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ABSTRACT 

Understanding the characteristics of queries where a search engine 

is failing is important for improving engine performance. Previous 

work largely relies on user-interaction features (e.g., clickthrough 

statistics) to identify such underperforming queries. However, re-

lying on interaction behavior means that searchers need to become 

dissatisfied and need to exhibit that in their search behavior, by 

which point it may be too late to help them. In this paper, we pro-

pose a method to generate underperforming query identification 

rules instantly using topical and lexical attributes. The method first 

generates query attributes using sources such as topics, concepts 

(entities), and keywords in queries. Then, association rules are 

learned by exploiting the FP-growth algorithm and decision trees 

using underperforming query examples. We develop a query clas-

sification model capable of accurately estimating dissatisfaction us-

ing the generated rules, and demonstrate significant performance 

gains over state-of-the-art query performance prediction models. 

Categories and Subject Descriptors 

H.3.3 [Information Search and Retrieval]: Search Process 
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1. INTRODUCTION 
Automatic detection of underperforming queries (where search en-

gines are failing and users are dissatisfied with their search results) 

has been extensively studied [1][13][18][23]. In Web-search envi-

ronments large volumes of query logs are readily attainable. This 

makes it affordable to collect many training examples that can be 

used to improve classification performance. 

The ability to identify underperforming queries is especially im-

portant to Web search engines. Since those systems need to cover 

a broad range of diverse queries and since ranking algorithms are 

typically trained using a single sampled data set, there will be que-

ries on which the ranking algorithms cannot execute effectively.  

Previous work on predicting underperforming queries has primarily 

targeted user interactions (e.g., clickthrough statistics) [18][23] and 

combined features from user behaviors in query logs and physical 

sensors [13]. Although previous systems are quite successful, they 

are less effective from the search engine perspective. The reason is 

those dissatisfaction signals are only available a posteriori (e.g., 

once search is abandoned). This means that search engines rarely 

have the opportunity to interfere and remedy the user dissatisfied 

experience. On the other hand, query performance predic-

tors [10][24], for example, are more useful for that purpose because 

those predictors do not require interaction behavior signals and can 

help recognize dissatisfaction before the search session ends. 

In this paper, we propose a method for generating underperforming 

query identification rules using topical and lexical attributes of que-

ries (e.g., topic of interest, important entities (concepts) in queries). 

We assume that there are frequent patterns among the features of 

underperforming queries and the association of those frequent fea-

tures with dissatisfaction is helpful for identifying user queries 

likely to be associated with future dissatisfaction. Table 1 shows a 

sample association rule and examples of matching queries. For ex-

ample, the rule {Movie, Art, "Robocop remake"} ⇒ {DSAT} con-

sists of an antecedent with a set of binary attributes: Movie,
Art, and "Robocop remake" and a consequent which is in our case 

a query satisfaction label: DSAT. Note that each query label is ob-

tained using a DSAT prediction model [21], which is described 

briefly later. Since those attributes can be identified from only 

query, search systems can be informed of DSAT likelihood to the 

queries implied by the antecedent (LHS) of this rule promptly. 

Moreover, we can identify that current search systems cannot han-

dle particular classes of queries successfully, which is valuable for 

improving the search experience.  

In our system, given DSAT and SAT query examples, we perform 

two sub-tasks: (1) Attribute Generation, and (2) Association Rule 

Mining. In the first task, we define various attributes which can ef-

fectively characterize diverse Web queries. For example, categories 

in the Open Directory Project (ODP, dmoz.org) (e.g., Art) can be 

used as a binary attribute. Wikipedia categories and named entity 

categories (e.g., "Robocop" Movie) are also useful. Besides, we 

consider lexical attributes (e.g., "Robocop remake") because many 

DSAT queries frequently share some keywords. In addition to these 
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Table 1: Sample rule and example queries. Label indicates 

if the query leads to satisfaction (𝐒𝐀𝐓) or dissatisfaction 

(D𝐒𝐀𝐓). 

Association Rule 

{Movie, Art, "Robocop remake"} ⟹ {DSAT} 

No. Query Label 

1 Robocop remake poster DSAT 

2 pics from Robocop remake DSAT 
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topical attributes, we adopt behavior attributes that can characterize 

user-search actions (e.g., number of issued queries, and frequency 

of viewing search result pages). We extract distinct distributions of 

defined search actions, and label similar distributions for an identi-

cal category (i.e., a category label indicates a behavior attribute) by 

employing a spectral hashing algorithm [32]. From this, we can 

identify how behavior attributes (typically used in previous work) 

are combined with our topic attributes. 

Using those attributes, we mine association rules to identify DSAT 

queries. Among many association rule learning techniques 

(e.g., [2][3]), we selected the FP-growth algorithm [20] because our 

system needs to handle a large amount of Web queries and FP-

growth can effectively work on such large datasets [20]. In mining, 

we apply the FP-growth algorithm to both DSAT and SAT queries 

using categorical attributes (e.g., ODP categories), and identify 

what subsets of the attributes (item-sets) frequently appear in DSAT 

queries. In other words, the identified item-sets (antecedent) imply 

DSAT queries (i.e., the consequent of the rule is {DSAT}). After 

generating categorical rules, we augment the antecedent of the rules 

with lexical attributes. Since the number of lexical attributes (i.e., 

keywords) extracted from all queries is prohibitively large, we 

adopt a two-tiered approach where we first extract categorical rules 

and then mine lexical rules using queries to which certain categor-

ical rules apply. 

We show the effectiveness of our rule mining system by verifying 

that the system is capable of generating effective DSAT segments. 

We also demonstrate the effectiveness of the rules by using them 

as features for building a DSAT prediction system and show that it 

achieves superior performance when compared to state-of-the-art 

query performance prediction baselines [10][17][25]. 

The remainder of this paper is structured as follows. Section 2 de-

scribes relevant related work in the areas of search satisfaction, 

search quality analysis, and query performance. Section 3 defines 

our problem and Section 4 describes the main approach. We present 

experimental results in Section 5 and conclude in Section 6. 

2. RELATED WORK 
Relevant research in a number of areas is presented: (1) satisfaction, 

(2) search quality, and (3) query performance prediction. 

2.1 Search Satisfaction 
There has been significant prior work on deriving signals related to 

search satisfaction and success from online behavior. Methods for 

doing this typically correlate users’ search behavior with their in-

situ self-reporting [16] or judgments of search success provided by 

expert judges [18][22]. Early investigations by Fox et al. [16] cor-

related self-reported measures of search satisfaction with interac-

tion signals gathered implicitly from search behavior, such as 

search-result clicks and dwell time for clicks. They deployed an in-

strumented browser and showed a relationship between explicit 

measures of search satisfaction and implicit measures derived from 

search behavior. In particular, they found that short dwell times and 

clicks on many results for a query were both indicators of search 

dissatisfaction. Ageev et al. [1] propose a formalization of different 

types of success for informational search via a scalable game-like 

infrastructure for crowdsourcing search behavior studies. They 

show that their model can predict search success effectively on their 

data and on a separate set of logs comprising search engine sessions. 

Hassan et al. [23] developed models of user behavior to accurately 

estimate search success on a session level, independent of the rele-

vance of documents retrieved by the search engine. In recent fol-

low-up work, Hassan [21] proposed a semi-supervised approach for 

search satisfaction modeling via both labeled and unlabeled data.  

