
Inspection Resistant Memory: Architectural Support
for Security from Physical Examination

Jonathan Valamehr†, Melissa Chase∗, Seny Kamara∗, Andrew Putnam∗, Dan Shumow∗,
Vinod Vaikuntanathan‡ and Timothy Sherwood†

†UC Santa Barbara ∗Microsoft Research ‡University of Toronto
valamehr@ece.ucsb.edu, {melissac, senyk, anputnam, danshu}@microsoft.com,

vinodv@cs.toronto.edu, sherwood@cs.ucsb.edu

Abstract

The ability to safely keep a secret in memory is central
to the vast majority of security schemes, but storing and
erasing these secrets is a difficult problem in the face of
an attacker who can obtain unrestricted physical access to
the underlying hardware. Depending on the memory tech-
nology, the very act of storing a 1 instead of a 0 can have
physical side effects measurable even after the power has
been cut. These effects cannot be hidden easily, and if the
secret stored on chip is of sufficient value, an attacker may
go to extraordinary means to learn even a few bits of that in-
formation. Solving this problem requires a new class of ar-
chitectures that measurably increase the difficulty of physi-
cal analysis. In this paper we take a first step towards this
goal by focusing on one of the backbones of any hardware
system: on-chip memory. We examine the relationship be-
tween security, area, and efficiency in these architectures,
and quantitatively examine the resulting systems through
cryptographic analysis and microarchitectural impact. In
the end, we are able to find an efficient scheme in which,
even if an adversary is able to inspect the value of a stored
bit with a probabilistic error of only 5%, our system will be
able to prevent that adversary from learning any informa-
tion about the original un-coded bits with 99.9999999999%
probability.

1. Introduction
Computer architects are asked to balance performance

with all of the other aspects of the design including re-
liability, power consumption, cost, ease of use, and of
course security. Just as we have developed architecture-
level schemes to help manage circuit-level problems for
the purposes of achieving reliability (dealing with soft-error
susceptibility [51, 29, 5] and early wear-out [31, 41, 20]
for example), new architecture-level schemes are needed to
deal with the circuit-level security problem of information
leakage through hardware examination.

Underlying many, if not most, modern security schemes
is the idea of a key – a small set of bits whose secrecy
ensures the effectiveness of the overarching policy. There
are many architecture-level techniques by which these bits
can be kept secret. Processors enforce the operating sys-
tem’s memory access policies, information flow aware hard-
ware can prevent secret data from escaping at run-time [40,
45, 11, 46, 33], and even many side-channels can be mit-
igated through randomization or partitioning [47, 48, 42].
However, providing secrecy becomes even more challeng-
ing when the device in question is portable, such as a smart
card or a cell phone, or when the keys are shared across
many different devices, such as in many non-network based
attestation schemes. In these cases, one needs to consider
the fact that an adversary may be able to physically disman-
tle and inspect the system, bypassing all of our traditional
security mechanisms.

If the secrets are of sufficient value, a determined at-
tacker can use many different intensive methods to learn
these bits from even minute physical differences imprinted
on the chip by the storage of that bit. With tools available for
rent at any major university or fabrication facility, a memory
array can be carefully sliced apart with a focused-ion beam
and inspected under an electron microscope. If, for exam-
ple, the memory array was composed of anti-fuse memory
cells [10], the attacker could slice the chip apart and ob-
serve which anti-fuses have been tripped. The nature of
this class of attack is particularly insidious because it can
be done when the hardware is not even powered on, leaving
active defenses more or less useless. The problem is fur-
ther exacerbated when the exact same secret is stored across
an entire class of devices, allowing an attacker to piece to-
gether the full secret even if just a few bits are leaked from
each device.

The goal of this paper is to examine ways in which we
can architect memory structures that present the same in-
terface as a simple memory, yet are hardened against these
direct and destructive physical attacks in their most general

form. If an attacker can perfectly deconstruct and read (with
no measurement error) every bit in the system, there is little
that can be done to protect the secret key – the entire state of
the machine can be perfectly reconstructed by the attacker.
However, the attacker’s role is not so easy. Often there is
error inherent to the process of measurement, for example,
the attacker may fail to see the exact point at which the anti-
fuse has triggered, leading them to believe that a zero was in
fact a one, or vice versa. As these errors are made and some
fraction of the bits are incorrectly identified, information is
lost by the attacker.

Instead of storing the secret key itself on-chip, we pro-
pose that the keys (or other secret data) can be encoded us-
ing additional bits, increasing the number of bits that an at-
tacker must identify in order to recover the secret key. The
core of the idea is to force the attacker to successfully iden-
tify a large number of the encoded bits to be able to learn
even a single bit of information about the secret key. The
main idea of our approach is inspired by recent theoreti-
cal cryptography results [32, 7, 8, 12] that are themselves
rooted in a subject familiar in computer architecture: error-
correcting codes. In an error-correcting code, if we are able
to recover at least k of the n bits measured, then the full
message can be perfectly recovered. The idea we need here
is exactly the converse, if less than k bits of the n bits mea-
sured can be recovered, then no information about the mes-
sage is recovered (in an information-theoretic sense). This
is embodied in the notion of secret-sharing first introduced
by Shamir [35] in 1979. In fact, as we will discuss later in
Section 3, there is an important relationship between error-
correcting codes and the problem of secret hiding.

Resistance to physical attacks is a fundamentally new de-
sign constraint for computer architects, and there are some
important new tradeoffs to consider. The biggest trade-
off we explore here is between area (the size blow-up due
to both the encoding and the hardware implementation of
the standard memory abstraction) and inspection resistance
(the probability that the attacker will successfully recover
the bits of the secret). We explore this design space, and
make use of two related theoretical methods from cryptog-
raphy originally developed for secret-sharing, a method for
splitting data apart between multiple, potentially adversar-
ial, parties. The memory architectures that result from these
cryptographic primitives differ radically both in terms of
failure mode and implementation costs. We further show
how these two schemes can be combined together to create
a balance between storage cost and computational complex-
ity, and analyze how and when the resulting system can fail
to provide security. In particular, this paper makes the fol-
lowing contributions:

• We propose an architecture-level model for estimating
a memory system’s vulnerability to physical inspection

and memory remanence attacks, along with a discus-
sion of the strengths and weaknesses of said model.
• We describe a new quantifiable architectural tradeoff

between physical inspection resistance and hardware
overhead, and we show that secret-sharing techniques
can result in systems being built that are both formally
sound yet implementable in practice under this set of
tradeoffs.
• We evaluate several different memory structures both

in terms of their ability to thwart these attacks and in
their implementation cost. In the end we unify secret
sharing and a coding based approach under a com-
mon framework, and describe a specific implementa-
tion that, even if an attacker is able to learn the value
of physical bits with 95% accuracy, has less than a 1
in a billion chance of leaking even a single bit of the
secret.

