[image: image11.png]4% Windows

LLTD: Link Layer Topology Discovery Protocol - 2

A WINDOWS RALLY™ SPECIFICATION

LLTD: Link Layer Topology Discovery Protocol

Abstract

This specification describes how the Link Layer Topology Discovery (LLTD) protocol operates over wired (802.3 Ethernet) and wireless (802.11) media. As the protocol name suggests, the core functions of LLTD enable applications to discover the topology of a network. In addition, LLTD has optional QoS Extensions that applications can use to diagnose problems, especially those involving signal strength on wireless networks or bandwidth constraints in home networks.

LLTD is a key component of the Microsoft® Windows® Rally™ set of technologies.

Version 1.0.9 – September 15, 2006

	LICENSE NOTICE. Access to and viewing and implementation of the technology described in this document is granted under the Microsoft Windows Rally Program License Agreement (“License Agreement”). If you want a license from Microsoft to access, view or implement one or more Licensed Technologies, you must complete the designated information in the License Agreement and return a signed copy to Microsoft. The License Agreement is provided at the end of this document. If the License Agreement is not available with this document, you can download a copy from the Windows Rally Web site at http://www.microsoft.com/rally.

Disclaimer

This is a preliminary document and may be changed substantially prior to final commercial release of the software described herein.

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

Unless otherwise noted, the example companies, organizations, products, domain names, e-mail addresses, logos, people, places and events depicted herein are fictitious, and no association with any real company, organization, product, domain name, email address, logo, person, place or event is intended or should be inferred.

© 2006 Microsoft Corporation. All rights reserved.

Microsoft, Rally, Windows, Windows NT, Windows Server, and Windows Vista are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

The current version of this specification is maintained on the Web at:
http://www.microsoft.com/rally

Revision History

	Date
	Revision

	Version 1.0.8 May 2006
	Published as specification for Windows Rally technologies

Contents

5Overview

7Base Specification

7Demultiplex Header Format

9Base Header Format

9Topology Discovery and Quick Discovery

9Overview

10Enumeration State Engine

11Session State Engine

11Topology Discovery State Engine

12Enumeration Phase

12The Reset Frame

12The Discover Frame

13Receiving a Discover Frame

13Effects of Discover on the Topology State Machine

14Sending a Hello Frame

14Generation Numbers

15Inactivity Timeout

15Enumerator Behavior

15Command Phase

15Handling of Discovery

15Observing Network Probes

15Query and QueryResp Frames

16QueryLargeTlv and QueryLargeTlvResp Frames

16Charge and Emit Frames

17Emit Phase

17Security Checks

17Processing

18Amplification

18Constants

18Network Load Control

18Load Initialization

19Dynamic Behavior

19Reception of Discover

20Random Numbers

20Enumerator Behavior

20Reliability

21Sequence Number Management

21Detailed Packet Formats

21Base Header Format

22Discover Upper-Level Header Format

23Hello Upper-Level Header Format

24Mandatory and Optional TLVs

26TLV Definitions

26Emit Upper-Level Header Format

27Train Upper-Level Header Format

27Probe Upper-Level Header Format

27Ack Upper-Level Header Format

27Query Upper-Level Header Format

27QueryResp Upper-Level Header Format

29Reset Upper-Level Header Format

29Charge Upper-Level Header Format

29Flat Upper-Level Header Format

29QueryLargeTlv Upper-Level Header Format

30QueryLargeTlvResp Upper-Level Header Format

30Frequently Asked Questions

30Why must Hello messages be broadcast?

31Why are Emit messages not always acknowledged?

32Why does the responder not forward Probe packets to the mapper?

32How do I use the three state diagrams in Appendix C?

33QoS Diagnostics Specification for Network Test

33Operational States

34Network Test Session

35Network Load Control

35Timing

35Reliability

36Session Identifier

36Sequence Number Management

36Detailed Packet Formats

36Base Header Format

37QosInitializeSink Upper-Level Header Format

37QosReady Upper-Level Header Format

38QosProbe Upper-Level Header Format

39QosQuery Upper-Level Header Format

39QosQueryResp Upper-Level Header Format

40QosReset Upper-Level Header Format

41QosError Upper-Level Header Format

41QosAck Upper-Level Header Format

41QoS Diagnostics Specification for Cross-Traffic Analysis

41Overview

41Per-Interface Counters

42Operational States

42Network Load Control

42Timing

42Reliability

43Sequence Number Management

43Detailed Packet Formats

43Base Header Format

43QosCounterSnapshot Upper-Level Header Format

44QosCounterResult Upper-Level Header Format

45QosCounterLease Upper-Level Header Format

45References

46Appendix A: TLV Definitions

56Appendix B: Diagrams

56Diagram D.1. Mapping Engine State

57Diagram B.2. Enumeration Engine State

58Diagram B.3. Session Table State

Overview

This specification describes how the Link Layer Topology Discovery (LLTD) protocol operates over wired (802.3 Ethernet) and wireless (802.11) media. As the protocol name suggests, the core functions of LLTD enable applications to discover the topology of a network. In addition, LLTD has optional QoS Extensions that applications can use to diagnose problems, especially those involving signal strength on wireless networks or bandwidth constraints in home networks.

Note that the LLTD protocol operates at Layer 2 in the OSI reference model and as such is not routable. The protocol is suitable only for networks comprising a single subnet, such as a small office network or a home network.

The specification is organized into these major sections:

Base Specification

Describes the protocol headers, how to distinguish the services, and the function codes for each.

Topology Discovery and Quick Discovery

Describes the two main services exposed by LLTD.

QoS Diagnostics Specification for Network Test

Describes how the QoS diagnostics protocol facilitates the network test functionality that is used to determine the bottleneck bandwidth (or “capacity”) of a path, the available bandwidth of a path, whether the network equipment of a path has a prioritization mechanism, and so on

QoS Diagnostics Specification for Cross-Traffic Analysis

Describes how the QoS diagnostics protocol facilitates cross-traffic analysis by efficiently returning per-network interface IP performance counters.

LLTD offers these services:

· Quick discovery

· Topology discovery

· Quality of service diagnostics for network test

· Quality of service diagnostics for cross-traffic analysis

LLTD is a key component of the Microsoft® Windows® Rally™ set of technologies.

References and resources discussed here are listed at the end of this specification.

Conventions in this Specification

Acronyms

BAND

block adjust node discovery, a fast and scalable node enumeration algorithm.

LLD2

Link Layer Discovery and Diagnostics protocol: an outdated term replaced by “LLTD QoS Extensions.”

LLTD

Link Layer Topology Discovery protocol.

MAC address

Media Access Control address. Each network adapter has a unique address that is typically written as a string of 12 hexadecimal values.

RepeatBAND

An extension to BAND that supports multiple enumerators.