2.2 Search Quality Analysis 
Beyond studying search session satisfaction in isolation, others 

have investigated how the quality of search results can affect search 

behavior. Huffman and Hochster [26] discovered a fairly strong 

correlation with search session satisfaction using a linear model en-

compassing the relevance of the first three results returned for the 

first query in a search task, whether the information need was nav-

igational, and the number of events in the session. Aula et al. [6] 

investigated the behavioral signals that are suggestive of a user 

struggling in a search task. They showed in a laboratory study and 

in a larger-scale remote study that when searchers have difficulty 

in finding relevant information, they formulate more diverse que-

ries, they are more likely to use advanced operators (e.g., ‘+’, ‘–’, 

‘OR’), and they spend a longer time on the search result page as 

compared to the successful tasks. Feild et al. [13] studied the affec-

tive impact of searching and developed methods to predict search 

frustration from behavioral and physiological signals. They gave 

users difficult information seeking tasks and estimated their degree 

of frustration via query logs and physical sensors. One behavior that 

can be associated with dissatisfaction is search engine switching: 

the voluntary transition between different engines. Guo et al. [18] 

characterized the reasons that searchers switch via a browser plugin 

that captured an explanation at switch time. They showed that one 

of the primary reasons that people switched was dissatisfaction 

with the search results on the pre-switch engine.   

2.3 Query Performance  
Search engine performance for a particular query is typically meas-

ured using relevance metrics such as precision and recall. Al-Mas-

kari et al. [4] found a reasonable correlation between many infor-

mation retrieval metrics and satisfaction with result rankings. Be-

yond performance measurement, research on predicting query per-

formance has been conducted to understand differences in the qual-

ity of search results provided by search systems for different que-

ries. Such predictions do not require relevance judgments (at least 

not when the models are being applied, but perhaps during a sepa-

rate training phase) and can be used to determine when to use addi-

tional computational resources or use alternative methods (e.g., 

specialized ranking algorithms or different interface support) to im-

prove results for difficult queries. While it has been shown that dif-

ferent query representations [8] or retrieval models [9] improve 

search performance, it is more challenging to accurately predict 

which methods to use for a particular query. 

Methods using Jensen-Shannon divergence [8], query clarity [10], 

and weighted information gain [35] have been developed to predict 

the retrieval performance on a query (e.g., as measured via preci-

sion) post retrieval. Rather than using post-retrieval query-docu-

ment relevance scores, which can take time to compute, He and 

Ounis [24] proposed the use of pre-retrieval properties that can be 

generated prior to the retrieval process (e.g., query length, query 

scope). Pre-retrieval predictors are advantageous because they can 

be calculated during indexing, rather than waiting for the query to 

be received, making them more efficient. Zhao et al. [33] propose 

pre-retrieval predictors based on the similarity between a query and 

the underlying collection and the variability with which query 

terms occur in documents. Leskovec et al. [28] used graphical prop-

erties of the link structure of the result set to predict the quality of 

the set and the likelihood of subsequent query reformulation. Some 

research has also been conducted on predicting query performance 

using searcher interaction behavior. Carterette and Jones [9] used 

click-through behavior to evaluate the quality of search advertising 

results, but they did not study other user interaction features, and 

their focus was on search advertising not general Web search. Guo 



et al. [17] used behavioral features, including engine switches, to 

predict query performance. Their method involved the use of inter-

action logs for a large number of their most important prediction 

features. However, the reliance on log data limits the generalizabil-

ity of the model, meaning that it can only be applied in commercial 

search engines and evaluating the model outside of those settings is 

potentially problematic. 

Our work extends the research presented in this section in a number 

of ways. First, rather than simply modeling or identifying the at-

tributes of search satisfaction, we use apply DSAT modeling to 

identify queries where the search engine may be underperforming. 

Second, the method that we propose is not dependent on interaction 

behavior meaning that our approach can help before users have to 

experience dissatisfaction with the engine. Also, by not relying on 

interaction behavior makes our results more reproducible by aca-

demic researchers trying make advances in query performance pre-

diction. Third, we demonstrate through a large-scale evaluation 

with search queries drawn from search logs that our approach out-

performs several baselines that draw on query properties, search 

interaction, and their combination. 

3. PROBLEM FORMULATION 
In this section, we formulate the task of mining DSAT association 

rules and predicting query performance. We start by defining terms 

that we will use throughout the paper. 

Definition 1 (Search Session) A search session is a sequence of 

user actions that begin with a query, includes subsequent queries, 

URL visits, click information, and ends with a period of inactivity. 

We assume that a session ends if the user was idle on a page for 

over 30 minutes, typically used in previous work, e.g., [12].  

Definition 2 (Search Goal) A search goal is a single information 

need that may result in one or more queries. Every search session 

could be segmented into one or more search goals. We adopt the 

search goal definition and the goal extraction method from [27]. 

Using the prediction model in [21], we label each goal to either of 

{DSAT, SAT} and use a search goal as an instance in mining. We 

assume that each instance (i.e., search goal) is represented by the 

first query. If we use the subsequent queries of an instance, we ex-

plicitly specify “subsequent” queries.    

Definition 3 (Attribute): An attribute is a binary property of a query 

instance that describes a specific characteristic of that instance. For 

example, the attribute “Shopping” indicates that the query is topi-

cally related to retail. 

In this work, we present solutions to the following problems: 

Problem 1 (Attribute Generation): Attribute generation is the pro-

cess of defining and generating a set of attributes to represent query 

instances. Given a query instance, our objective is to generate ef-

fective attributes and associate (binary) values to them. The attrib-

utes should describe different aspects of the query instance and they 

should be dynamic in the sense that they may be easily extendible 

and need minimal human intervention to define.  

Problem 2 (DSAT Association Rule Mining): DSAT association 

rule mining is the process of discovering frequent patterns (subsets) 

of generated attributes (from Problem 1) to identify DSAT queries. 

Given attributes and labeled queries, we generate rules that imply 

DSAT. The task is formally defined as follows. 

Let 𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑛}  be a set of 𝑛  binary attributes and 𝑄 =
{𝑞1, 𝑞2, … , 𝑞𝑚} be a set of (query) instances where each instance is 

labeled as DSAT or SAT. Based on 𝐴, each instance can be repre-

sented by a vector of binary attributes, e.g., 𝑞𝑖 = {𝑎1 = 1, 𝑎2 = 0, 
… , 𝑎𝑛 = 1} . Then, an association rule can be formulated as 

{𝑎𝑖 , 𝑎𝑗 , … } ⟹ {DSAT} where 𝑎𝑖 and 𝑎𝑗  in LHS are the frequent at-

tributes of DSAT instances, and as an output, we generate multiple 

association rules. Since we are interested in rules whose consequent 

(RHS) is {DSAT}, we simply represent every rule by only its ante-

cedent (LHS).  The instances represented by a rule indicate queries 

implied by the antecedent of the rule. Based on mined rules, DSAT 

segments are formed by the queries matched to the rules. 

Problem 3 (DSAT Prediction): DSAT Prediction is the process of 

predicting, at query time, whether a query will be satisfied or not. 

In solving this, we use the association rules defined in Problem 2. 

4. MINING UNDERPERFORMING QUERY 

ASSOCIATIONS 
We now present our methodology for generating underperforming 

(DSAT) query identification rules. We first describe how useful at-

tributes are defined for rule generation, and then explain how to 

generate DSAT identification rules using the defined attributes. 