We begin by discussing our motivation for investigating
how to store secrets on a device where the attacker has full
access. We go on to discuss some background on memory
remanence attacks and other physical attacks on cryptogra-
phy as well as the scenarios in which they are problematic
in real life, and a formalization of our threat model. With
this background, we present the design choices for our ar-
chitecture and analyze the tradeoffs between our different
approaches.

2. Background and Motivation
To help ground these requirements in a real world con-

text, let us consider the problem of network-less attestation
for console gaming systems. To help prevent cheating as
well as unauthorized and malicious knock-offs, a console
system may wish to ensure that it talks only with certified
devices. Before the console will talk with a new device, the
device must first be able to “prove” in some way that it can
be trusted, typically by demonstrating that it knows some
secret.

These secrets may be symmetric and shared between all
parties, but more often the secrets are private keys used
in a public-key authentication method. Authentication can
happen even without network access as long as both par-
ties involved can convince each other that they know what
that shared secret is. There are well known cryptographic
methods, such as public key authentication, that allow this
process to occur without actually requiring the transmis-
sion of any secrets. However, each system must, in some
form or another, physically possess and make use of that
secret. The problem is that the cost of leaking that key is
now much larger. Once the secret is leaked, any number of
new systems can be created containing that same key and
the scheme is completely broken. Such “break-once run-
anywhere” attacks provide tremendously attractive and po-

tentially lucrative targets for attackers. Often, such attack-
ers are often willing to bring highly specialized equipment
and training to bear [18]. While the applicability of our ap-
proach is not limited to such extremely high value data, it is
certainly one motivating instance.

2.1 Physical Inspection Attacks

The problem of storing a secret in a device when the at-
tacker has full physical access to that device is extremely
difficult. At a fundamental level, attacks which attempt to
infer a set of bits from a device can be divided into two
classes: passive attacks, in which the interface of the sys-
tem is probed for either timing or electrical differences, and
intrusive attacks, those that actually breach the boundary of
the package, allowing the attacker to scan, probe, or alter
the physical hardware itself. While still a topic of further
research, passive attacks and their countermeasures are dis-
cussed extensively in prior work. In this paper we concern
ourselves primarily with the latter, more intrusive style of
attacks.

Intrusive attacks can then be further subdivided into ei-
ther: powered attacks, meaning that the device is monitored
in an active (powered-on) state as it attempts to perform
it’s intended functionality; or un-powered attacks, meaning
that the bits are extracted from the device while the hard-
ware is not even powered on. The classic approach to deal-
ing with powered attacks is to insert some form of tamper-
detection into the device, but preventing attacks when the
system is powered off is even harder because the system (in
its powered off state) has no computational ability to react
to changes in the environment. One way around this prob-
lem is to include a battery or other source of power within
the boundary of these sensors [37]. In this way the system is
never truly powered off, and it is always ready to react when
the surface of the platform is breached. Unfortunately, this
means that a power source must be included in the tamper-
detecting package, which greatly increases the total size of
the package, the amount of surface that needs to be pro-
tected, and hence the total cost of the design. While this
provides a platform secure against almost all intrusive phys-
ical attacks, there are two main problems here: 1) finding a
reaction to intrusion that completely destroys that data, and
2) the cost of the system (often well outside the set of costs
acceptable in the embedded device space where even a few
cents matters). After the countermeasures are deployed, the
device can still be depackaged, at which point it would still
be subject to further unpowered attacks.

Independent of whether active counter measures have
been applied or not, we specifically consider unpowered at-
tacks where the attacker is free to slice, cut, and examine the
silicon in any way that they desire. Specifically the threat
model that we consider is one in which an attacker is given

physical access to a dead device on which a secret key is
stored or has been stored (Figure 1).

Information about that secret could exist in many differ-
ent forms. The typical way that these attacks are carried out
is that the silicon is cut into slices with a Focused Ion Beam
(FIB) and examined under an electron microscope. Most
architects have probably seen such silicon cross sections in
other contexts. The devices are examined one by one and
tell-tale signs of current fatigue, such as whisker tails due to
electron migration, are recognized by an expert. While the
equipment involved is quite expensive to purchase outright,
most companies and campuses rent out their machine by
the hour. Indeed, there are teams of people that specialize
in carrying out this sort of analysis for post-mortems (e.g.,
when digital systems are involved in violent accidents) and
reverse engineering. Consider the remanence issues with
three common memory technologies:
Anti-Fuse: Anti-fuses are a non-volatile, write-once mem-
ory that are formed by creating an electrical connection
through the application of high current across a thin chan-
nel. The actual connections are electrically very stable, yet
are very difficult to examine even under a scanning elec-
tron microscope. Their security properties have been pri-
marily analyzed within the context of FPGA reverse engi-
neering [10, 49].
EEPROM and Flash: Flash memory and EEPROM are
similar in structure, with both storing charge on a floating
gate. When EEPROM and flash cells are overwritten, some
residue of the previous bits written are still contained within
the substrate as bias, and differences in the threshold volt-
age or gate voltage can be measured to detect the state of
a cell. This effect is particularly noticeable in infrequently-
programmed cells [24], which is likely the case for cells
holding a secret key. Prior work has shown that this bias
can survive even tens of redundant “clean-up” writes, mak-
ing complete erasure of the information difficult within the
time dictated by a countermeasure[17].
SRAM: Even volatile memories are subject to analysis in
many cases. SRAM, while storing a bit for even as little as
a half a second, can develop tell-tale signs due to differences
in the electromigration at the bit-cell level [36]. Because of
this, even volatile memories that hold secret keys need to be
protected.

While physical analysis gives an attacker incredible ac-
cess to the internals of the system, we believe these anal-
yses cannot be 100% accurate. If the bits are stored un-
protected, even unreliable approaches that can determine as
few as 25% of the bits stored in memory are sufficient to
inform further analysis to the point that the cryptographic
schemes (e.g., network authentication protocols) using the
key can be broken. However, as we will show later, even if
these techniques were to be 95% accurate, it is possible to

1

Si

Metal

Si

Metal

Si

2

3

4

Figure 1: An overview of the general steps taken to conduct an unpowered, physically-intrusive attack. In step 1, any packaging is
disassembled to expose its contents, and in step 2, the silicon chip is obtained. Step 3 uses a Focused Ion Beam to either cut a cross section
of the chip, or to slice off layer after layer until individual transistors are exposed, Finally in step 4, an electron microscope is used to
examine the chips and retrieve the desired data.

create reasonable architectures that prevent even a single bit
of the key from leaking.

2.2 Other Physical attacks and Related Work
It is worth pointing out the other attack models relevant

in this space and the best known methods for addressing
them. There are many channels by which a secret may leak
to an adversary beyond direct inspection. Many of the pow-
erful attacks rely on observations of the dynamic behavior
of the system to infer information about the keys. For ex-
ample, information about a key can be observed through
variations in timing due to cache misses [43, 30, 4], vari-
ations in power utilization over time [23], or through RF
emanation [14]. Instruction caches, data caches, and branch
predictors are some of the shared resources that can be ex-
ploited in these attacks [22, 2, 1]. All of these channels are
powerful in the hands of a motivated attacker, but there is a
growing body of work attempting to develop strong coun-
termeasures for general models of these attacks. We view
these attacks as orthogonal to the problem of direct mea-
surement addressed in this paper.