OUI

Organizationally unique identifier, or the three most significant octets of a MAC address as maintained by the IEEE Registration Authority.

PnP-X

An extension of Plug and Play in Microsoft Windows Vista™ that allows virtually-connected devices to be integrated into the Microsoft Windows Plug and Pay subsystem.

TLV

Type-length value. A property of an interface, so named because each property is composed of a Type field, a Length field, and a value.

UUID

universally unique identifier. This is a 128-bit value that is assigned to any object and is guaranteed to be unique.

XID

transaction ID, a 16-bit value. With stable storage, XID values are sequential; without stable storage, XID values are assigned at random.

General

controller

The (arbitrary) station that initiates a network test request.

enumerator

The (arbitrary) station that participates in the node discovery process.

hub

A data link-layer network device that acts as a shared bus. All stations that are connected to a hub are on the same segment, and therefore each station that is connected to a hub sees all frames that are sent to or from all other stations on that hub. Compare with “router” and “switch.”

mapper

The (arbitrary) station that initiates a topology discovery request.

quick discovery

The process of discovering responders on a network.

responder

A client station to which mappers and enumerators send commands by using the LLTD protocol that this document describes.

router

A network-layer device that defines the limit of an Ethernet broadcast domain. Compare with “hub” and “switch.”

segment

A set of stations that all see each others’ frames.

session

A context for managing communication over a protocol to another station identified by a specific MAC address and service pair.
sink

The responder station that is the target of a network test session.

station

An end-system that is connected to a switch, hub, or router.

switch

A data link-layer device that propagates broadcast frames between network segments and allows unicast communication between pairs of stations on different segments. Stations that are connected through a switch see only the frames that are destined for their segment. Flooding (that is, seeing a frame for someone outside the segment) occurs only if the switch has not learned that MAC address yet. Compare with “hub” and “router.”

topology discovery

The process of discovering the topology of a network. Compare with "quick discovery."

MAC code point

The following MAC address ranges are defined:

reserved topology discovery addresses

The private address range for topology discovery.

00-0D-3A-D7-F1-40 through 00-0D-3A-FF-FF-FF

The following ether type field numbers are used:

LLD2 protocol

Ethernet type field number #88D9

Base Specification

The following shows the position of each layer of header in the LLTD protocol.

+--------------------+

| Ethernet |

| Header |

+--------------------+

| Demultiplex |

| Header |

+--------------------+

| Base |

| Header |

+--------------------+

: Upper-Level :

: Header :

Figure 1: Position of headers

Demultiplex Header Format

A following is a summary of the demultiplex header:

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Version |Type of Service| Reserved | Function |

+-+

Figure 2: Example Demultiplex Header

Version: 8 bits

The Version field indicates the version of the demultiplex header. This document describes version 1.

Type of Service: 8 bits

The Type of Service field identifies the utility of the frame.

0x00
=
Topology discovery

0x01
=
Quick discovery (shares the function codes from above)

0x02
=
Quality-of-service (QoS) diagnostics

0x00-0x7F
=
Reserved for Microsoft’s use, starting at 0x00

0x80-0xFF
=
Reserved for third-party use, starting at 0xFF

Reserved: 8 bits

Must be zero.

Function: 8 bits

The Function field unambiguously differentiates the multiplex of messages for a given type of service. The following functions are valid for service type 0x00:

0x00 = Discover

0x01 = Hello

0x02 = Emit

0x03 = Train

0x04 = Probe

0x05 = Ack

0x06 = Query

0x07 = QueryResp

0x08 = Reset

0x09 = Charge

0x0A = Flat

0x0B = QueryLargeTlv

0x0C = QueryLargeTlvResp

The following functions are valid for service type 0x01:

0x00 = Discover

0x01 = Hello

0x08 = Reset

The following functions are valid for service type 0x02:

0x00 = QosInitializeSink

0x01 = QosReady

0x02 = QosProbe

0x03 = QosQuery

0x04 = QosQueryResp

0x05 = QosReset

0x06 = QosError

0x07 = QosAck

0x08 = QosCounterSnapshot

0x09 = QosCounterResult

0x0A = QosCounterLease

Base Header Format

The base header format is as follows:

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| |

+ Network Address 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| | |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Network Address 2 +

| |

+-+

| Identifier |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 3: Example Base Header

Network Address 1: 48 bits

Network Address 2: 48 bits

The use of the Network Address fields depends on the function and service type. The meaning of these fields can be summarized as follows:

Topology Discovery, Quick Discovery and QoS Diagnostics for Network Test

Network Address 1 = real destination address

Network Address 2 = real source address

QoS Diagnostics for Cross-Traffic Analysis

Network Address 1 = address of physical or virtual interface

Network Address 2 = real source address

Identifier: 16 bits

The use of the Identifier field depends on the function and service type. The meaning of this field can be summarized as follows, but refer to the subsections later in this specification for more information:

	Type of service
	Usage

	Topology discovery
	Sequence number or XID

	Quick discovery
	Sequence number or XID

	QoS diagnostics
	Sequence number

Topology Discovery and Quick Discovery

Overview

This section describes both the quick discovery service and the topology discovery service. Think of topology discovery as a superset of quick discovery. Henceforth, the term enumerator is used to identify any station that is issuing either a quick discovery request or the enumeration portion of a topology discovery request. Responders must be able to perform both activities simultaneously. In topology discovery, an initial round of responder enumeration must be performed, similar to what is done with quick discovery.

The enumeration and discovery of responders is described in "Enumeration Phase," and the distributed load control of this discovery is described in “Network Load Control” section.

The topology discovery enumeration also results in selecting a single mapper to which responders are associated. Then this mapper can send additional commands that cause a responder to send topology Probe packets and to query which topology Probe packets the responder has seen. These commands are described in “Command Phase” and “Emit Phase” sections. Some topology commands require reliable communication between the mapper and the responder, as described in ”Reliability” section. Finally “Detailed Packet Formats” section provides detailed packet formats.

· There is a single topology discovery enumerator, but an unknown number of other enumerators. The topology enumerator acquires a distributed lock on the network and obtains the generation number. The other enumerators know what hosts exist and some information about them.

· If multiple mappers attempt topology discovery, only one may ultimately succeed, but all mappers participate in at least part of the enumeration process—enough to discover the current active mapper.

· To prevent packet loss, enumerators send acknowledgments. A responder does not respond if it is already acknowledged. This means that the responder must keep a small amount of per-enumerator state, which significantly reduces the load on the network. The number of simultaneously active enumerators is sufficiently small that the acknowledgements and small amount of state are more efficient than blind multiple transmissions.

· Complexity is maintained in the enumerator and not in the responder so that small devices that are embedded by third-party original equipment manufacturer (OEM) suppliers can implement the responder.

Three state engines are required:

· The enumeration state engine operates the overall enumeration logic, which is shared by topology discovery and quick discovery.