4.1 Attribute Generation 
Generally, many attributes can be used to describe query impres-

sions including query topic, query entities, and search behavior. 

However, most behavior-related features (e.g., search state [1], 

dwelling time [23]) have been examined in previous studies, and 

behavior information is typically available only after the user has 

abandoned searches. Instead, we attempt to devise topical and lex-

ical attributes (which can be mainly identified from query texts) and 

the values for these attributes are instantly computed from current 

queries. For this, we exploit the categories in ODP, Named Entity 

Recognition (NER) [30], and Wikipedia (wikipedia.org). In addi-

tion, we also generate behavior attributes from distributions of his-

toric user search actions. Thus, given a query instance, we generate 

attributes described as follows. 

4.1.1 ODP Attributes 
Open Directory Project (ODP, dmoz.org) is a hierarchical ontology 

for Web pages and lists similar topic pages in the same category 

including smaller categories. We use each ODP category as a bi-

nary attribute, and the ODP classifier, proposed in [7], can classify 

queries into 219 categories from the top two levels of the ODP hi-

erarchy (see [7] for more details, including results of a performance 

evaluation). Specifically, for each query instance, the classifier out-

puts top-5 probable categories, and among them we select the cat-

egories whose probabilities are greater than 0.5 (empirically set) as 

attributes. In our experiments, we allow more than one category to 

describe every query instance.  

4.1.2 Named Entity Attributes 
Named Entity Recognition (NER) is the process of identifying en-

tities (e.g., 𝑃𝑒𝑜𝑝𝑙𝑒, 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠, 𝑂𝑟𝑔𝑎𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠, etc.) from text. 

NER systems are oftentimes domain dependent and need large 

amounts of labeled data for training. This makes them less suitable 

for Web search queries that are short in nature and not usually rep-

resented by well-formed sentences. For our purpose we need a 

named entity tagger that can be easily adapted to new classes, 

works well on short and ill-formed text, and uses available 

knowledge sources instead of domain-dependent human labeled 

training data. 

We rely on Wikipedia and n-gram Language Models (LMs) to tag 

named entities in queries [30]. Specifically, given a sequence of 

words, salient entities in a domain-specific LM are identified. A 



domain-specific LM is generated by a domain corpus (e.g., “Mov-

ies” LM contains n-gram statistics of a movie corpus). Salient do-

main entities are identified by measuring statistical differences be-

tween the domain model (foreground) and general LM (back-

ground). For each word, if a word belongs to the background, or the 

outside-tag, the word should be generated using the background 

LM. On the other hand, if the word belongs to the foreground, 

begin-tag, or inside-tag, the word should be generated using the 

foreground LM that named entities are built from. Weak unsuper-

vised signals from each domain corpus (e.g., Wikipedia titles and 

click counts) are used to estimate parameters in the recognition 

model. This approach achieves 0.51 precision and 0.48 recall [30], 

when applied to short and not necessarily grammatical dataset with 

1,300 queries, compared to 0.35 precision and 0.43 recall from a 

Conditional Random Fields system [15] .  

One motivation to use this NER tagger is that topics in Web queries 

are diverse and recognizing only basic entities (i.e., Person, Loca-

tion, and Organization) is less useful for identifying effective at-

tributes. Thus, to cover various web topics, we train the classifier 

using domain language models corresponding to the following do-

mains (Person, Location, Organization, Food, Restaurant, Local 
review, Wikipedia,  Movie, and Game). We use each domain (cat-

egory) as a binary attribute, and assume that a query can contain 

multiple attributes if the query contains entities from multiple do-

mains. As an example, “Caesar salad recipe in TGI Friday’s” can 

contain the attributes {𝐹𝑜𝑜𝑑, 𝑅𝑒𝑠𝑡𝑎𝑢𝑟𝑎𝑛𝑡} because “Caesar salad” 

is a 𝐹𝑜𝑜𝑑 entity and “TGI Friday’s” is a 𝑅𝑒𝑠𝑡𝑎𝑢𝑟𝑎𝑛𝑡 entity.            

4.1.3 Wikipedia Attributes 
Wikipedia is an online encyclopedia which contains four million 

articles (entities). We use Wikipedia entities to generate a set of 

descriptive and diverse attributes. Specifically, we first crawl about 

one million Wikipedia articles, and extract Wikipedia entities from 

query texts as described in the previous subsection. Then, for each 

extracted entity, we identify the most relevant Wikipedia article by 

using a surface-level exact matching. (Note that other types of 

matching (e.g., semantic-level) can be used further if it can perform 

reasonably well). Once Wikipedia articles are matched to the query 

entities, we extract Wikipedia topic-categories from each article. 

Each Wikipedia article generally contains one or more topic-cate-

gories, e.g., the article of “Ford Mustang” includes Ford Vehicle, 

Coupe, etc. As a result, we can link a query instance to the catego-

ries via identified entities from the query texts, and use those cate-

gories as attributes. In experiments, each query instance contains 

0.9 entities on average, and 4,482 Wikipedia topic-categories are 

extracted and used as attributes. 

4.1.4 Behavior Attributes 
Here we present a method to generate behavior attributes. Since 

previous work proves that using behavior information is effective 

to predict query performance [17], we devise the attributes which 

recognize the characteristics of the general search behavior of users. 

We assume that dissatisfied users act differently in searches com-

pared to satisfied users. For example, we observed that some dis-

satisfied users issue many queries, but spend less time on examin-

ing search results. To capture such behavior characteristics, we gen-

erate a distribution of search action frequencies from each query 

instance. Specifically, we define seven distinct search actions and 

identify frequent distributions that occur more than 10 times (i.e., 

we ignore extremely rare patterns). Figure 1 shows some examples 

of the distributions. Then, we group similar distributions into the 

same cluster (attribute) by using spectral hashing [32], which can 

develop a hashing function that maps similar vectors into the same 

bucket (i.e., hash code). Given a set of behavior distributions, we 

consider a distribution as an input vector and run the spectral hash-

ing algorithm [32] with k-bits (the bit length of a hashing code). 

After a hash function is obtained, we use a mapped hash code as a 

binary attribute. In experiments, we hash 3,069 distinct distribu-

tions into 2-bit codes (i.e., four different hash values are mapped), 

and accordingly four behavior attributes are generated. 

One motivation for using spectral hashing is that a hashing-based 

algorithm is much faster than clustering algorithms, such as k-Near-

est Neighbor, in learning patterns. Moreover, in pilot experiments, 

a simple clustering method failed to find a reasonable number of 

clusters (attributes); only a single cluster was identified. To under-

stand the effectiveness of using the spectral hashing, we conduct 

pilot experiments using about 140,000 session instances randomly 

sampled from our dataset. From that data, we extract 237 distinct 

distributions of search action frequencies and generate 4-bit hash 

codes. Then, as shown in Table 2, we measure the mean frequency 

of each action among the instances mapped to each code (i.e., 0, 1, 

2, and 3). First, the instances mapped to 0 and 2 include signifi-

cantly more query submission (Q) while the instances belonging to 

1 and 3 have fewer query submissions. Second, regarding search 

result actions (i.e., SERP, SR, and SR_long), the users in 2 and 3 

spend more times on SERP and SR than the users in 0 and 1. To 

prove these, we perform a statistical significance test on each of 

those actions (see Table 2). In summary, we can characterize the 

users (instances) in each code; 0 indicates more query submission 

and short search result examination, 1 denotes less query submis-

sion and short search result examination (generally most DSAT us-

ers belong to this category), 2 indicates more query submission and 

long search result examination, and 3 indicates relatively less query 

submission and long search result examination (i.e., spend more 

time on a few search results).    