In response to the success of side-channel attacks, the
theoretical cryptography community has recently developed
rigorous models of information leakage and cryptographic
schemes that can be proven to retain security in these mod-
els. Although roots of this work can be traced back to early
work on privacy amplification, the problem of information
leakage was explicitly considered starting from the works
of Rivest [32, 7, 8, 12], and developed in its full general-
ity by Micali and Reyzin [28] as well as Ishai, Sahai and
Wagner [19]. This sub-field of theoretical cryptography has
come to be known as “leakage resilient cryptography”, and
the amount of interest and the number of results in this
area has exploded in recent years [13, 3]. Although there
have been a host of interesting results in this area recently,
most of the schemes are rather inefficient, and restricted
to particular cryptographic mechanisms such as encryption
or authentication. We will, however, use the intuition and
techniques from these works, and in particular the work on

exposure-resilient cryptography by Dodis et al. [8], to con-
struct an inspection resistant memory architecture that is
efficient enough that the end system can be used in a real
design. Finally, we remark that the focus of many construc-
tions in this area is to protect computation from leakage at-
tacks, whereas in this work, we focus exclusively on pro-
tecting memory components from a very powerful form of
inspection.

Another area that is related to the work presented is tam-
per resistant computing. Architectures in this space gen-
erally attempt to make any tampering with memory or the
bus evident through the use of sophisticated hashing and
encryption schemes [39, 25, 16, 26]. Yang and Peng extend
this idea to consider the protection of keys by secret sharing
them across multiple cores in a CMP [50]. We believe that
our approach is complementary to these architectures. The
threat model these systems typically address is one in which
the entire memory subsystem is adversarial, but they often
assume that the processor itself is a valid root of trust, an as-
sumption that would be assisted by the technology proposed
here.

A final area of related work is Physical Unclonable Func-
tions (or PUFs). The goal of a PUF is to provide a function
that is intimately tied to the underlying physical hardware
and yet is intractable to duplicate. This, in turn, allows
hardware to be uniquely identified through a series of chal-
lenges and responses [38, 6, 27, 15]. A PUF does not pro-
vide secrecy in itself, rather it provides a type of one-way
function with exponential complexity in linear space. There
has been a flurry of work over the last several years ex-
ploring ways in which process variability can be exploited
to provide the randomness required to build strong PUFs,
and a good overview of that work along with other appli-
cations can be found in “Towards Hardware-Intrinsic Secu-
rity” [34]. Many proposed implementations use PUFs to
generate a unique key which is then stored in memory and,
as such, may be subject to the types of attacks discussed in
this paper. The work presented here is complementary to

PUFs, both in that it does not require any particular process
variability assumptions or special fabrication techniques,
and because the techniques may be helpful when used in
tandem (for example after key derivation or in the assistance
of SRAM-based PUFs).

2.3 Architectural Goal and Attack Model
We wish to create a hardware component that will: a)

Act like a standard memory, allowing random access to the
stored keys with no special restrictions; b) Allow some dis-
tribution of bits to be learned by an adversary without giving
away any information about the secret keys; and c) Be effi-
cient enough that the end system can be included in a real
design.

Our secret-store memory keeps some number of keys,
each of length k. Each key is stored in an encoded form
that takes some larger number of bits c; we will call this the
“encoded key”. An attacker examines the c bits of the en-
coded key through whatever methods are at their disposal,
and they make a best guess as to the state of each of the bits
of the encoded key. The attacker, when dissecting and an-
alyzing each bit has a probability p of learning the correct
value of the bit, and a probability 1− p of learning nothing
about the bit. In particular, as a running example, we will
consider the cases where p = 90% which, by this reason-
ing, is at least as strong as saying that the adversary guesses
correctly with probability 95% and incorrectly with proba-
bility 5%. In this paper, we do not make any estimation as
to what a reasonable value of p may be, but rather present
results and the architectural impact across the spectrum of
possibilities.

We will be very conservative, and consider an attack suc-
cessful if the attacker can infer anything about the secret,
even a single bit. Specifically we define the probability that
an attack is successful Psucc as the probability that given
an architecture and a probability p of successfully attacking
an individual stored bit, any information leakage has oc-
curred. While a single bit leakage is not enough to break
any reasonable cryptographic scheme (because an attacker
could have just tried both possible options of 0 and 1), if
other copies of the key are known to exist an attacker might
combine information from many such attacks to reduce the
keyspace far enough that it can be searched exhaustively.

There are two potential issues with this model of an at-
tack that are worth mentioning. The first is that, for the
purpose of analysis, we assume that the probability an at-
tacker learns anything from one bit is independent of the
probability of the other bits. While we have no evidence to
suggest that this assumption is invalid, it would be easy to
modify the analysis to consider any correlation effects that
did appear or, if necessary, to conservatively use the worst-
case probabilities. The second issue with this model is that
it ignores the ability of an adversary to learn anything from

worn logic. While this is often less of a concern in practice
because logic outputs tend to change more frequently, this
is far from a given. However, such analysis is beyond the
scope of this work.

3. Architectures
There are several different architectural options here, and

we begin with the simplest, and work our way quantitatively
towards the best possible options. While we build on some
different cryptographic primitives, in each case we believe
that we are the first to propose any of these schemes in the
context of physical inspection based attacks. Furthermore,
we are the first to quantify the costs of these schemes in a
practical hardware sense (i.e. with more than simple asymp-
totic bounds). For the purposes of analysis, we will as-
sume (unless otherwise stated) that the key-length required
is k = 1024, the probability of successfully attacking a sin-
gle stored bit p = 90%, that the store has a total capacity
of 128 keys, and that an acceptable value for Psucc is 1 in
a billion (although we will show later that the analysis is
surprisingly unaffected by the exact value of Psucc that we
choose as “acceptable”).

k Key Length
p Probability of learning 1 bit
Psucc Probability of successful attack
x 1 secret bit
s Number of random bits
c Total number of bits to be stored per key
r 1 random bit
T Random bit s-by-k matrix

Table 1: A list of terms and variables used in the upcoming section

3.1 Option 0: Do nothing
To provide a base line for our discussion, the first option

we have for hiding the secret is to store it as-is. As outlined
in Figure 2, the chance that an adversary learns something
about the key is obviously very high. With k bits to attack,
and a probability p of successfully attacking an individual
bit, the chance that the adversary fails to uncover even a
single bit of the key is exceedingly small, namely (1− p)k.
The number (1 − p) – namely, the probability that the ad-
versary does not learn an individual bit – must be extremely
close to 1 for the exponent to not drive the entire quantity
to 0. In fact, in expectation, the adversary obtains not just a
single bit, but p · k bits of the key (out of a total of k bits) in
this scenario.