· The session state engine can have multiple instances, which record the state of the session that is associated with each enumerator.

· The topology discovery state engine facilitates the actual topology discovery process and applies only after sufficient negotiation is made between the mapper and the responder via the enumeration state engine.

Enumeration State Engine

The enumeration state engine operates in one of three states:

Quiescent
 | Discover (not acknowledged)

· Pausing (pause, transmit Hello commands, and await acknowledgments)
 | All enumerators acknowledge responders

· Wait

While in the quiescent state, responders must only listen to Broadcast frames and wait for a Discover frame to do one of the following:

· Trigger association with a mapper M (during topology discovery)

· Initiate enumeration session (during quick discovery)

The pausing state is critical to scalable discovery of the stations. During the wait state, the responder waits for enumerators or the mapper to finalize their session via the Reset frame. Responders leave the wait state for the quiescent state when all enumerators have either timed out due to inactivity or have successfully sent the Reset command.

Session State Engine

The session table is a dynamic table that stores per-enumerator state information and thereby enables the enumeration state machine to decide when to transmit Hello packets and when to transition to the wait state. The session table is indexed by the enumerator station (such as a computer) and service (quick discovery or topology discovery), against which is recorded the transaction ID (XID) value, the state, and the active time. The state in each table entry is either pending, complete, or temporary.

The following frame function types impact the session state and thereby indirectly affect the enumeration state:

Discover

(Mapper (BROADCAST)
Hello

(Responder (BROADCAST)
Reset

(Mapper (Responder, Mapper (BROADCAST)

Topology Discovery State Engine

The topology state engine operates in one of three states:

Quiescent
 | The mapper acknowledges a Hello frame in an enumeration state engine.

· Command
 | Emit

· Emit

While in the quiescent state, responders ignore all packets that are marked for topology discovery. The command state is reached when the enumeration state engine has successfully negotiated a topology discovery enumeration with a mapper (and only one mapper). The command state is where responders spend most of their time during topology discovery. Here responders execute Emit and Query commands from the mapper and run with the interface in promiscuous mode. The emit state is reached only if responders receive the Emit command. As soon as the command is fully processed, responders return to the command state. Responders return to quiescent state after receiving the Reset command or time out after inactivity.

The following frame function types are defined.

· Used in the command and emit states:

Reset
(Mapper (Responder, Mapper (BROADCAST)

· Used in the command state:

ACK
(Responder (Mapper)

Charge
(Mapper (Responder)

Emit
(Mapper (Responder)

Flat
(Responder (Mapper)

Query
(Mapper (Responder)

QueryLargeTlv
(Mapper (Responder)

QueryLargeTlvResp
(Responder (Mapper)

QueryResp
(Responder (Mapper)

· Used in the emit state:

Probe
(Responder (SPECIAL)

Train
(Responder (SPECIAL)

Enumeration Phase

This phase is handled by the enumeration state engine and seeks to answer the following questions:

· What stations are on the network?

· What generation number should be used (topology only)?

· Is another mapper active?

Knowing the correct generation number for a mapping iteration is necessary because of the way in which switches are forced to learn addresses. By the end of the phase, zero or one mapper is active and the correct generation number is known.

The enumeration is designed to be highly efficient. A Hello packet is a valid response to any active enumerator (both quick discovery and topology discovery), including those enumerators whose initial Discover packet has yet to be seen at the responder.

Both the enumeration state machine and the session state machine handle enumeration, as described earlier. A session is defined by the (real) address of the enumerator and the service type (quick or topology).

The enumeration state machine is always defined by the overall session table. If there are no session table entries, then the enumeration state is quiescent. If there are sessions but they are all complete, then the enumeration state is the wait state. In other conditions, the enumeration state machine is in the pausing state.

The final purpose of the enumeration phase is to ensure that all switches know where all stations are. Hello frames are broadcast for this reason, so that all switches can learn from their source addresses. Otherwise, if a station is disconnected and then reconnected elsewhere, the switches may not yet be aware of this and, when they are probed by the mapper algorithm, results are inconsistent.

An important aspect of the enumeration phase is avoiding network overload that is caused by either a very large network or one or more malicious mappers. The RepeatBAND algorithm is used for this purpose, in which responders throttle their transmissions based on the presence of other responder frames.

The following sections discuss the protocol actions for the enumeration phase in topology discovery.

The Reset Frame

Typically, a Reset frame is sent at the start or the end of an enumeration or after completing topology discovery. This is done to clear any stale responders from a previous mapping or enumeration run, for example, if the previous Reset frame was dropped and responders have not yet reached their inactivity timeouts.

If a corresponding session entry is found, it is deleted. If no corresponding session entry is found, the packet is ignored. The resulting enumeration state could be pausing, wait, or quiescent, depending on the resulting session table.

If the reset is for a topology discovery session entry (from the current mapper M) then in addition to the logic above, the topology state machine is also reset. In addition, all sessions that are in the temporary state are also reset.

The Discover Frame

An enumerator broadcasts a Discover frame. This frame contains a set of responder station addresses that the enumerator has seen (initially the empty set) and an XID value that detects an enumerator that restarts without a corresponding reset.

If the enumeration is for topology discovery, it also contains the mapper’s current estimate for the generation number to be used in this mapping instance. This generation number may be 0 (the invalid generation number), which means “I have no idea.” The first Discover frame (by definition) has the generation set to 0.

Receiving a Discover Frame

When a Discover frame arrives, the responder looks in the session table to match the MAC address and service code of the sender.

If no entry exists (or the entry has a different XID), then an entry is created and the session state is set depending on whether the request contains an acknowledgment for this host (either pending or complete). The active time is also updated.

If a session table entry exists (and has the same XID), then the active time is updated. If the Discover frame acknowledges this host, then the entry is set to complete.

In a Discover frame for topology discovery service, only one such session can be marked as pending or complete. If the responder does not know of an active mapper, then it remembers the current sender of the Discover frame as the current mapper.

If a current mapper already exists, then the session table entry is set to the temporary state (notwithstanding the paragraph above).

Finally, the enumeration state machine transitions to the pausing, wait, or quiescent state, as appropriate.

Effects of Discover on the Topology State Machine

As described earlier, topology discovery can be considered an extended form of quick discovery. To enumerate topology sessions, the responder takes certain specific actions.

One of these, as described earlier, ensures that a single topology session is associated with a responder by setting subsequent topology sessions to the temporary state rather than the pending or complete states. In addition, the idle timeout for the topology session is different from that of the quick discovery session.

In Nascent State

The first topology session that is created becomes the one true topology session, and the responder records the address of the mapper. Subsequent topology sessions are created in temporary state until the true topology session is ended. The responder is said to be “associated” to this mapper. Even though the Hello frame is not sent immediately, the mapper is associated immediately to limit the window of concurrency if multiple mappers simultaneously attempt to control the network.