4.2 DSAT Association Rule Mining 
In this section, we describe our method for finding DSAT associa-

tion rules using FP-growth algorithm and decision trees. Specifi-

cally, we first use the FP-growth algorithm with the “categorical” 

attributes (i.e., ODP, NER, Wikipedia, and Behavior) to identify 

categorical rules (e.g., {Movie, Art}). After this, we apply Decision 

Tree learning using “lexical” attributes that include n-gram key-

words from the queries identified by the categorical rules, and ex-

tract lexical rules (e.g., {Movie, Art, "Robocop remake"}). We pro-

vide the details of each method in the rest of this section. 

User Q SERP SR SR_long Ad 

A 4 1 1 0 0 

B 2 4 2 2 0 

Figure 1: Sample distributions of search action frequencies. 

Q, SERP, SR, SR_long, and Ad indicate a query submission, 

search result page, search result click, long dwell (> 30s) re-

sult click, and ad click, respectively. 

 

Table 2: Mean frequencies of search actions. Due to the space 

limit, the statistics of less significant actions (e.g., Ad) are omit-

ted. In each column, a superscript indicates a significant differ-

ence at 𝒑 < 𝟎. 𝟎𝟏 using the Wilcoxon rank-sum test, e.g., C13 de-

notes a significant difference from the code of 1 and 3. 

Code Q SERP SR SR_long 

0 5.01 C13 0.18  0.38 0.56 

1 1.60 0.53  0.56 0.61 

2 4.82 C13 1.18 C01 1.09 C01 1.55 C01 

3 1.74 1.96 C01 1.26 C01 1.35 C01 

 



 

Figure 3: Input data set for FP-growth algorithm. 

4.2.1 Categorical Rule Mining 
Given a set of attributes, we identify subsets of attributes (item-sets) 

to identify DSAT instances. For this, we can utilize several well-

known approaches to find frequent patterns in transactional or rela-

tional data sets that are described in the data-mining literature. A 

typical example of this approach is the market basket analysis prob-

lem [2]. Using a similar formulation, we formally define the DSAT 

association rule mining problem as follows: Let 𝐴 =
{𝑎1, 𝑎2, … , 𝑎𝑛} be a set of 𝑛 binary attributes containing ODP, NER, 

Wikipedia (WIKI), and Behavior (BH) attributes, and 𝑄 =
{𝑞1, 𝑞2, … , 𝑞𝑚} be a set of instances and each instance is labeled as 

DSAT or SAT. We define a new attribute set, 𝐴′ = {𝑎1, 𝑎2, … , 𝑎𝑛} ∪
{DSAT, SAT} where the labels are included as attributes. Figure 2 

illustrate an input data set, {𝐼 × 𝐴′}. Then, a “DSAT” association 

rule is defined as an implication of the form  X ⇒ Y where X ⊆ 𝐴, 

Y = {DSAT}  and X ∩ Y = ∅. 

Among many algorithms to solve this problem (e.g., [3]), we chose 

to use the FP-growth algorithm [20] because it is more efficient 

than generate-and-test algorithms given that it adopts a divide-and-

conquer strategy. The proposed approach should be able to handle 

millions of instances and hence efficient rule mining is necessary. 

Briefly, the algorithm consists of two main steps. First, it builds the 

FP-tree which efficiently represents information about item-set 

(subset of attributes) association, and in the next step, frequent pat-

terns are mined from the FP-tree. To build the tree, the whole data 

set is scanned twice; in the first scan, the attributes are sorted in 

descending order by their frequencies, and the tree is constructed 

by spanning attribute nodes from more frequent attributes to less 

frequent ones, scanning each row in the data (see [20] for details). 

Before running the algorithm, to reduce the computational com-

plexity and obtain more effective rules, we define 3 constraints: 

1) The number of attributes from a single group may not exceed 

a threshold 𝑙. 
2) Minimum support-level needs to be reasonably small. 

3) Minimum confidence-level is more than or equal to the por-

tion of DSAT instances to the whole data set. 

In our data set, originally there are four different attribute groups 

(i.e., ODP, NER, WIKI, BH), and the first constraint limits a min-

ing path (from the root to a leaf node in the FP-tree) to have maxi-

mally 4𝑙 different attributes from those groups. In other words, a 

mined rule resembles any combination of {[ODP], [NER], [WIKI], 

[BH]} where each attribute group (bracket) contains at most 𝑙 at-

tributes from the corresponding group. Thus, we impose a con-

straint on the maximum depth of the tree, which can reduce the 

time-complexity in practice. Since the algorithm for mining the FP-

tree structure is a recursive procedure during which many sub FP-

trees are created, too long paths (e.g., containing more than 100 

nodes (attributes)) are problematic and defining an effective length 

is complicated. The second and the third constraints allows more 

effective rules to be generated. The support (𝑆) of an item-set (X) is 

defined as the proportion of instances in the data set which contain 

X, and the minimum support level denotes the minimum number of 

instances which support a generated rule. If the rule can cover many 

queries (instances), it may contain more SAT queries and is ineffec-

tive. Thus, targeting relatively small number of instances is more 

helpful to obtain effective rules, and in experiments, we have about 

one million instances and we set 𝑆 to 20.  

Based on the 𝑆 , the confidence ( 𝐶 ) of a rule is defined 

as  𝐶(X ⟹ Y) = 𝑆(X ∪ Y) 𝑆(X)⁄ , an estimation of the probabil-

ity p(Y|X). By the third constraint, we can recognize effective rules 

which can cover relatively more DSAT queries comparing to the 

general proportion of DSAT instances to the whole dataset, 

p(DSAT|X) ≥ p(DSAT). However, a confidence level that is too 

high can also mean that very few rules are extracted because gen-

erally p(DSAT) is low, which is also ineffective.        

Next, we run the FP-growth algorithm on the augmented data set 

with two parameters, 𝑆 and 𝐶.  We use an improved-version of FP-

growth implemented by [11], which can reorder and prune the input 

data so that more common attributes appear first and unsupported 

1-item-sets are discarded. Among the extracted rules, we only se-

lect the ones whose consequent (RHS) is DSAT (i.e., Y = {DSAT}). 

As a result of this step, we generate multiple categorical rules that 

contain effective attributes for identifying DSAT queries.        

4.2.2 Lexical Rule Mining 
In this section, we provide the details of generating lexical rules 

that use DSAT query keywords as lexical attributes. 

One motivation for adopting lexical rules is to identify more spe-

cific information about DSAT queries. Although categorical attrib-

utes provide general topic information of DSAT queries (e.g., 

search engines perform worse with queries related to the categori-

cal attributes, Ford Vehicle  and  Shopping/Vehicle), identifying 

detailed lexical information (e.g., among Ford Vehicle  and 

Shopping/Vehicles queries, the queries containing “lease” are not 

properly handled) would be much more helpful for analysis pur-

poses. Besides, more specific rules are more likely to have higher 

confidence (i.e., p(DSAT|X)) than general rules because typically 

p(DSAT) is much lower than p(SAT).  