3.2 Option 1: Apply the Idea of Secret Sharing
The first, and easiest to understand, option for hiding a

bit of information is to use secret sharing scheme. A simple
and efficient secret sharing scheme consists of XORing the

0 1 0 0 1 0 0 1
1 0 1 1 1 1 0 0
1 1 0 0 0 1 1 0

k

Storage overhead: c(s n+k)

010 É111 011
x

n
iff bits recovered > t

s c |k|

c|k|

0 1 1 É

c |k|

n

0 1 0 0 1 0 0 1
1 0 1 1 1 1 0 0
1 1 0 0 0 1 1 0

k

x iff bits recovered > t

Storage overhead: c(n+|k|)

010 É111 011

s |k|

k

x

Storage overhead: s

n

Pcompromise: 1-(1-ps)|k|

1 1 0 É

|k|

n

k

x x

Storage overhead: 1
Pcompromise: 1-(1-p)|k|

Figure 2: An overview of options 0 through 3 discussed below. The first (left most) option is to do nothing, which an attacker can break
very easily. Secret sharing divides the bits up in a way that XOR is used to put them back together, but requires a significant amount of
space. The next option is to use a code (based on multiplication by a binary matrix) to protect the key, which is better but requires the
storage of a large matrix. The final (rightmost) option presented here is a combination of the two that seeks to strike a balance between
matrix size and code density.

secret x with s random bits (x1, . . . , xs), and setting the
shares to be

[
x1, x2, . . . , xs, xs+1 = x⊕ (x1 ⊕ x2 ⊕ . . .⊕

xs)
]
. Of course, given all the s+ 1 shares, one can recover

the secret x by computing xs+1⊕(x1⊕x2⊕ . . . xs). On the
other hand, if the adversary obtains at most s of these s+ 1
shares, he has no information about the secret x. Namely,
no matter how powerful the adversary is, they do not learn
any information about the secret x as long as they do not
get all the shares x1, x2, . . . , xs+1.

Intuitively, one can think about secret sharing as de-
scribed in Figure 2. To share a 0 bit three ways, we first
take two random bits. We then set the third bit such that
the parity of the three bits is 0. A change (or, measurement
error) in any of the three bits will result in a change in (or,
measurement error) in value stored. An astute reader will
see the relation with error codes start to take shape here.
In essence, a secret sharing scheme uses the parity bit as
the data, and a set of randomly selected “data” bits as the
“code”. The fragility of the parity bit is then used to catch
errors in one scheme, but to hide data in the other.

How do we store a k-bit key using this method? The sim-
ple option is for each individual bit of the key to be shared
across s + 1 stored bits, increasing the total number of bits
to be stored per key to c = (s + 1) · k. To be successful,
an attacker must compromise all of the bits of at least one
(s + 1)-bit share block. The probability of compromising
a share block is now ps+1, and our attacker has k indepen-
dent trials to succeed, yielding a total probability of success
Psucc = 1 − (1 − ps+1)k. Figure 3 explores the relation-
ship between the number of shares s needed, and Psucc, the
probability that the attacker learns at least one bit of the ac-
tual key for the parameters discussed at the beginning of this
section. Interestingly, there is a steep drop in the probability
of a successful attack as we grow from 40 to 80 shares per
bit. Clearly, replicating every bit in the key by a factor of 80
is a steep overhead to endure, but as we increase s we can
drive Psucc arbitrarily close to zero.

3.3 Option 2: Encode with a Random Matrix
Intuitively, the reason that the secret sharing based

scheme has such a large overhead in storage is that we chose
to encode each bit separately. This raises the possibility of
encoding all the bits together and achieving much better pa-
rameters. A coding based scheme is a natural extension of
the secret sharing scheme yet shares many of its theoretical
properties [12]. Recall that in the secret sharing scheme,
we encoded a bit x by picking s random bits x1, . . . , xs and
computing xs+1 = x ⊕ (x1 ⊕ . . . ⊕ xs). To encode a sec-
ond bit, we picked a new, fresh sequence of s random bits,
and so on. A natural question that comes up is: can we re-
use the same sequence of random bits x1, . . . , xs to encode
multiple bits? If yes, how many bits can we possibly encode
using a single sequence of random bits? Answering these
questions leads to a coding based scheme which provides
(close to) the best trade-off between the amount of storage
needed to encode k bits and the probability of success Psucc,
for a given leakage rate p.

Before we proceed to discuss this solution in detail, let
us reflect on the intuition for what are the best parameters
we can possibly hope to achieve using such a scheme. Note
that in expectation, the adversary obtains a p fraction of the
c stored bits, or equivalently, an “information content” of
p · c bits. Thus, the “residual entropy” left on those c bits
is (1 − p) · c bits. To encode k bits in such a way that
the adversary obtains absolutely no information about any
of them despite the leakage, we need the residual entropy
to be larger than the length of the key. That is, we need
(1 − p) · c ≥ k. In other words, the total number of bits of
storage required to perfectly protect k bits of the key against
a rate of leakage of p has to be at least c ≥ k

1−p bits -
this is a strict lower bound, and it is impossible to do any
better and still guarantee security in our model. For our
parameters of k = 1024 and p = 90%, this translates to a
storage of 10·1024 = 10240 bits. In fact, we will now show
a scheme that achieves storage very close to this number,
while keeping Psucc very small.

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140

P
 (

S
u

c
c

e
s

s
fu

l
A

tt
a

c
k

)

Size of the Coded Key / Key Size

Shares Code

Figure 3: A graph of the tradeoff between code size and attacker success probability. On the x axis we track the size of the coded key, where
either secret sharing (“Shares”), or code theory (“Code”) is used. On the y axis is the probability that an attacker will be learn at least
one bit of the secret (lower is better). Because secret sharing can be broken by an unlucky distribution of errors concentrated on a single
coded bit, far more bits are need to encode the key to reach the same attacker success probability.

At a high level, the coding based scheme works as fol-
lows. We will encode the key as s random bits plus k
“data bits”. In order to do this, we fix random subsets
T1, T2, . . . , Tk ⊆ {1, 2, . . . , s} in advance. The choice of
these subsets do not depend on the data to be encoded, and
in fact, in the implementation, they will be chosen at ran-
dom once and for all, and stored on-chip. To encode a
sequence of k bits x1, . . . , xk, we choose s random bits
r1, . . . , rs (as before) and compute the k “data bits” rs+j

for j = 1, . . . , k as rs+j = xj ⊕
(⊕

i∈Tj
ri). In other

words, we compute the XOR of a subset of the s random
bits and XOR the result to the bit that we wish to encode.
The final encoding is computed by the formula:[

r1, . . . , rs, rs+1 = x1 ⊕
⊕
i∈T1

ri, rs+2 =

x2 ⊕
⊕
i∈T2

ri, . . . , rs+k = xk ⊕
⊕
i∈Tk

ri

]

It is worth noting that the savings in space comes from
the fact that unlike the secret sharing scheme, we are re-
using the random bits r1, . . . , rs to encode all k bits of the
key.