If the Discover frame’s source address is different from the mapper’s real address, then this discrepancy is noted (which indicates that the mapper is behind a WET11-style device).

The responder also places its interface into promiscuous mode. Although this state may not be needed until the responder’s topology state engine enters command state, it may take a while for the hardware to be reprogrammed.

In Pending State, If Acknowledged

The topology state machine transitions to command state in addition to the transition of the topology session to complete state (and any resulting change in the enumeration state machine).

Sending a Hello Frame

The responder sends a Hello frame in the pausing state as determined by the RepeatBAND load control mechanism. The frame contains all the information that is described in the following packet format. When the Hello frame is sent, all session entries in the temporary state in the session table are deleted. The enumeration state machine then transitions to the pausing state (if any session table entries are in the pending state), the wait state (if all the session table entries are in the complete state), or the quiescent state (if the session table is empty).

Generation Numbers

Responders store the previous generation number that was used in mapping the network. This stored value may be zero, which means that the responder does not know a valid generation number. Responders must zero their stored generation number if they are disconnected or powered down because they may be reconnected to a different network where this generation number is not valid.

The initial Discover frames from the mapper usually have the generation number zero (unknown). The responder should place its currently stored generation number in the Hello frames that it sends to the mapper. It should do this even if the Discover frame is advertising some other (nonzero) generation number.

A responder updates its stored generation number (setting it to the value that its mapper specified in the Discover frame) if the value that the mapper specified is nonzero and the mapper has acknowledged the responder. To reiterate, this occurs both upon receipt of the acknowledging Discover frame that causes the responder’s mapping state engine to transition to the command state and also upon receipt of a Discover frame from the same session while the mapping state engine is already in the command state.

Mapper Handling of Generation Numbers

The full rules for handling generation numbers at the mapper are beyond the scope of this document; however, responder implementers may find the following information useful.

The mapper uses generation numbers to generate fresh MAC addresses that are unknown to the switches in the network. This avoids the requirement of rebooting switches between mapping runs, so it is critical to choose an as-yet-unused generation number. The phase does this by reaching a consensus among the stations on the network, each of which should attempt to remember the previously used generation. This requires that all responders on the network communicate with the mapper. The mapper has the final choice, however, so it may overrule responders that may not be up to date (such as having been moved between networks).

Mappers do not store a previous generation number because multiple mappers may be operating on a network and mappers do not participate in enumerations to keep their generation number synchronized. Instead, mappers use the generation numbers from the responders’ Hello frames to determine the correct generation number.

As Hello frames arrive at the mapper, it decides which generation number to use for this mapping run by taking the newest generation number that the responders volunteered and adding one, wrapping it appropriately, and ensuring that it does not become zero. The mapper then uses this new generation number in subsequent Discover frames that the mapper broadcasts. The mapper may later revise its generation number choice as additional Hello frames arrive. If no responder volunteered a valid generation number, then the mapper selects a new generation number at random (ensuring it is nonzero) and broadcasts a final Discover frame to disseminate this generation number to the responders.

This permits a mapper to select a generation number before it knows that all possible responders have sent a Hello frame. The mapper must do this because it never knows when it will receive a late Hello frame.

A generation number is considered to have been consumed when the mapper broadcasts a Discover frame that contains the generation number.

Inactivity Timeout

A timer runs regularly. When the timer determines that the session table has stale entries, it treats them as if they had been reset.

Enumerator Behavior

It is important to note that this specification defines the behavior only of the responder. To implement a scalable and correct enumerator, additional information about response evaluation, termination, query suppression, and load control is required, which is beyond the scope of this document.

Command Phase

This phase applies to the topology state engine and is the principal state that is used to determine the network topology. The mapper commands the responder to send Probe packets by using the Emit command and the emit state, and the responder records any Probe packets that it sees for subsequent collection and analysis by the mapper. While in this state, the responder is in promiscuous mode (if this mode is supported on the interface).

Handling of Discovery

If the mapper broadcasts a Reset frame, it indicates that mapping is over for associated responders, either through successful termination of the algorithm on the mapper or because the mapper is aborting this mapping instance (for example, because another mapper is active). A responder must act on a Reset frame only if the responder's source address matches the mapper’s address with which the responder is currently associated.

Observing Network Probes

If a responder receives a Probe frame, it should add the frame’s source and destination addresses to its “sees” list. Responders should discard Train frames.

The sees list is normally small, but its maximum size can be approximately as large as the size of the network. Network size can be up to Nmax entries because this is the maximum size of the network to which this protocol is designed to scale. An error bit exists to permit an exhausted responder to indicate failure to record an entry. This should be used rarely, however, because doing so may cause complete failure to map the network, depending on the topology.

Responders must record Probe frames even if their real source address is equal to the responder’s own address. This is because the mapper must detect some broken chipsets that replicate and reflect packets.

Query and QueryResp Frames

The mapper sends a Query frame to a responder and asks the responder’s mapping engine to return its list of received Probe frame information. The responder sends a QueryResp frame to the mapper including as many received entries as will fit in the frame. The responder then removes the transmitted entries from its recorded list. If the list contains more pairs than will fit in a single Ethernet frame, the responder must set the “more” bit in the QueryResp packet, which prompts the mapper to continue sending Query frames until it has gathered all the entries.

If a failure to observe a Probe frame occurs, the responder sets the “error” bit in the QueryResp packets. The error flag should be cleared only after the sees list has been completely drained.

QueryLargeTlv and QueryLargeTlvResp Frames

Some type-length-value pairs (TLVs) may be too large to return in a single Hello frame. These TLVs may be returned by using the QueryLargeTlv mechanism. For a list of these TLVs, refer to the Hello and QueryLargeTlv packet format documentation elsewhere in this specification.

The QueryLargeTlv and QueryLargeTlvResp frames operate in a very similar way to the Query and QueryResp frames. A QueryLargeTlv frame is sent to the responder’s mapping engine (the enumeration engine does not support this frame) and asks it to return as many octets as possible, starting from a specific offset, for a specific TLV type. The responder acknowledges by returning the maximum possible number of octets that fit in a single Ethernet frame from the specified offset. If there are more octets to return, the responder must set the “more” bit in the QueryLargeTlvResp frame, which prompts the mapper to continue sending QueryLargeTlv frames with updated offset values until it has gathered the full TLV. Note that the mapper does not know how large the TLV is until the final QueryLargeTlvResp frame is returned (and the “more” bit is set to zero).

The size of a large TLV is limited to a maximum of 262,144 octets. Some TLVs might have a smaller limit.

Charge and Emit Frames

To prevent denial-of-service (DOS) attacks, the mapper must send as many bytes to the responder as it can trigger the responder to send on its behalf. This is a design choice that defends against the protocol being used to amplify attacks on others.