We generate a lexical rule by combining categorical rules with dis-

criminative keywords in 𝐷𝑆𝐴𝑇 queries. The formal definition is 

given as: X ∪ Z ⟹ Y  where  X ⊆ 𝐴 ,  Z ⊆ 𝐾  ,  Y = {DSAT} ,  (X ∪
Z) ∩ Y = ∅, 𝐴 is the attribute set (Section 4.1), and 𝐾 is the set of 

keywords extracted from the DSAT queries represented by X. Since 

effective categorical rules (i.e., X ⟹ Y) are already extracted, we 

need to identify effective DSAT keywords (i.e., Z). 

To solve this problem, we propose a decision tree learning-based 

method which extracts effective lexical attributes from DSAT query 

texts. If we could train a decision tree where a node corresponds to 

a term appearing in DSAT queries (instances) in order to determine 

whether a query is DSAT, a decision rule which represents DSAT 

examples includes a set of discriminative terms (features). In addi-

tion, to combine those key terms with categorical rules, for each 

Figure 2: Decision tree-based lexical rule generation. 



categorical rule, we identify the set of queries implied by the cate-

gorical rule, and generate a decision tree using the instance set. 

Then, extracted keywords are effective when combined with the 

categorical rule. Figure 3 depicts how lexical rules are generated 

from a categorical rule. Since decision trees can represent negation, 

we originally extract the first and second lexical rules containing 

negated lexical attributes (e.g., ¬"patch"). However, to generalize 

these rules (i.e., expanding their coverage in real situations), we can 

ignore negation and the third and fourth rules can be formulated. 

Figure 4 describes the algorithm. 

For the lexical rule generation, we can alternatively consider pat-

tern mining approaches (e.g., FP-growth algorithm [20] used in 

Section 4.2.1) using keywords as attributes. However, in compari-

son with the FP-growth algorithm, decision tree learning has the 

following advantage: decision tree rules can imply negation 

whereas FP-growth algorithm mines only association rules that do 

not imply negation. In some circumstances, negation is important 

because some attributes rarely appear in DSAT queries but fre-

quently appear in SAT queries. For example, let us consider the first 

lexical rule in Figure 3. This rule indicates that among the queries 

represented by {Game/Video_Games, "airplane simulator"}, the 

queries not related to "patch" are DSAT (otherwise the queries are 

SAT), i.e., not every query in {Game/Video_Games, "airplane 
simulator"} is DSAT. Moreover, if we ignore negation (e.g., the 

third and fourth rules in Figure 3), the mining results are almost 

identical to the ones identified by the FP-growth algorithm (ideally, 

checking the confidence of each decision tree rule can be necessary, 

but in our experiments, every decision rule ignoring negation had 

p(DSAT|X) ≥ p(DSAT)) because the FP-growth algorithm uses the 

confidence (the proportion of DSAT to the instances represented by 

the rule) to identify DSAT association rules and similarly decision-

tree learning also considers the entropy of each attribute (the pro-

portion of DSAT to the examples that contain selected attributes) in 

generating DSAT decision rules. In our experiments, we discovered 

that the rules including negation can provide more specific infor-

mation. We describe some examples in Section 5.3. We use WEKA 

implementation of C4.5 algorithm [19] to train decision trees, query 

texts are stemmed by WordNet [14], and stop-words are removed. 

4.3 DSAT Query Prediction Model 
In this section, we describe a DSAT query prediction model that can 

classify a given query into DSAT or SAT. Since we generated cate-

gorical and lexical rules to be effective to identify DSAT queries 

(Section 4.2) we use these rules as features, and train the model 

using labeled examples. The formal definition is given as follows. 

Suppose that 𝑅 = {𝑟1, 𝑟2, … , 𝑟𝑛} is a set of 𝑛 rules, 𝑄 = {𝑞1, 𝑞2, … , 
𝑞𝑚} is a set of m query examples, and the label of each example 

𝐿(𝑞𝑖) is known. For training, a feature vector of each 𝑞𝑖 is created 

as 𝑥𝑞𝑖
= {𝑟1(𝑞𝑖), 𝑟2(𝑞𝑖), … , 𝑟𝑛(𝑞𝑖)} where 𝑟𝑗(𝑞𝑖) is a binary value;  

if 𝑞𝑖 is matched to 𝑟𝑗 then 1; otherwise, 0. Then, a set of training 

examples is given as X = {〈𝑥𝑞𝑖
, 𝐿(𝑞𝑖)〉}

𝑖=1

𝑚
, and a classification 

function 𝑓: X ⟼ {1,0}  maps a feature vector associated with a 

query to a binary label where 1 and 0 indicate DSAT and SAT, re-

spectively, and the model is learned to minimize a loss function 

defined by the disagreement between a mapped label and original 

label, 𝐿(𝑞𝑖) for every training example. For learning, we use Sup-

port Vector Machine and Logistic Regression (see Section 5.2). 

 

ALGORITHM Lexical Rule Generation 

INPUT:  

 Set of labeled query instances, 𝑄 = {𝑞1, 𝑞2, … , 𝑞𝑛} 

where the label of 𝑞  is 𝐷𝑆𝐴𝑇  or 𝑆𝐴𝑇 , i.e., 𝐿(𝑞) ∈
{DSAT, SAT} 

 Categorical rule, 𝐶: X ⟹ {DSAT} where X is a subset 

of categorical attributes (item-set) 

 Boolean value, b, which indicates ignoring negation 

OUTPUT: A set of lexical rules 

PROCESS: 

1) Initialize 𝑅 =  { } 

2) Find the set of query instances implied by X, i.e., 𝑄′ =
{𝑞|X(𝑞) = 1} and 𝑞 ∈ 𝑄 

3) If 𝑄′ = ∅ Then return ∅ 

4) Generate 𝐾  which contains n-grams extracted from 

𝑄′  

5) Train a binary decision tree, 𝐷𝑇, which uses 𝐾 as fea-

tures and 𝑄′ as examples where 𝐿(𝑞) indicates a label 

of 𝑞 ∈ 𝑄′  

6) For each 𝐷𝑆𝐴𝑇 leaf node, 𝑙𝐷𝑆𝐴𝑇 

a. Generate Z the set of nodes (features) in the 

path from the root to 𝑙𝐷𝑆𝐴𝑇 in 𝐷𝑇  

b. If 𝑏 = 1 Then exclude the node corresponding 

to negation from Z 

c. Append Z into 𝑅 

7) End For 

8) Return 𝐶 × 𝑅 

Figure 4: Lexical rule generation algorithm. 

5. EXPERIMENTS 
In this section, we provide experimental results of our DSAT iden-

tification rule mining system. In Section 5.1, we analyze the gener-

ated rules in terms of topical cohesiveness, clickthrough rate, and 

DSAT correlation. Section 5.2 describes our query performance 

classification model that uses the mined rules to predict dissatisfac-

tion of queries, and demonstrates its effectiveness.   

5.1 Rule Analysis 

5.1.1 Experimental Set-up 
We obtained interaction logs (from June 2012) for 1.5 million 

search sessions from hundreds of thousands of consenting users us-

ing several commercial search engines through a widely-distributed 

Web browser toolbar. Log entries include a unique identifier for the 

user, a timestamp for each page view, and the URL of the Web page 

visited. Intranet and secure (https) URL and any personally identi-

fiable information were removed from the logs prior to analysis.   