Instead of carrying around this big formula, let us write
it out as a simple matrix-vector multiplication. Write each
subset Tj as an s-bit column vector whose ith bit is 1 if
and only if i ∈ Tj . Thus, a subset {1, 2, 5} is represented
by the (column) vector (1, 1, 0, 0, 1, 0, . . . , 0). Let T be
the random s-by-k matrix whose columns are all these s-
bit vectors, one corresponding to each subset T1, . . . , Tk.
Also, let the vector ~r = (r1, . . . , rs), and let the vector ~x
be (x1, . . . , xk). Now, we can concisely write the encod-
ing computed above as

[
~r, ~r ·T ⊕ ~x

]
, with storage equaling

c = s+ k bits.

Thus, encoding a string of k bits consists of (a) choos-
ing s random bits, (b) computing a matrix vector product
of these s bits (written out as a vector) with a fixed s-by-k
matrix, and (c) XORing the result with the k-bit key to be
protected. Decoding proceeds by a symmetric sequence of
operations – first, compute the matrix-vector product ~r · T ,
and then “XOR this out” from ~r · T ⊕ ~x to get the key ~x.
A downside of this scheme is that the matrix T needs to be
chosen at random and it needs to be stored on chip. How-
ever, the storage required for the matrix can be amortized
if we store a large number of keys, since we can re-use the
same matrix for all the keys. This effect can be seen in Fig-
ure 6. We will present another option to significantly reduce
the overhead of storing the matrix in Section 3.5.

We now derive an expression for the success probability
Psucc, for a given storage overhead s and a per-bit leakage
probability p. The calculation of this probability proceeds
in two steps. First, we show that with a very high prob-
ability, the number of bits that the adversary learns is in
fact not much larger than p · s. (Recall that the expected
number of bits that he learns is p · s.) Thus, whenever the
adversary learns significantly more than p ·s, we say that he
automatically succeeds, and the probability that he learns
significantly more than p ·s bits contributes to Psucc. Notice
that this calculation overestimates the adversary’s probabil-
ity of success (although not by a significant margin). Ana-
lytically, the probability that the adversary learns more than,
say, (p+0.01) ·s bits turns out to be (at most) 2−2·(0.01)

2ps,
using a Chernoff bound [9]. Secondly, given that at most
(p + 0.01) · s bits leak, the probability that the adversary
obtains information about any of the key bits can be shown
to be at most 2k+1

2(0.99−p)s , using an argument based on ma-
trix rank. Thus, in total, an upper bound on the adversary’s
probability of success is

Psucc ≤ 2−2·(0.01)
2ps +

2k+1

2(0.99−p)·s
(1)

0!

10!

20!

30!

40!

50!

60!

70!

80!

90!

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

O
v
e
rh

e
a
d

 (
b

it
s
 s

to
re

d
 p

e
r

u
s
e
fu

l
b

it
)!

P (probability of succesful bit read by attacker)!

Composition

Shares-Only

Code-Only!

Figure 4: A graph showing the efficiency of the different schemes as a function of the power of the attacker to read individual bits. The x
axis is the probability p that an attacker is able to correctly determine the value of each stored bit in the scheme. The y axis is the size of the
code (as a ratio) needed to ensure that the probability that an attacker can learn at least one bit is below one in a billion. While the code
scheme scales better as the attacker becomes more powerful, the combination of the two methods outperforms either individual approach
when the matrix needs to be stored on chip.

For our purposes, the dominant term in this sum is the
second one. We can see that it drops off sharply as soon
as the exponent of 2 in the denominator starts exceeding
the exponent of 2 in the numerator. That is, as soon as
s ≥ k+1

0.99−p ≈
k

1−p , as predicted by the informal analy-
sis above. For our scheme, the storage required for the en-
coded key is s + k bits (s bits of randomness plus k bits
of the XORed key), which is quite close to the optimum of
k

1−p . From Figure 3, we see that for our choice of parame-
ters p = 90% and k = 1024, the point where Psucc starts to
fall off is when the ratio of the coded key versus the actual
key length, i.e., (s+ k)/k is approximately 11 or 12, which
coincides with this analysis.

Another interesting observation from Figure 3 is that
the drop-off in Psucc is much steeper for the coding based
scheme than the secret sharing scheme. Informally, the rea-
son is that the secret sharing based scheme encodes each
bit separately. Thus, the probability of learning i bits out
of k drops off roughly linearly with i from its largest value
to the smallest. This explains the gradual incline for the
secret sharing based scheme in Figure 3. For the coding-
based scheme, as long as the adversary does not learn too
many bits of the encoded key, they obtain no information at
all about the actual key. As soon as they learn more than
a threshold number of bits of the encoded key, they start
learning a lot of information about the actual key all at once.
In other words, as we make the encoded key larger (for a
fixed value of p), there comes a point when the attacker
learns so few bits (compared to the length of the encoded
key) that he has no information at all about the actual key.
This explains the sharp drop-off in Psucc in Figure 3 for the
coding scheme.

0

10

20

30

40

50

60

70

80

0 1000 2000 3000 4000 5000

St
or

ed
 B

its
 p

er
 U

se
fu

l B
it

size of the key

Figure 5: A graph showing the efficiency of the combined scheme
as a function of the size of the key. As the key grows beyond 1024
bits, we can see that the efficiency of the scheme decreases (as the
number of stored bits required per key bit increases linearly)

3.4 Option 3: A New Combination
Both the options presented above – the secret sharing

based solution and the coding based solution – have pros
and cons. On the one hand, the secret sharing based solu-
tion has a larger storage overhead for the key due to the
fact that the scheme squanders away random bits. But, the
scheme does not need to store anything beyond the encoded
key. On the other hand, in the coding based scheme, the
overhead to store the key is relatively small, but we also
need to store a fairly large random matrix T . While both
those schemes have been previously proposed for other ap-
plications, we believe we are the first to quantify their actual
implementation overhead, and in doing so realized a natural
option is to design a novel hybrid scheme that achieves the
best of both worlds.

0

50000

100000

150000

200000

250000

1 10 100 1000 10000

Eq
ui

v.
 A

re
a

Re
qu

ire
d

Pe
r K

ey

number of keys in storage

Figure 6: A graph showing the efficiency of the optimally com-
bined scheme as a function of the number of keys stored in the
architecture. With very few keys stored, the cost of the matrix can-
not be amortized, and the best scheme uses secret sharing only.
However, once we get beyond on the order of 10 keys stored, the
efficiency of the scheme improves drastically as the cost of larger
matrices can be amortized.

To do this, we first encode the individual bits of the key
using a code-based secret sharing scheme with a smaller
matrix T . Roughly speaking, the intent is to reduce the
severity of attack from a per-bit leakage probability of p to
a smaller number p′. We then further encode the resulting
string using the secret sharing based scheme. The upshot
is that the matrix needed for the coding-based scheme is
smaller because it only needs to be strong enough to reduce
the severity of the attack from p to p′. As shown in Fig-
ure 4, the combined scheme outperforms both the coding
based and the secret sharing based schemes when the ma-
trix T is stored on chip. Figure 5 shows how the storage
overhead varies as a function of the length of the key. We
remark that although the increase in the storage overhead
with the length of the key is disturbing, it is predominantly
due to the need to store the large matrix T , and will be re-
moved by our improved solution in Section 3.5.