A responder performs a check for Emit commands. Sufficient transmit credit in bytes and packets must be available to send both the designed packets and any requested acknowledgment.

While in command state, the responder’s mapping engine is operating the Charge management functionality. If it receives a unicast Emit or Charge message from the mapper, then the current transmit credit (CTC) at that responder is incremented by the Ethernet frame size of the received message in bytes and by one packet.

If the CTC is insufficient to execute the corresponding wire transmissions in response to an Emit frame from the mapper, the responder must send a Flat frame (which contains the current CTC). If the mapper receives a Flat frame, It must build up additional credit (by using Charge or Emit frames).

After it is determined that an Emit frame will be attempted, the charge is zeroed. This means that if an Emit frame fails while it is in process, the mapper must recharge from zero.

Note that small amounts of bytes charge can be transferred simply by padding an Emit frame appropriately.

Expiry and Limits of Charge

The amount of charge should be limited to prevent a rogue mapper from accumulating a large amount of charge at multiple responders and releasing this at the same time against a target. The recommended values are 65,536 bytes and 64 packets.

In addition, unused charge expires after a time. When the value of the charge becomes nonzero, the CTC_RESET_TIMER timer is started (with a recommended value of 1,000 ms). If the timer fires before an Emit frame uses the charge, then the charge is set to zero. An Emit frame that is accepted cancels the timer.

Sequence Numbers

To avoid an attacker from misappropriating an accumulated CTC, any Emit request that requires charge (beyond that which the Emit request itself carries) must carry a sequence number. An Emit request that does not succeed because of insufficient charge causes that sequence number to be consumed. The Flat request carries the sequence number in return. The rationale is that the transmission of the Flat frame cancels the packet charging effect of the Emit request, hence any retransmission would also fail. Because at least one Charge frame must be sent before the Emit request can be retried, the sequence number space must not be polluted.

Charge packets may optionally carry a sequence number. This Charge packet causes a Flat frame to be returned that carries the current CTC values. Note that this Charge packet does not increase the values of the CTC in packets (although it may increase the byte charge count), but is instead useful for determining the value of the resulting CTC.

Emit Phase

The mapper sends the Emit frame to a responder and includes a list of (type, pause, src, and dst) quadruples. These quadruples are processed sequentially in order, and each quadruple requests that the responder transmit a Train or a Probe frame with the given source and destination MAC addresses after the specified pause time.

The “type” parameter allows the mapper to specify whether a Train or a Probe frame is required and the pause specifies how long (in milliseconds) to wait after sending the previous frame before sending this frame. The pause is used because some switches require approximately 150 ms to update their port filtering databases, so back-to-back Train and Probe frames are not forwarded correctly.

Upon receiving a valid Emit frame, the mapping engine temporarily goes into the emit state for the duration of the Emit command. It transitions back to command state after the Emit frame has been fully serviced.

Security Checks

For security reasons, a responder must perform the following checks before placing Train or Probe frames on the wire:

· The Emit request must not have been sent to the broadcast address.

· Train and Probe src field must equal the Responder’s normal address or be within the range of the organizationally unique identifier (OUI) that is allocated to Microsoft for this protocol.

· Trains and Probe dst field must not be Ethernet broadcast or multicast.

The responder must validate the security criteria on all triples in the list before starting to transmit any of them. If the security checks fail one or more triples, then none of the triples in the Emit frame must be transmitted and the Emit frame must not be acknowledged.

Processing

If an Emit frame includes a sequence number, the responder does not send the ACK until all requested Train and Probe frames have been sent successfully. If a responder is in the midst of sending a list of Train and Probe frames and detects a failure to transmit (for example, due to link failure), the responder must stop processing the list and not send the remaining Train or Probe frames in the list. The responder must not generate an ACK for this failing sequence of frames. Rather, the mapper must recover from this sort of failure. If the mapper retransmits the failed Emit request (it will have the same sequence number), the responder should restart processing it from the beginning of the list.

While a responder is processing the transmit list (that is, the mapping engine is in the emit state), it must not process Emit, Query, or QueryLargeTlv frames, but must continue to process Reset and Discover frames. Probe packets are recorded as in the command state. If Emit, Query, or QueryLargeTlv frames are received they should be discarded (since they can have no valid sequence number), although this behavior may depend on the operating system over which the responder is implemented and is beyond the scope of this specification.

Amplification

To avoid amplification, the responder requires enough CTC (in both packets and bytes) to handle an Emit frame (including the cost of sending a possible acknowledgment). If not enough CTC exists (and the Emit frame is intended to be reliable, that is, a sequence number is present), then a Flat frame is returned. Note that an Emit frame always contains enough inherent charge to send a Flat frame.

Constants

	Constant
	Value

	Nmax
	Currently set to 10,000

	Tb
	Currently set to 300 ms

	I
	Currently set to 6.67 ms

	Alpha
	45

	Beta
	2

	Gamma
	10

	TXC
	4

	HELLOTIMEOUT
	Currently set to 15 s

	CMDTIMEOUT
	60 s (suggested)

Network Load Control

Network load control and scalability of the enumeration process (both quick discovery and topology discovery) are handled by a method and system called “RepeatBAND." The “Overview” and “Enumeration Phase” sections described the state transitions and frames that are sent. This section describes how the timing of these frames and state transitions are accomplished.

Responders send Hello frames in the pausing state, but they do not send them immediately. Instead, responders measure the network load over a number of loosely synchronized rounds also called blocks of approximately fixed duration Tb (the “block time”). Responders use these load measurements to calculate a running count of the number of responders that are active on the network and send a frame in a block with a probability that depends on this estimate.

Load Initialization

When a responder transitions to the pausing state, it initializes the estimate of the number of machines (N) on the network to Nmax and sets the initial number of observed Hello responses to zero. It then begins the first round.

The responder must not begin to monitor the network load until it is ready to transmit; otherwise, many similar machines might think that the network load is low and become ready simultaneously.

Dynamic Behavior

At the start of each round in the pausing state, a responder samples its random number generator and chooses a time uniformly distributed between zero and N times I. If the time is less than Tb, then the responder sends its Hello frame at the chosen time. If the time is greater than or equal to Tb, then the responder does not send a Hello frame in this round. If the Hello frame is sent, the retransmit counter is decremented for each pending session in the session table and each temporary session is deleted. When a counter reaches zero, the session is marked complete even if it has not been acknowledged. This action may cause the responder to exit the pausing state. Note that the topology session may therefore be complete without being acknowledged. If so, the topology state machine does not transition to the command state.

During the block, the responder counts the Hello and Discover messages on the network (including its own transmission if any) in a variable that is called r.