Using the DSAT prediction model [21], we classify each instance 

into either of DSAT or SAT. To implement [21], we develop a semi-

supervised model; we first build a supervised classifier using a 

small set of labeled DSAT and SAT query instances, and by this 

classifier, initial parameters are obtained; the membership of unla-

beled data is calculated using an updated model whose parameters 

are re-estimated by the Expectation-Maximum algorithm. Then, we 

randomly split the data into two distinct equally-sized groups, non-

overlapping in time: mining and analysis. We use the mining set to 

generate association rules (setting the support (𝑆) to 20), and ana-

lyze rules using the analysis set (i.e., unseen data). 

In analysis, we use three different metrics defined as follows. 



(Cosine-Similarity) Cosine-Similarity is measured to identify the 

topical similarity between the instances (queries) represented by 

each rule. We hypothesize that more topically cohesive segment 

(set of queries) would be obtained if the rule is effective. We de-

scribe each query by a vector of all unique terms in the whole data 

set and each dimension corresponds to the frequency of a term in 

the query. The similarity between two queries, 𝑞𝑖 and 𝑞𝑗 is given: 

similarity =
𝑞𝑖 ∙ 𝑞𝑗

‖𝑞𝑖‖‖𝑞𝑗‖
 

(Clickthrough Rate) Clickthrough Rate (CTR) indicates the frac-

tion of times the query results in a click on the algorithmic results 

when it is issued. Given a query, CTR is computed by: 

CTR =
# of algorithmic clicks 

 # of impressions
 

CTR is calculated using a different and much bigger set of queries 

that does not overlap with our data set.  

(𝐃𝐒𝐀𝐓 𝐂𝐨𝐫𝐫𝐞𝐥𝐚𝐭𝐢𝐨𝐧) DSAT Correlation is a simple measure that 

estimates the correlation/dependence between a rule and dissatis-

faction. Given a rule, X ⟹ {DSAT}, the metric is defined as: 

DSAT Correlation =
p(X, DSAT)

p(X)p(DSAT)
=

 p(DSAT|X)

p(DSAT)
 

p(DSAT|X) is the confidence of X defined in Section 4.2.1, and 

p(DSAT) is estimated by the proportion of DSAT instances in the 

data. If the value is exactly 1, X and dissatisfaction is independent, 

and if the value is greater than 1, X is positively correlated with 

dissatisfaction. Otherwise, X is negatively correlated with DSAT. 

Comparing with the confidence, this metric is more robust because 

the confidence can be misleading if the data are imbalanced, and 

generally much more SAT queries are recognized in query logs. In 

addition, we considered the confidence in rule generation. 

(Fixed Attribute Set Baseline) Traditionally, some predefined 

query attributes (e.g., IsCommerce indicates the query is related 

“Commerce” topics) have been used to segment queries into classes. 

For this, text classifiers are trained using manually labeled data. We 

refer to those attributes as the Text Classification (TC) attributes. 

As a baseline, we generate association rules using these query at-

tributes, and compare the rules generated by our system to the TC 

rules. In our method, we do not consider using the TC attributes 

because they need extensive human involvement in terms of select-

ing which classifiers to build and labeling training data. In addition 

to the need for extensive human involvement, using these attributes 

has two more downsides. First, they put a burden on the human 

building the system to decide which attributes to consider and 

hence which classifiers to build. Contrast this with the proposed 

approach where a huge number of attributes is automatically intro-

duced using existing resources (e.g. Wikipedia). Second, these clas-

sifiers may be readily available to commercial search engines as 

private properties, but they are not publicly available which limits 

their usefulness to the research community. Instead, we use them 

as a baseline to validate our method which utilizes public resources. 

For generating TC rules, we use a set of 60 proprietary classifiers 

(e.g. Technology, Travel, etc.) and we apply the FP-growth algo-

rithm to the same data set (mining set). 

5.1.2 Analysis Results 
Table 3 shows basic statistics of rule generation using our system 

and the baseline. Using the mining set, we generate lexical rules 

with ignoring negation (Section 4.2.2) because negation can reduce 

the rule coverage and the rules containing negation are hard to reuse 

in unseen data (analysis set). As a result, 3,859 categorical rules 

and 22,986 lexical rules are generated (OUR). For TC, 1,160 rules 

are extracted from the same data. To identify rule coverage, we 

measure the number of the rules that can match any analysis in-

stances, i.e., reusable with unseen data. Comparing with TC, our 

system can generate many more rules but many of them are not 

reusable in unseen data. That said, slightly more examples in the 

analysis set can be represented by the rules generated by our system, 

i.e., generally both systems can cover the almost same amount of 

new queries.  

Next we provide the results using the metrics defined in Section 

5.1.1. For each rule, we first identify which analysis instances can 

be matched (i.e., generate clusters), and calculate the average sta-

tistic of each metric in a cluster. Every rule corresponds to a query 

cluster which contains all queries that match this rule. Then, we 

report the mean of the average value of each metric over all clusters. 

Table 4 shows the results of each metric. First, the clusters obtained 

by OUR rules are more topically coherent. Since lexical rules con-

taining keywords of DSAT queries are quite topically specific, this 

result is somewhat straightforward. Second, the rules generated by 

our system are strongly positively correlated with dissatisfaction, 

which means that OUR rules are more effective for identifying 

DSAT queries than TC rules. Third, the CTR of both systems is not 

significantly different. Generally, low CTR indicates dissatisfaction, 

but sometimes DSAT queries can include more clicks. For example, 

users do more clicks on search results but they immediately leave 

from the clicked results because those are not relevant. However, 

DSAT Correlation provides more direct relation between the rules 

and DSAT. Lastly, we calculate Kendall’s 𝜏  coefficient between 

avg. CTR and DSAT Correlation. In both systems, DSAT Correla-
tion is negatively correlated with CTR, which means generally low 

CTR indicates dissatisfaction. Besides, more salient negative rela-

tion is identified by OUR as is evidenced by a much higher DSAT 
Correlation in OUR.  

5.2 DSAT Query Classification  

5.2.1 Experimental Set-up 
We conduct experiments to evaluate our system in DSAT query 

classification (Section 4.3). In this, a system would perform better 

if its features (e.g., association rules in our system) are more effec-

tive to identify DSAT queries. We use the mining set to generate the 

Table 3: Basic rule statistics. OUR includes both categorical and 

lexical rules. The percentile ratio indicates the reuse ratio of the 

generated rules in the analysis set. 

Metric \ Method TC (baseline) OUR 

# of rules generated  

from mining set 
1,160 26,845 

# of rules matched  

in analysis set 

1,158 

(99.83%) 

5,861 

(21.83%) 

Percentage of the matched 

queries in the analysis set 
0.7310 0.7520 

 

Table 4: Comparison against TC baseline. Bold indicates sta-

tistically significant difference at 𝒑 < 𝟎. 𝟎𝟏 from TC (using 

Wilcoxon rank-sum test). 

Metric \ Method TC OUR 

Avg. Cosine-Similarity 0.0133 0.5296 

Avg. CTR 0.4509 0.4554 

Avg. DSAT Correlation  1.9420 4.0141 

Avg. # of queries 2122.44 530.79 

Correlation Coefficient  

(CTR vs. DSAT Correlation) 
−0.2718 −0.3204 

 



rules, and exclude all behavior attributes because we are interested 

in predicting query performance at query time before observing any 

user behavior. For evaluation, a balanced data set is used, which 

contains 40,000 query instances (i.e., 20,000 instances are DSAT 

and the others are SAT); this comes from another random sampling 

of the queries that does not overlap with the mining set. For learn-

ing, we use a Linear Support Vector Machine (SVM) [29] and Lo-

gistic Regression (LR) [5]. We run each classifier 10 times and for 

each run, we perform 10-fold cross-validation using random parti-

tioning. 