Figure 6 shows that the overhead caused by storing the
matrix can be amortized by the number of keys we store in
the system. This is simply because we can use the same
matrix T to encode many different keys. Figure 7 shows a
plot of the area required to store the encoded key (together
with the auxiliary information such as the matrix T) as a
function of the success probability of the adversary. Ob-
viously, if we let the adversary succeed with probability 1,
very little storage is required. The storage jumps to a cer-
tain number as soon as we demand the adversary’s success
probability to be less than, say, 0.1, and stays more or less
constant from then on. This phenomenon can be explained
by the (roughly) logarithmic dependency of the storage on
the success probability. In other words, reading Figure 7
from right to left roughly gives a logarithmic curve.

3.5 Option 4: Dynamic Matrix Creation

In the last section, we showed a way to ameliorate the
effect of storing the huge matrix T in the coding based
scheme. We now show a way to eliminate this overhead
almost entirely, using a cryptographic hash function such
as SHA-2. The SHA-2 family of hash functions consists
mainly of two functions SHA-256 and SHA-512 (where the
numbers indicate the output length of the hash function).
The advantage to this approach is that SHA-2 is widely
used, and has optimized hardware implementations already
available. In particular, most of the next generation SHA
implementations require on the order of 20, 000 gates to im-
plement, which is quickly amortized over the entirety of the
key storage architecture.

Informally, the idea is to instead store some compressed
version of the matrix T , and then decompress portions as
necessary while we are regenerating the key. However,
our security analysis above requires that the matrix be cho-
sen completely at random, which inherently means that it
cannot be compressed much. Alternately, we could try to
modify the way we choose the matrix so that the result is
easier to compress. This must be done carefully, because
the wrong approach may result in a completely insecure
scheme.

Our approach is to use cryptographic tools which are
specifically designed to produce output that looks random
in a very strong sense but that can be generated determinis-
tically from a very small input. In particular, we note that
modern cryptographic hash functions are designed to be-
have like truly random functions (in which each output is
chosen independently and uniformly at random) as much as
possible. (See e.g. the security requirements given by NIST
for the SHA-3 competition.) Evidence of any non-trivial ap-
plication in which a hash function behaved significantly dif-
ferently from a random function would be considered a ma-
jor weakness, and finding such a weakness in SHA-2 would
be a major result.

So, suppose that we use SHA-256 as follows to generate
our matrix: Recall that T is an s × k matrix of bits. Then
we will generate each column using s/256 calls to SHA-
256. Specifically, we will choose a short random string
seed, and compute the ith column as: SHA2(seed ◦ i ◦
1) ◦ SHA2(seed ◦ i ◦ 2) ◦ . . . ◦ SHA2(seed ◦ i ◦ `) where
` = s/256, seed is a 256-bit string, seed◦ i◦j is encoded as
a 448-bit string to be input to the SHA-256 hash function,
and ◦ denotes concatenation of strings. Note that if we had
instead used a random function, then the resulting matrix
would be random, and would guarantee that an adversary
would have only a very small probability of extracting any
information about the key (as described).

But what if an adversary could somehow use the fact that
the matrix was instead generated using SHA-2 to design a

Single seed (anti-fuse memory) 0.044 mm2

Single key (SRAM) 0.084 mm2

SHA generator 0.46 mm2

Computational logic 0.08 mm2

Total (for 1 key) 0.589 mm2

Total (for 128 keys) 6.18 mm2

Table 2: The area overhead for our proposed method, in 65 nm
process technology. Note that the contents of anti-fuse memory
need not be secret as they are used to determine the public matrix
used for coding

better attack on our scheme? The key idea here is that that
attack would then be a simple example of an application
where SHA-2 behaves very differently from a random func-
tion. While we cannot say for certain that this is impossible,
it would certainly be a very surprising result, and a major
breakthrough in the cryptanalysis community.

To ground the microarchitectural impact of this fourth
option, consider the key length k = 1024 and the probabil-
ity of successfully attacking a single stored bit p = 90%.
This fourth option requires 35 bits of additional storage
per bit of the key, resulting in 35,840 bits per key. Us-
ing Cadence InCyte ChipEstimate 4.0 at a generic 65 nm
process node, the total area required for storing the seed
using anti-fuse memory is 0.044 mm2. Note that we are
not relying on the secrecy of these bits. Storing a key us-
ing the most area-efficient single-port SRAM configuration
requires 0.084 mm2 per key. The SHA generator requires
0.46 mm2, and computation logic requires 0.08mm2. In to-
tal, the cost of securing a single key using this method is
0.589 mm2. Storing additional keys helps to amortize the
cost of the SHA generator and the computation logic. Stor-
ing the 128 keys requires 6.18 mm2, still well within the
area bounds for embedded and consumer devices. This is
summarized in Table 2. We evaluated the impact of this
scheme in terms of area because we want to show the op-
timal amortization of code and hardware under the given
tradeoffs. Simply expressing the overhead in terms of extra
bits hides the cost of the hardware.

Thus, our cryptographic hash based scheme works as fol-
lows: We choose the 256-bit string seed – and use it to gen-
erate the matrix T on the fly, during the encoding and de-
coding procedures. The seed is then stored along with the
encoded key. Note that instead of storing the huge matrix
T , we now store the seed which is a 256-bit string. This
architecture is sketched out in Figure 8. With this modifi-
cation, the coding-based scheme is strictly better than the
secret sharing based scheme in terms of total storage.

It is important to keep in mind the two caveats of this
cryptographic hashing-based extension. First, the secrecy
of the bits is based on the assumption that SHA-2 does in
fact behave like a random function in the application we
consider (this follows as a special case of the widely used

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

1.E-16 1.E-13 1.E-10 1.E-07 1.E-04 1.E-01

Eq
ui

v.
 A

re
a

Re
qu

ire
d

Pe
r K

ey

Acceptable Probability of Attack

Figure 7: A graph showing the core size requirement as a function
of acceptable attack probability. On the x axis we plot the risk
probability that one might consider “acceptable”. On the y axis
is the size of the hardware required (in bits) for the best scheme.
When we are willing to accept 100% probability of breaking then
clearly very little space is needed. While there is a large jump as
soon as we demand even a 1 in 10 probability of breaking, we can
then demand up to 1 in 1016 (reading the graph from right to left)
with only incremental increases in hardware overhead.

“random oracle heuristic”). Secondly, during the encoding
and decoding process, we need to generate the matrix T on
the fly which could potentially slow down the encoding and
decoding algorithms. However, the computation of the ma-
trix can be done in parallel with the encoding process and
furthermore, these two processes can be perfectly pipelined
to the extent that this computational overhead is barely no-
ticeable.

