
and in terms of directed traversal of apps to accomplish spe-
cific tasks (instead of exploration). Hence its dependence on
human workers to execute specified tasks. Furthermore, In-

sider employs a platform-based approach, involving instru-
mentation of the UI layer — on-screen presentation and user
input — while leaving the apps themselves unmodified. This
approach, therefore, is able to cut across apps.

[13] discusses how a shared memory side channel in win-
dow managers in Android as well as other OSes could be
used by an attacker to detect UI events in a target applica-
tion. Separately, TaintDroid [14] used taint tracking, enabled
through instrumentation of the JVM interpreter, to perform
variable-level tracking through untrusted app code. In con-
trast to the security angle in these prior works, in this paper
we show that the well-documented accessibility APIs pro-
vided by the unmodified OS can be used, with user consent,
to make UI information available to and enable the tracking
of UI variables by a third-party app such as Insider, thereby
providing users new functionality. While in this paper we
have focused on Android, similar accessibility APIs also ex-
ist on other modern OSes such as Windows [1].

Finally, recent years have seen the advent of mobile per-
sonal assistants such as Apple Siri [3], Google Now [7], and
Microsoft Cortana [10], which tap a range of signals to learn
about user context. Among these are in-app signals, e.g., cal-
endar entries, but this only happens for select applications,
often first-party apps authored by the OS vendor themselves,
where the developer has chosen to make information avail-
able through APIs.

10. Conclusion
The confinement of user data within app silos, as is the
norm today, is limiting. In this paper, we have argued for
breaking down these silos and liberating user data, so that
it can be shared across apps for the user’s benefit. To this
end, we have presented a system, Insider, which takes a
task-centric approach to defining and extracting structured
and semantically-meaningful information from apps. To
construct an app model that transforms the raw data feed
from the presentation layer into structured and semantically-
meaningful information, Insider utilizes a one-time human
guided task execution for each app. We show the effective-
ness of Insider across a spectrum of app categories and apps.
We also present new applications that take advantage of the
de-siloing of in-app information by Insider to create unique
user experiences.

References
[1] Accessibility for windows runtime apps using csharp/vb/c++

and xaml. http://msdn.microsoft.com/en-us/
library/windows/apps/hh452680.aspx.

[2] Android Apps repository. http://www.androiddrawer.com.

[3] Apple Siri. https://www.apple.com/ios/siri/.

[4] Excel Flash Fill. http://office.microsoft.com/en-in/excel-
help/use-autofill-and-flash-fill-RZ103988276.aspx.

[5] Flurry Analytics. http://www.flurry.com/
solutions/analytics.

https://www.apple.com/ios/siri/
http://www.flurry.com/solutions/analytics
http://www.flurry.com/solutions/analytics

Name Approach Tracking Granularity Client Overhead Infrastructure Overhead Developer Effort Ease of Deployment
AppInsight [20] Binary instrumentation of app Very Fine (functions) Medium Nil Nil High

(but legal concerns)
Flurry [5]/ Javascript included with app Variable High High (aggregation) Variable Medium

Google Analytics [6] (depends on developer effort) (network traffic) (developer has to sign up)
Narus [21] Network traffic analysis Coarse (apps) Nil High Nil Low

(deep packet inspection) (traffic encryption)
Insider Platform instrumentation Fine (UI elements) Low Nil Nil High

(third-party app)

Table 5: Prior work on tapping in-app information.

[6] Google Mobile App Analytics. http://www.google.
com/analytics/mobile/.

[7] Google Now. http://www.google.com/landing/
now/.

[8] IFTTT: If This Then That. https://ifttt.com/.

[9] Integrate with Google Now. http://www.google.com/
landing/now/integrations.html.

[10] Microsoft Cortana. http://www.windowsphone.com/
en-in/how-to/wp8/cortana/meet-cortana.

[11] Schema-org. https://schema.org/.

[12] Smart Messaging App Demo on YouTube. https://www.
youtube.com/watch?v=Hm4PtOA-Myw.

[13] Q. A. Chen, Z. Qian, and Z. M. Mao. Peeking into Your App
without Actually Seeing it: UI State Inference and Novel An-
droid Attacks. In Proc. of the USENIX Security Symposium,
2014.

[14] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. Mc-
Daniel, and A. N. Sheth. TaintDroid: An Information-Flow
Tracking System for Realtime Privacy Monitoring on Smart-
phones. In OSDI, 2010.

[15] S. Hao, B. Liu, S. Nath, W. G. Halfond, and R. Govindan.
PUMA: Programmable UI-Automation for Large Scale Dy-
namic Analysis of Mobile Apps. In MobiSys, Jun 2014.

[16] B. Liu, S. Nath, R. Govindan, and J. Liu. DECAF: DEtecting
and Characterizing Ad Fraud in Mobile Apps. In NSDI, Apr
2014.

[17] S. Nath, F. X. Lin, L. R. Sivalingam, and J. Padhye. SmartAds:
Bringing Contextual Ads to Mobile Apps. In MobiSys, Jun
2013.

[18] L. Ravindranath, S. Nath, J. Padhye, and H. Balakrishnan. Au-
tomatic and Scalable Fault Detection for Mobile Applications.
In MobiSys, Jun 2014.

[19] L. Ravindranath, J. Padhye, R. Mahajan, and H. Balakrish-
nan. Timecard: Controlling User-Perceived Delays in Server-
Based Mobile Applications. In SOSP, Nov 2013.

[20] L. R. Sivalingam, J. Padhye, S. Agarwal, R. Mahajan, I. Ober-
miller, and S. Sayandeh. AppInsight: Mobile App Perfor-
mance Monitoring in the Wild. In OSDI, Oct 2012.

[21] A. Tongaonkar, S. Dai, A. Nucci, and D. Song. Understanding
Mobile App Usage Patterns Using In-App Advertisements. In
PAM, Mar 2013.

[22] Q. Xu, Y. Liao, S. Miskovic, M. Baldi, Z. M. Mao, A. Nucci,
and T. Andrews. Automatic Generation of Mobile App Sig-
natures from Traffic Observations . In Infocom, 2015.

http://www.google.com/analytics/mobile/
http://www.google.com/analytics/mobile/
http://www.google.com/landing/now/
http://www.google.com/landing/now/
https://ifttt.com/
http://www.google.com/landing/now/integrations.html
http://www.google.com/landing/now/integrations.html
http://www.windowsphone.com/en-in/how-to/wp8/cortana/meet-cortana
http://www.windowsphone.com/en-in/how-to/wp8/cortana/meet-cortana
https://schema.org/
https://www.youtube.com/watch?v=Hm4PtOA-Myw
https://www.youtube.com/watch?v=Hm4PtOA-Myw

	Introduction
	Design Challenges
	Insider Overview
	Extraction
	Task Abstraction and Inference
	Insider Apps

	Learning Insider Models for Apps
	Semantics from Training Data
	Training Tasks

	Inferencing from Training Task Data

	Insider Applications
	Implementation
	Evaluation
	Overhead on the Client Device
	Extraction Accuracy
	Updating Model for New App Versions
	Varying the Number of Training Task Groups

	Discussion
	Leveraging Implicit Training Data
	Reducing the Number of Secondary Tasks

	Related Work
	Conclusion