5.2.2 Baselines 
To develop baselines, we leverage the features from previous work 

on predicting query performance [10][17][25]. We compare our 

system to four different baselines each of which uses different fea-

tures. Table 5 summarizes the features used in Baseline 1 and 2. 

The first baseline is developed by using a combination of the query 

performance predictors presented in [10][25]. We chose to use 

query clarity score ([10]) because it performs as well as other mod-

els (e.g. [34]), does not require access to external resources ([34] 

requires the ranking results from two different search algorithms), 

and is not limited to any specific query types ([34] focuses on only 

two types of queries; named-page finding and content-based). To 

estimate inverse collection term frequency ([25]), we used term 

probabilities obtained from the Web N-Gram services [31] that pro-

vide smoothed n-gram probability. We calculate the sum, standard 

deviation, ratio of the maximum to the minimum, maximum, arith-

metic mean, and geometric mean among the term probabilities of 

all query terms. While the first baseline only uses the features ex-

tracted from query texts, the work of [17] additionally considers 

interaction behavior (e.g., clickthrough statistics) which can largely 

improve prediction performance. Thus, as Baseline 2, we imple-

ment the features proposed in [17], which showed best performance 

in that paper. For more robust baselines, we combine the features 

from the Baseline 1 and 2 to form Baseline 3. In addition, we de-

velop Baseline 4 which uses all the attributes (see Section 4.1) as 

features but does not use the association rules. The purpose of Base-

line 4 is to verify the effectiveness of our rule mining method (Sec-

tion 4.2) by comparing a system that uses the association rules as 

features and another that uses the original binary attributes used to 

mine the rules. 

5.2.3 Classification Results 
To perform a fair comparison, we run the methods with various set-

tings. First, to compare with Baseline 1, we exclude behavior at-

tributes and generate association rules (Cat+Lex(NOBH)) because 

Baseline 1 uses only query texts for extracting its features and in 

our method only behavior attributes require out-of-query infor-

mation (sequence of search actions). Second, to compare with 

Baseline 4, we use only categorical rules (Cat) because our objec-

tive is to verify the effectiveness of the rule mining method. Third, 

we combine our approach with the most robust baseline (Baseline 

3) to verify further enhancements when using behavioral signals. 

Tables 6 and 7 (overleaf) show the classification results with SVM 

and LR, respectively. We measure Precision, Recall, and F1 for 

each class. The area under the receiver operating characteristic 

curve (AUC) is measured to identify overall classification perfor-

mance. Since we focus on DSAT query identification, the metrics 

related to DSAT are more important.  

First, as we intended, Baseline 3 performs better than Baseline 1 

and 2. In both classifiers, Baseline 3 can significantly outperform 

the two baselines in terms of DSAT precision, AUC and all metrics 

regarding SAT. Second, the rule mining method (Section 4.2.1) is 

effective using both classifiers. Comparing Cat with Baseline 4, the 

performance of Cat is significantly better in most metrics (except 

DSAT Recall and SAT Precision using SVM). This is because a cat-

egorical rule itself is a meta-feature, one effective subset of the fea-

tures in Baseline 4 (i.e., categorical attributes). In other words, 

learning with the rules, the classifier can find an effective linear 

combination of equally associated features (i.e., the rules). Third, 

concerning Cat+Lex (NOBH), our system can significantly outper-

form Baselines 1, 2, and 3 in every DSAT metric and AUC, which 

means that the rules are more effective than the existing predic-

tors [10][17][25]. This result is important because as we described 

in Section 1, we attempt to identify dissatisfaction without behavior 

information (before searches terminate), and our system excluding 

behavior attributes is better than the baselines using the interaction 

features. Moreover, Cat+Lex using all proposed attributes can out-

perform the baselines as well. Fourth, we combine our system 

(Cat+Lex) with the robust baseline (Baseline 3), and in SVM ex-

periments (Table 6), we observed significant improvements on 

overall classification performance (i.e., AUC). However, using LR 

(Table 7), the combination performs worse than our system; espe-

cially in DSAT Recall, where a significant falloff (about a 32% drop 

from the performance of Cat+Lex) is observed, but in AUC the per-

formance slightly decreases and significance is not observed. This 

is because in LR experiments (Table 7), when compared to 

Cat+Lex, Baseline 3 performs poorly in terms of DSAT Recall 

(though in AUC, Baseline 3 is much better than Baseline 1 and 2) 

and combining with it is harmful to our system which basically per-

forms much better than the baselines. On the other hand, in SVM 

experiments (Table 6), comparing to Cat+Lex, Baseline 3 is com-

petitive and the combined approach can perform significantly better 

in AUC. Overall, our system (Cat+Lex and Cat+Lex (NOBH)) is 

more effective at identifying DSAT instances than existing perfor-

mance predictors [10][17][25] in two statistical learning frame-

works. 

5.3 Further Analysis 
We provide a qualitative analysis of our approach via query exam-

ples. Table  shows three sample rules generated by our system and 

example queries represented by the rules. In the first rule, the que-

ries (instances) related to 0 (behavior category, which indicates 

more query and less search result exploration) and Society/
People are dissatisfaction. In particular, the users querying for [lisa 

hill] reformulated the query several times but only clicked on two 

results with short dwell time (less than 30 seconds). 

Table 5: Summary of Baseline Features. 

Baseline Class Feature 

Baseline 1 Query 

query clarity score [10] 

query word length 

inverse web term probability [25] 

Baseline 

2 [17] 

Query  
query word length 

query character length 

User  

Interac-

tion 

# of distinct subsequent queries, 

# of SR, # of SERP, # of all search 

actions,  # of clicked answers  

query impression count, # of long ac-

tions (dwelling time is more than 30 

seconds), 

# of algorithmic clicks, 

clickthrough rate (CTR), 

SAT Rate =
# of long actions 

 # of algorithm clicks
 

 



 

 

Table 6: Classification results using SVM. Cat indicates using only categorical rules, Lex indicates using lexical rules, NOBH denotes 

excluding behavior attributes (Section 4.1.4), and Baseline4 uses categorical attributes as features (Section 5.2.2). In each column, a 

significant improvement over each baseline is marked by its number, e.g., B12 indicates improvement over Baseline 1&2. A † and ‡ 

denote a significant improvement over Cat and Cat+Lex, respectively. The paired t-test is performed with 𝒑 < 𝟎. 𝟎𝟏. 