4. Conclusion
Computer architecture has a long history of being at

the forefront of technology, helping to bridge the hard-
ware/software divide through more efficient implementa-
tions, cross-layer optimizations, and novel abstractions.
One might ask if the contributions of this paper really are
“computer architecture” as it certainly does not look like a
paper from 20 years ago. There is no question that this paper
relies on cryptographic techniques that are outside the back-
ground of many computer architects. However, while the
tools are new, the goal is old – to create a new hardware ab-
straction, to encapsulate complexity, and to provide a build-
ing block for new software and systems to grow around.

Prior architecture contributions have considered the abil-
ity of designs to cope with hardware failures, errors in the
memory hierarchy, and even early wear-out. They present

SHA Column

XOR

AND

r

Intermediate

XOR

Key Store Inv

Manual
Operation

SHA
Generator

Done

enable

reset

Secret Key

k

⋄ ⊕r kM→ →

Figure 8: The best performing scheme combines the matrix multi-
plication operation of the code scheme, but does not store the ac-
tual bits of the matrix on chip directly, rather it generates them dy-
namically through the use of a cryptographic hash function. Most
of the next generation SHA implementations require on the order
of 20,000 logic gates to implement, which will quickly be amor-
tized over the entirety of the key storage architecture. The key store
SRAM is inverted on every cycle to prevent any signs of electromi-
gration that the attacker could use to directly identify bits of the
secret key.

new abstractions that attempt to hide these problems from
users through careful design and novel analysis methods.
We follow in this tradition by evaluating a novel set of hard-
ware methods capable of abstracting away a new class of
problems: physical memory inspection. When an attacker
has unfettered physical access to a device and complex tools
at their disposal it opens up significant new avenues for at-
tack, and the hardware architecture needs to be involved in
any attempt to make attack more difficult for the adversary.
If a single secret is to be shared across many such devices,
the amount of information that one can afford to leak from
any individual chip will be exceeding small (not even a sin-
gle bit). The minute physical differences in the memory
circuitry caused by wear, improper or insufficient clearing,
and/or the minute variations used to the store the bits them-
selves, are a prime example of such a leakage mode, and
one that is not addressed easily with prior approaches. Of
course this is not the only way in which the bits might leak;
they may be exposed through timing, power, or EM ema-
nation variations in addition to these more intrusive attacks.
The methods presented here need to be used as a piece of a
comprehensive strategy to manage these different channels.

Rather than tie our scheme to one particular type of ex-
amination error, we have generalized our analysis to con-

sider any general uniform error p. If more is known about
the distribution of errors for the particular memory technol-
ogy and/or use scenario in question, the general techniques
presented should still be applicable, albeit with slightly dif-
ferent equations governing the failure probabilities. Regard-
less of the distribution, no code of length c will be able to
hide all the information about a key of length k if more than
c−k bits of the coded key are learned by an attacker. While
this paper concentrates specifically on special inspection re-
sistant memories, we see both the analysis methods and the
memory block we provide as being a significant step to-
wards a more general purpose inspection-resistant architec-
ture. However, even if such a general purpose result is not
possible, the memory abstraction we provide should still
prove useful – we have shown that even if an attacker is
correct in their analysis 95% of the time, our scheme can
prevent the attacker from having any practical chance of un-
covering information from the device with overheads that
are diminishingly small with respect to an optimal solution.

Acknowledgments
The authors would like to thank the anonymous re-

viewers for their insightful comments. This research was
funded in part by National Science Foundation Grant CNS-
0910734.

References
[1] O. Acıiçmez. Yet another microarchitectural attack: Exploit-

ing I-cache. In Proceedings of the First Computer Security Ar-
chitecture Workshop (CSAW), Fairfax, VA, November 2007.

[2] O. Acıiçmez, J. Seifert, and C. Koc. Micro-architectural
cryptanalysis. IEEE Security and Privacy Magazine, 5(4),
July-August 2007.

[3] A. Akavia, S. Goldwasser, and V. Vaikuntanathan. Simultane-
ous hardcore bits and cryptography against memory attacks.
In TCC, pages 474–495, 2009.

[4] D. J. Bernstein. Cache-timing attacks on AES. http://cr.
yp.to/antiforgery/cachetiming-20050414.
pdf, Apr. 2005. Revised version of earlier 2004-11 version.

[5] A. Biswas, P. Racunas, R. Cheveresan, J. Emer, S. Mukher-
jee, and R. Rangan. Computing architectural vulnerability
factors for address-based structures. In Proceedings of the
32nd annual international symposium on Computer Architec-
ture, pages 532–543. IEEE Computer Society, 2005.

[6] L. Bolotnyy and G. Robins. Physically unclonable function-
based security and privacy in RFID systems. In Pervasive
Computing and Communications, 2007. PerCom’07. Fifth
Annual IEEE International Conference on, pages 211–220.
IEEE, 2007.

[7] V. Boyko. On the security properties of oaep as an all-or-
nothing transform. In CRYPTO, pages 503–518, 1999.

[8] R. Canetti, Y. Dodis, S. Halevi, E. Kushilevitz, and A. Sahai.
Exposure-resilient functions and all-or-nothing transforms. In
EUROCRYPT, pages 453–469, 2000.

[9] H. Chernoff. A measure of asymptotic efficiency for tests of
a hypothesis based on the sum of observations. Ann. Math.
Statistics, 23:493–507, 1952.

[10] A. Corporation. White paper: Understanding actel antifuse
device security, January 2004.

[11] M. Dalton, H. Kannan, and C. Kozyrakis. Raksha: A Flex-
ible Information Flow Architecture for Software Security. In
34th Intl. Symposium on Computer Architecture (ISCA), 2007.

[12] F. Davi, S. Dziembowski, and D. Venturi. Leakage-resilient
storage. In International Conference on Security and Cryp-
tography for Networks (SCN ’10), volume 6280 of Lecture
Notes in Computer Science, pages 121–137. Springer, 2010.

[13] S. Dziembowski and K. Pietrzak. Leakage-resilient cryptog-
raphy. In FOCS, pages 293–302, 2008.

[14] K. Gandolfi, C. Mourtel, and F. Olivier. Electromagnetic
Analysis: Concrete Results. In Cryptographic Hardware and
Embedded Systems, volume 2162 of Lecture Notes in Com-
puter Science, pages 251–261. Springer-Verlag, 2001.

[15] B. Gassend. Physical random functions. PhD thesis, Cite-
seer, 2003.

[16] B. Gassend, G. E. Suh, D. Clarke, M. van Dijk, and S. De-
vadas. Caches and hash trees for efficient memory integrity
verification. In In 9th Intl. Symp. on High Performance Com-
puter Architecture, pages 295–306, 2003.

[17] S. Haddad, C. Chang, B. Swaminathan, and J. Lien. Degra-
dations due to hole trapping in flash memory cells. IEEE Elec-
tron Device Letters, 10(3):117–119, Mar. 1989.

[18] A. Huang. Hacking The Xbox: An Introduction to Reverse
Engineering. No Starch Press, 2010.