At the end of the block, the responder updates the estimate of the number of active responders on the network based on the count of frames during the block and the measured length of the block (in milliseconds), which is called Ta. (Ta is likely the same as Tb, but on some platforms can be longer due to scheduling delays.) The estimate is calculated as follows:

Value = RoundUp(r * N(old) * I / Ta);
Bound = RoundUp(N(old) * Gamma / (Beta * Alpha));
N(new) = Max(Bound, Min(100*N(old) , Value))

Note that if the implementation is accomplished carefully, this value is never zero or negative and can be implemented entirely in integer arithmetic.

The responder then checks the “begun” flag (described in the next section). If it is set and the estimate N is below half of Nmax, then it is doubled. Otherwise, it is set to Nmax if it is below Nmax. The begun flag is then cleared.

if (begun)

if (N < Nmax/2) N *= 2; else if (N < Nmax) N = Nmax;
begun = false;

Finally, the responder begins the next round.

Reception of Discover

Discover packets are handled differently, depending on whether the enumerator is known to the responder (a session already exists) and the responder is acknowledged. Discover packets are counted toward the load estimation.

If a new session is created directly into the complete state, it has no effect on the load control system. If an already existing session transitions to the complete state, it has no effect on load control (unless it causes a simultaneous transition of the enumeration state machine out of the pausing state). A Discover frame for an existing session that does not acknowledge the responder also does not change load control.

A change to load control is usually caused by Discover frames that create a new session. The transmission count for the session is set to TXC. If this session is causing a transition to pausing state, then the load control is initialized as described earlier in the “Load Initialization” subsection. If this new session is not causing a transition to pausing state, then the begun flag is set, which impacts load control at the end of the current block.

Random Numbers

The algorithm shown earlier requires the use of a random number generator. Implementers should be careful to use a random number generator whose seed value does not depend on the current time because the time could be synchronized on the network. (Indeed, for a machine with multiple interfaces, the time is identical on the responder on each interface.) An easily available alternate seed is to use the MAC address of the interface.

Enumerator Behavior

The algorithm shown earlier specifies the responder behavior to control network load. Additional functionality is required of an enumerator, which is beyond the scope of the current document.

Reliability

Because Ethernet is a best-effort medium, some frames may be lost. To cope with this, several techniques are used.

In the enumeration phase, enumerators retransmit the Discover frames and responders check the given station list to ensure that the enumerator has seen them, rebroadcasting their Hello frame if required. If the enumerator must list more responders than will fit in a single Discover frame, it sends multiple (sequential) Discover frames incrementally acknowledging the responders. Thus, a responder’s enumeration state engine is awakened from quiescent and enumerators see responders reliably.

In the command state of the topology discovery state engine, reliability is ensured by using sequence numbers (that is, the Identifier field in the base header) in mapper requests and having the responder quote this same sequence number in any response packet. The request/response pairs are as follows:

	Mapper
	Responder

	Emit
	Ack or Flat

	Query
	QueryResp

	Charge
	Flat

	QueryLargeTlv
	QueryLargeTlvResp

The following table shows which function types can be sent to the broadcast address, which might have a nonzero sequence number, and which must have a nonzero sequence number:

	Function
	Value
	Broadcast?
	Sequence number?

	Discover
	0x00
	Required
	Required(*)

	Hello
	0x01
	Required
	No

	Emit
	0x02
	No
	Permitted

	Train
	0x03
	No
	No

	Probe
	0x04
	No
	No

	Ack
	0x05
	No
	Required

	Query
	0x06
	No
	Required

	QueryResp
	0x07
	No
	Required

	Reset
	0x08
	Permitted
	No

	Charge
	0x09
	No
	Permitted

	Flat
	0x0A
	No
	Required

	QueryLargeTlv
	0x0B
	No
	Required

	QueryLargeTlvResp
	0x0C
	No
	Required

	*
The discover frame uses a sequence numbering mechanism that differs from that used by other function codes. The “Sequence Number Management” section in this specification describes this in detail.

In particular, the Emit and Charge frames are the only frames that can optionally have a sequence number.

Request frames sent with a non-zero sequence number require an acknowledgment of some kind (that is, Ack, QueryResp, Flat, or QueryLargeTlvResp). These packets are called “Ack-like.” The mapper retransmits the request until the responder acknowledges it (or the mapper times out and declares the responder dead.) Note that because requests are sent only from the mapper, the responder is not required to implement any timeout and retransmission logic. If an Ack-like frame is not imminent, the mapper must time out and retransmit the request (which keeps the responder simple). To allow this, the responder must keep a copy of the last Ack-like frame that it sent to the mapper, together with its sequence number. If the mapper sends a request with a matching sequence number, the kept frame is retransmitted without invoking higher-level responder logic.

The Flat message conveys the CTC that is accumulated at the responder so that a mapper can choose whether it must acquire more credit before it can ask the responder to perform a desired Emit-related action.

Sequence Number Management

The sequence number is a 16-bit field. Commands and requests from the mapper to the responder may have no sequence number (in which case the field is zero) or may be sequenced (in which case they have a nonzero sequence number). Sequence numbers are advanced by using increments in ones-complement arithmetic, that is, they advance from 0xFFFF to 0x0001 and skip 0x0000.

The first sequence number of a topology discovery session may have any (nonzero) value and is taken by the responder. Subsequent sequence numbers must have the correct value (either a retransmission that is reacknowledged as mentioned earlier or the successor value).

The Discover frame uses the 16-bit sequence number field for its XID, which is just a simple sequence number. Its purpose is to detect an enumerator that terminates without the responder realizing it and restarts before the idle time has expired. If the XID value that an enumerator uses changes, then the responder should assume that the previous session was reset before processing the packet.

Detailed Packet Formats

Base Header Format

The base header format is as follows:

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| |

+ Real Destination Address +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| | |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Real Source Address +

| |

+-+

| Sequence Number |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 4: Base Header for Topology Discovery

Real Destination Address: 48 bits

Real Source Address: 48 bits

The real source and destination MAC addresses are set by a sender to its own MAC address and its intended destination MAC address, respectively. These fields are required because the source and destination address fields of the Ethernet header are rewritten by some network devices and thus may not survive an end-to-end transmission.

If the responder receives a command from the mapper in which the real source address is not equal to the Ethernet header’s source address, then this is a hint for the responder to broadcast a subsequent response, if any.

Sequence Number: 16 bits

The sequence number ensures reliability of certain packets in the protocol. Although all frames in this protocol have a sequence number field, it must be zero in some cases.

Discover Upper-Level Header Format

The discover header immediately follows the base header:

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Generation Number | Number of Stations |

+-+

: Station List (variable) ... :

Figure 5: Example Discover Header

Generation Number: 16 bits

This field allows the mapper to negotiate a generation number with the responders that respond to the Discover frame. Ultimately, this number allows the mapper to generate a unique range of MAC addresses from the reserved topology discovery address pool that does not conflict with those from a recent topology discovery process.