Method \ Metric 
𝐃𝐒𝐀𝐓 

Precision 

𝐃𝐒𝐀𝐓 

Recall 

𝐃𝐒𝐀𝐓 

F1 

𝐒𝐀𝐓 

Precision 

𝐒𝐀𝐓 

Recall 

𝐒𝐀𝐓 

F1 
AUC 

Baseline 1 [10][25] 0.5951 0.6614 0.6265 0.6210 0.5277 0.5706 0.6427 

Baseline 2 [17] 0.5965 0.6535 0.6237 0.6189 0.5393 0.5764 0.6425 

Baseline 3 [10][17][25] 0.6932 B12 0.6742 0.6836 B12 0.7248 B12 0.7395 B124†‡ 0.7321 B124†‡ 0.7710 B124 

Baseline 4 0.6911 B12 0.7297 B123 0.7099 B123 0.7165 B12 0.6685 B12 0.6917 B12 0.7557 B12 

Cat  0.7119 B1234 0.7242 B123 0.7180 B1234 0.7201 B12 0.7052 B124 0.7126 B124 0.7794 B1234 

vs. Baseline 4 +3.01% −0.75% +1.14% +0.50% +5.49% +3.02% +3.14% 

Cat+Lex (NOBH) 0.7081 B1234 0.7348 B123 0.7212 B1234 0.7253 B12 0.6953 B124 0.7100 B124 0.7787 B1234 

vs. Baseline 1 

vs. Baseline 2 

vs. Baseline 3 

+18.99% 

+18.71% 

+2.15% 

+11.10% 

+12.44% 

+8.99% 

+15.12% 

+15.36% 

+5.51% 

+16.80% 

+17.19% 

+0.07% 

+31.76% 

+28.93% 

−5.98% 

+24.44% 

+23.18% 

−3.02% 

+21.16% 

+21.20% 

+1.00% 

Cat+Lex 0.7167 B1234 0.7221 B123 0.7194 B1234 0.7210 B12 0.7125 B124 0.7167 B124 0.7831 B1234† 

vs. Baseline 1 

vs. Baseline 2 

vs. Baseline 3 

+20.43% 

+20.15% 

+3.39% 

+9.18% 

+10.50% 

+7.10% 

+14.83% 

+15.34% 

+5.24% 

+16.10% 

+16.50% 

−0.52% 

+35.02% 

+32.12% 

−3.65% 

+25.62% 

+24.35% 

+2.10% 

+21.85% 

+21.88% 

+1.57% 

Cat+Lex+Baseline3 0.7124 B1234 0.7261 B123 0.7192 B1234 0.7534 B1234†‡ 0.7360 B124†‡ 0.7446 B1234†‡ 0.8175 B1234†‡ 

vs. Baseline 3 

vs. Cat+Lex 

+2.77% 

−0.60% 

+7.70% 

+0.55% 

+5.21% 

−0.03% 

+3.95% 

+4.49% 

−0.47% 

+3.30% 

+1.71% 

+3.89% 

+6.03% 

+4.39% 

Table 7: Classification results using LR. The same notation is used as in Table 6. The paired t-test is performed with 𝒑 < 𝟎. 𝟎𝟏. 

Method \ Metric 
𝐃𝐒𝐀𝐓 

Precision 

𝐃𝐒𝐀𝐓 

Recall 

𝐃𝐒𝐀𝐓 

F1 

𝐒𝐀𝐓 

Precision 

𝐒𝐀𝐓 

Recall 

𝐒𝐀𝐓 

F1 
AUC 

Baseline 1 [10][25] 0.6386 0.5257 B3 0.5767 0.5414 0.6537 0.5923 0.6282 

Baseline 2 [17] 0.6173 0.5718 B3 0.5937 0.5538 0.6146 0.5826 0.6338 

Baseline 3 [10][17][25] 0.6936 B12 0.4778 0.5658 0.6429 B12 0.8160 B124†‡ 0.7192 B124 0.7747 B124 

Baseline 4 0.6789 B12 0.7319 B123 0.7044 B123 0.7092 B123 0.6536 0.6803 0.7529 B12 

Cat  0.7155 B1234 0.7350 B123 0.7251 B1234 0.7276 B1234 0.7077 B124 0.7175 B124 0.7942 B1234 

vs. B4 +5.39% +0.42% +2.94% +2.59% +8.28% +5.48% +5.49% 

Cat+Lex (NOBH) 0.7128 B1234 0.7408 B1234 0.7265 B1234 0.7302 B1234 0.7015 B124 0.7156 B124 0.7938 B1234 

vs. Baseline 1 

vs. Baseline 2 

vs. Baseline 3 

+11.62% 

+15.47% 

+2.77% 

+40.92% 

+29.56% 

+55.04% 

+25.99% 

+22.38% 

+28.40% 

+34.87% 

+31.85% 

+13.58% 

+7.31% 

+14.14% 

−14.03% 

+20.82% 

+22.82% 

−0.50% 

+26.36% 

+25.24% 

+2.47% 

Cat+Lex 0.7163 B1234 0.7363 B123 0.7262 B1234 0.7287 B1234 0.7084 B124 0.7184 B124 0.7953 B1234 

vs. Baseline 1 

vs. Baseline 2 

vs. Baseline 3 

+12.17% 

+16.04% 

+3.27% 

+40.06% 

+28.77% 

+54.10% 

+25.92% 

+28.77% 

+28.34% 

+34.60% 

+31.58% 

+13.35% 

+8.37% 

+15.26% 

−13.19% 

+21.30% 

+23.31% 

−0.11% 

+26.60% 

+25.48% 

+2.66% 

Cat+Lex+Baseline 3 0.7148 B1234 0.5036 B3 0.5909 B123 0.6504 B123 0.8207 B124†‡ 0.7257 B1234† 0.7882 B1234 

vs. Baseline 3 

vs. Cat+Lex 

+3.06% 

−0.21% 

+5.40% 

−31.60% 

+4.43% 

−18.63% 

+1.17% 

−10.75% 

+0.58% 

+15.85% 

+0.91% 

+1.01% 

+1.74% 

−0.89% 

Table 8: Sample rules and query examples. BH denotes Behavior attributes (Section 4.1.4), ODP denotes ODP attributes (Section 

4.1.1), and WIKI denotes Wikipedia attributes (Section 4.1.3). For each rule, the consequent ({𝐃𝐒𝐀𝐓}) is omitted. 

No. Rule Example Query Label 

1 {0[BH], Society/People[ODP]} lisa hill DSAT 

2 {automobiles[WIKI], "warranty"} 
1989 toyota mr2 warranty DSAT 

2011 suzuki sx4 factory warranty SAT 

3 {motor vehicle company of Italy[WIKI], ¬aventador, ¬fiat, "ferrari"} 
used ferrari cars scottsdale DSAT 

certified ferrari cars phoenix DSAT 



The second rule describes a set of underperforming queries for auto 

warranty information. We found that sometimes the warranty in-

formation of older models (e.g., [1989 toyota mr2]) is not readily 

located whereas the information for newer models (e.g., [2011 su-

zuki sx4]) is easily found. The third rule contains negation, and 

shows that some users are dissatisfied with results for a group of 

queries related to “ferrari” and not containing “fiat” or “aventador”. 

6. CONCLUSION 
In this paper, we proposed a framework to automatically generate 

association rules to identify underperforming queries. In order to 

build effective rules, we first generate topical attributes recognized 

from query text and formulate association rules that discover fre-

quent patterns of the attributes for identifying dissatisfaction que-

ries. Then, we apply a decision tree learning to identify discrimina-

tive keywords of dissatisfaction queries and combine the keywords 

with the association rules. In experiments, we verified the effec-

tiveness of our system in the task of dissatisfaction query classifi-

cation in comparison to existing query performance prediction 

baselines. Considering previous work on modeling user satisfaction, 

the advantage of our method is identifying dissatisfaction at query 

time and our system can provide evidence of dissatisfaction to 

search engines before users abandon searches. For future work, we 

plan to devise effective methods to improve the instances of search 

dissatisfaction identified by our method.    
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