[19] Y. Ishai, A. Sahai, and D. Wagner. Private circuits: Securing
hardware against probing attacks. In CRYPTO, pages 463–
481, 2003.

[20] U. R. Karpuzcu, B. Greskamp, and J. Torrellas. The bub-
blewrap many-core: popping cores for sequential accelera-
tion. In Proceedings of the 42nd Annual IEEE/ACM Inter-
national Symposium on Microarchitecture, MICRO 42, pages
447–458, New York, NY, USA, 2009. ACM.

[21] J. Kelsey, B. Schneier, C. Hall, and D. Wagner. Side channel
cryptanalysis of product ciphers. Journal of Computer Secu-
rity, 8(2–3):141–158, 2000.

[22] P. Kocher, J. J. E, and B. Jun. Differential power analysis.
In Advances in Cryptology, pages 388–397. Springer-Verlag,
1999.

[23] A. Kolodny, S. Nieh, B. Eitan, and J. Shappir. Analysis and
modeling of floating-gate eeprom cells. Electron Devices,
IEEE Transactions on, 33(6):835 – 844, June 1986.

[24] R. B. Lee, P. C. S. Kwan, J. P. Mcgregor, J. Dwoskin, and
Z. Wang. Architecture for protecting critical secrets in micro-
processors. In Proceedings of the 32nd International Sympo-
sium on Computer Architecture (ISCA), 2005.

[25] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh,
J. Mitchell, and M. Horowitz. Architectural support for copy
and tamper resistant software. SIGPLAN Not., 35:168–177,
November 2000.

[26] D. Lim, J. Lee, B. Gassend, G. Suh, M. Van Dijk, and S. De-
vadas. Extracting secret keys from integrated circuits. Very
Large Scale Integration (VLSI) Systems, IEEE Transactions
on, 13(10):1200–1205, 2005.

[27] S. Micali and L. Reyzin. Physically observable cryptogra-
phy. In TCC 2004, LNCS, pages 278–296. Springer, 2003.

[28] S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and
T. Austin. A systematic methodology to compute the archi-
tectural vulnerability factors for a high-performance micro-
processor. In 36th Annual International Symposium on Mi-
croarchitecture (MICRO), pages 29–40, December 2003.

[29] D. Page. Partitioned cache architecture as a side channel
defence mechanism. In Cryptography ePrint Archive, Report
2005/280, August 2005.

[30] M. K. Qureshi, V. Srinivasan, and J. A. Rivers. Scalable
high performance main memory system using phase-change
memory technology. In Proceedings of the 36th annual in-
ternational symposium on Computer architecture, ISCA ’09,
pages 24–33, New York, NY, USA, 2009. ACM.

[31] R. L. Rivest. All-or-nothing encryption and the package
transform. In FSE, pages 210–218, 1997.

[32] O. Ruwase, P. B. Gibbons, T. C. Mowry, V. Ramachandran,
S. Chen, M. Kozuch, and M. Ryan. Parallelizing dynamic
information flow tracking. In SPAA ’08: Proceedings of
the twentieth annual symposium on Parallelism in algorithms

and architectures, pages 35–45, New York, NY, USA, 2008.
ACM.

[33] A.-R. Sadeghi and D. Naccache, editors. Towards Hardware-
Intrinsic Security. Springer, 2010.

[34] A. Shamir. How to share a secret. Communications of the
ACM, 22(11):612–613, 1979.

[35] M. Shatzkes and Y. Huang. Characteristic length and time
in electromigration. Journal of Applied Physics, 74(11):6609
–6614, Dec. 1993.

[36] S. W. Smith and S. Weingart. Building a high-performance,
programmable secure coprocessor. Computer Networks,
31(8):831 – 860, 1999.

[37] G. Suh and S. Devadas. Physical unclonable functions for de-
vice authentication and secret key generation. In Design Au-
tomation Conference, 2007. DAC’07. 44th ACM/IEEE, pages
9–14. IEEE, 2007.

[38] G. Suh, C. O’Donnell, and S. Devadas. Aegis: A single-
chip secure processor. Design and Test of Computers, IEEE,
24(6):570–580, Nov.-Dec. 2007.

[39] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas. Secure
Program Execution via Dynamic Information Flow Tracking.
In ASPLOS-XI: Proceedings of the 11th international con-
ference on Architectural support for programming languages
and operating systems, pages 85–96, New York, NY, USA,
2004. ACM Press.

[40] A. Tiwari and J. Torrellas. Facelift: Hiding and slow-
ing down aging in multicores. In Microarchitecture, 2008.
MICRO-41. 2008 41st IEEE/ACM International Symposium
on, pages 129 –140, nov. 2008.

[41] M. Tiwari, J. K. Oberg, X. Li, J. Valamehr, T. Levin, B. Hard-
ekopf, R. Kastner, F. T. Chong, and T. Sherwood. Crafting a
usable microkernel, processor, and i/o system with strict and
provable information flow security. In International Sympo-
sium of Computer Architecture (ISCA), 2011.

[42] Topham and Gonzalez. Randomized cache placement for
eliminating conflicts. IEEETC: IEEE Transactions on Com-
puters, 48, 1999.

[43] N. Vachharajani, M. J. Bridges, J. Chang, R. Rangan, G. Ot-
toni, J. A. Blome, G. A. Reis, M. Vachharajani, and D. I.
August. Rifle: An architectural framework for user-centric
information-flow security. In the 37th IEEE/ACM Inter-
national Symposium on Microarchitecture, pages 243–254.
IEEE Computer Society, 2004.

[44] G. Venkataramani, I. Doudalis, Y. Solihin, and M. Prvulovic.
FlexiTaint: A programmable accelerator for dynamic taint
propagation. In Fourteenth International Symposium on High
Performance Computer Architecture (HPCA), pages 196–
206, New York, NY, USA, 2008. ACM.

[45] Z. Wang and R. Lee. New cache designs for thwarting cache-
based side channel attacks. In Proceedings of the 34th Inter-
national Symposium on Computer Architecture, San Diego,
CA, June 2007.

[46] Z. Wang and R. Lee. A novel cache architecture with en-
hanced performance and security. In Microarchitecture, 2008.
MICRO-41. 2008 41st IEEE/ACM International Symposium
on, pages 83 –93, nov. 2008.

[47] T. Wollinger and C. Paar. New Algorithms, Architectures and
Applications for Reconfigurable Computing, chapter Security
Aspects of FPGAs in Cryptographic Applications, pages 265–
278. Springer, Cambridge, MA, 2005.

[48] L. Yang and L. Peng. Seccmp: A secure chip-multiprocessor
architecture. In Proceedings of the First Workshop on Archi-
tectural and System Support for Improving Software Depend-
ability (ASID’06), San Jose, CA, October 2006.

[49] M. Zhang and N. Shanbhag. Soft-error-rate-analysis (sera)
methodology. Computer-Aided Design of Integrated Cir-
cuits and Systems, IEEE Transactions on, 25(10):2140–2155,
2006.