Number of Stations: 16 bits

This field indicates the number of station addresses that are present in the following station list.

Station List: variable

This field is a sequence of 6 octet MAC addresses. The length of the sequence is given by the Number of Stations field. For example, a station list that contains two addresses a1:b1:c1:d1:e1:f1 and a2:b2:c2:d2:e2:f2 is encoded as follows:

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| a1 | b1 | c1 | d1 |

+-+

| e1 | f1 | a2 | b2 |

+-+

| c2 | d2 | e2 | f2 |

+-+

Figure 6: Example Station List

Note that this encoding can be used only to a maximum of 246 MAC addresses because the discover frame must fit into a single 1514 octet Ethernet frame:

 1514
 - 14 (Ethernet header)
 - 4 (Demultiplex header)
 - 14 (Base header)
 - 4 (Discover header)

 1478 / 6 octets per address
= 246 addresses

The mapper arranges its discover intertransmission time so that no more than 246 addresses must be acknowledged at any time. If more responders reply than fit, however, the mapper sends a series of Discover frames, enough to acknowledge all the responders that replied.

Hello Upper-Level Header Format

Hello frames must be broadcasted so that all switches are made aware of the location of all responders. The hello header following a base header is:

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Generation Number | |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Current Mapper Address +

| |

+-+

| |

+ Apparent Mapper Address +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| | TLV List (variable) ... |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-

: TLV List (variable) ... :

Figure 7: Example Hello Header

Generation Number: 16 bits

This field contains the responder’s current generation number.

Current Mapper Address: 48 bits

This field contains the active mapper’s real MAC address as given in the Real Source Address field in the base header of the Discover frame that initiated the active topology mapping request. This field must be zeroed if there is no active topology mapping session.

Apparent Mapper Address: 48 bits

This field contains the mapper’s MAC address as given in the Source Address field in the Ethernet header of the Discover frame that initiated the active topology mapping request. This field must be zeroed if there is no active topology mapping session.

The Real Destination Address field in the base header of the Hello frame must be set to the mapper’s actual MAC address, so that if more than one mapper is active, mappers can ignore replies from responders other than theirs. All but one mapper is eventually reset and thus wants to abort their associated clients, so it is vital that each client is associated with only one mapper.

TLV List: variable

The TLV list gives properties that the responder knows about the interface on which it is running. Sometimes, a TLV may be too large to fit into a Hello frame, particularly in the presence of other TLV properties that occupy their share of valuable space. The responder may choose to declare certain TLVs as zero length. This tells the mapper to issue one or more QueryLargeTlv requests later for each of these TLVs. Each valid QueryLargeTlv request is followed by exactly one QueryLargeTlvResp response, so if the TLV is sufficiently large, multiple QueryLargeTlv requests may have to be issued. Note that only specific TLVs are allowed this behavior. For more information on this, refer to the QueryLargeTlv function or the TLV list later in this specification.

Each TLV has the following format:

 0 1

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- . . .

| Type | Length | Value (variable) ...

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- . . .

Figure 8: Example TLV entry

Mandatory and Optional TLVs
The following is a list of TLVs that a responder must support. All TLVs in the following table are mandatory unless otherwise noted. Exceptions are noted with the optional tag following the description.

	Type
	Length
	Description
	Context

	0x00
	-
	End-of-property list marker. Occupies only 1 octet and has no length octet.
	Mandatory

	0x01
	6
	Host ID. Used to uniquely identify the host on which the responder is running.
	Mandatory

	0x02
	4
	Characteristics. Used to identify various characteristics of the responder host and network interface.
	Mandatory

	0x03
	4
	Physical medium. Used to identify the physical medium of a network interface by using one of the IANA-published ifType object enumeration values.
	Mandatory

	0x04
	1
	Wireless mode. Used to identify how an IEEE 802.11 interface connects to the network.
	802.11 Client

	0x05
	6
	802.11 Basic Service Set IDentifier (BSSID). Used to identify an IEEE 802.11 interface’s associated access point.
	802.11 Client

	0x06
	var.
	802.11 Service Set IDentifier (SSID). Used to identify an IEEE 802.11 interface’s associated access point.
	802.11 Client

	0x07
	4
	IPv4 address. Used to carry the interface’s present and active IPv4 network address.
	Recommended if available

	0x08
	16
	IPv6 address. Used to carry the interface’s most relevant IPv6 network address. (Generally, this should be the Global v6 address.)
	Recommended if available

	0x09
	2
	802.11 maximum operational rate. Used to identify the maximum data rate at which the radio can run.
	802.11 Client

	0x0A
	8
	Performance counter frequency. Identifies how fast the timestamp counters run in ticks per second.
	Optional

	0x0C
	4
	Link speed. Used to identify the network interface’s maximum speed in units of 100 bps.
	Optional

	0x0D
	4
	802.11 RSSI. Used to identify an IEEE 802.11 interface’s received signal strength indication (RSSI).
	802.11 Client

	0x0E
	0
	Icon image. Contains an image exactly as represented in a disk file. The length of this property must be set to zero if it can be queried via the QueryLargeTlv function. All other length values are not supported.
	

	0x0F
	var.
	Machine name. Contains an unterminated UCS-2 string that identifies the device’s host name. The maximum length of this TLV is 32 octets.
	

	0x10
	var.
	Support information. Contains an unterminated UCS-2 string that identifies the device manufacturer’s support information (for example, telephone number and support URL). The maximum length of this TLV is 64 octets.
	

	0x11
	0
	Friendly name. Contains an unterminated UCS-2 string that identifies the device’s friendly name. The length of this property must be set to zero if it can be queried via the QueryLargeTlv function. All other length values are not supported.
	

	0x12
	16
	Device universally unique identifier (UUID). Used to uniquely identify a device that supports UPnP. This TLV must be identical to the UUID that is associated with the device’s UPnP implementation and is optional if the device does not support UPnP.
	UPnP Client

	0x13
	0
	Hardware ID. Contains an unterminated UCS-2 string that Plug and Play uses to match the device with an INF file on a Windows PC. The length of this property must be set to zero if it can be queried via the QueryLargeTlv function. All other length values are not supported.
	

	0x14
	4
	QoS characteristics. Used to identify various QoS-related characteristics of the responder host and network interface.
	QoS diagnostics function

	0x15
	1
	802.11 physical medium. Used to identify the wireless physical medium.
	802.11 Client

	0x16
	0
	AP association table. Used to identify the wireless hosts that are associated with an access point (AP). The length of this property must be set to zero if it can be queried via the QueryLargeTlv function. All other length values are not supported.
	802.11 Access Point

	0x18
	0
	Detailed icon image. This TLV is optional although it is highly recommended that the large icon TLV (0x0E) be available in the presence of this TLV. The length of this property must be set to zero if it can be queried via the QueryLargeTlv function. All other length values are not supported.
	Optional

	0x19
	2
	Sees-list working set. Identifies the maximum entry count in the responder’s sees-list database.
	Optional

	0x1A
	0
	Component table. Used by multifunction devices such as APs to report their internal components. The mapper uses this information to generate a more accurate topology map. The length of this property must be set to zero if it can be queried via the QueryLargeTlv function. All other length values are not supported.
	

	0x1B
	var.
	Repeater AP lineage. If the AP is a repeater AP as part of a Wireless Distribution System, then this TLV holds the address of the parent and may optionally hold the chain of parents up to the root. This TLV must have a length that is a multiple of 6 and has a maximum size of 36 octets.
	AP Repeater

	0x1C
	0
	Repeater AP table. If the AP is a repeater AP as part of a Wireless Distribution System, then this information permits the mapper to generate a more accurate topology map. The length of this property must be set to zero if it can be queried via the QueryLargeTlv function. All other length values are not supported.
	AP Repeater

TLV Definitions

For more information, refer to Appendix A.

Emit Upper-Level Header Format

An Emit frame is a list of source and destination MAC addresses that is prefixed by number of milliseconds to pause before sending a frame.

The Emit frame following a base header is:

 0 1

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-

| Num Descs | EmiteeDescs (variable) ...

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-

Figure 9: Example Emit Header

Num Descs: 16 bits

This field is the count of the following EmiteeDesc items.

Each EmiteeDesc item is a 14-octet structure:

 0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Type | Pause | |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Source Address +

| |

+-+

| |

+ Destination Address +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 10: Example EmiteeDesc Header

Type: 8 bits

This field identifies the type of packet to emit. Valid values are:

0x00 = Train
0x01 = Probe

Pause: 8 bits

This field identifies the number of milliseconds to pause before the associated packet is emitted. The cumulative pause value from all EmiteeDesc entries in an Emit frame must not exceed 1 second or the responder drops the entire Emit request.

Source Address: 48 bits

This field identifies the source MAC address of the packet to emit. The real source address of the packet must be the address of the responder itself.

The source address is restricted to one of:

· The host’s own normal MAC address

· The OUI of the special allocated address

Destination Address: 48 bits

This field identifies the destination Ethernet and real destination addresses of the packet to emit.

The destination address may not be a broadcast or multicast address because these addresses could amplify traffic.

A single Emit frame has space to contain up to a maximum of 105 EmiteeDesc structures because it must fit into a 1514 octet Ethernet frame. However, a lower constraint comes from the maximum charge:

 1514
 - 14 (Ethernet header)
 - 4 (Demultiplex header)
 - 14 (Base header)
 - 2 (Emit header)

 1480 / 14 octets per EmiteeDesc structure
= 105 EmiteeDesc structures

Train Upper-Level Header Format

Train frames are discarded by responders and are used only to train switches.

The Train frame has no upper-level header other than the base header itself.

Probe Upper-Level Header Format

Responders whose topology state engine is in command state or emit state add Probe frames that they receive to their “sees” list, noting the probe’s Ethernet source and destination addresses and real source address from the base header.

The Probe frame has no upper-level header other than the base header itself.

Ack Upper-Level Header Format

ACK frames are not acknowledged, but the sequence number field in the base header must be nonzero, that is, the sequence number of the request that is being acknowledged.

The ACK frame has no upper-level header other than the base header itself.

Query Upper-Level Header Format

The Query frame has no upper-level header other than the base header itself.

QueryResp Upper-Level Header Format

QueryResp is the response to a query. It lists which recordable events (such as Ethernet source and Ethernet destination addresses) have been observed on the wire since the previous Query frame. (The Query frame removes reported events from the responder’s topology mapping engine’s internal list.) QueryResp frames are not ACKed but must set the base header’s sequence number field to match the Query frame to which they are generated in response. Responders that are sending this frame must not merge identical recordable events (RecveeDescs items) even if they occur multiple times. The ordering of RecveeDesc items in this frame should represent arrival time ordering. If there are more triples than will fit in one frame, “num descs” has its top (M) bit set to indicate that further pairs follow. If the mapper receives a QueryResp frame with the M bit set, it should issue a fresh Query frame (with new sequence number) to the responder to collect additional RecveeDescs items from it.

The QueryResp frame that follows a base header is:

 0 1

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-

|M|E| Reserved | Num Descs | RecveeDescs (variable) ...

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-

Figure 11: Example QueryResp Header

‘More’ (M) flag: 1 bit

This field indicates that there are more RecveeDescs frame than will fit in one frame and that the mapper should follow up with another Query request.

‘Error’ (E) flag: 1 bit

This field indicates that the responder was unable to store a RecveeDesc record due to lack of memory.

Num Descs: 8 bits

This field identifies the count of returned RecveeDesc structures.

Each RecveeDesc item is a 20-octet structure:

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Type | |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Real Source Address +

| |

+-+

| |

+ Ethernet Source Address +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| | |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Ethernet Destination Address |

| |

+-+

Figure 12: Example RecveeDesc Header

Type: 16 bits

This field identifies the recorded protocol type. Valid values are:

 0 = Probe
 1=ARP / ICMPv6 Neighbor Discovery

Real Source Address: 48 bits

For ARP, this corresponds to the ar$sha field in an ARP response packet, as documented in RFC 826.

For ICMPv6, this corresponds to the optional target link-layer address option in a neighbor discovery packet.

Ethernet Source Address: 48 bits

Ethernet Destination Address: 48 bits

These fields correspond to the Ethernet source and destination addresses, respectively.

A single QueryResp frame may contain only a maximum of 74 RecveeDesc structures because it must fit into a 1,514-octet Ethernet frame:

 1514
 - 14 (Ethernet header)
 - 4 (Demultiplex header)
 - 14 (Base header)
 - 2 (QueryResp header)

 1480 / 20 octets per RecveeDesc structure
= 74 RecveeDesc structures
Reset Upper-Level Header Format

The Reset frame has no upper-level header other than the base header itself.

A Reset frame is sent by a mapper whenever it must abort a mapping generation either because someone else is mapping or because mapping is over. An enumerator sends this after it is satisfied with the enumeration results.

Charge Upper-Level Header Format

The Charge frame has no upper-level header other than the base header itself.

When a responder receives a Charge frame whose topology engine is in the command state, the responder increases its CTC counter by the size of the entire Charge frame, including its Ethernet header. The CTC value is capped at CTC_MAX. When CTC becomes nonzero, the CTC_RESET_TIMER is started or restarted (unless the CTC value was already capped). When the CTC_RESET_TIMER fires, CTC is zeroed.

Flat Upper-Level Header Format

The Flat frame following a base header is:

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Current Transmit Credit (CTC) in Bytes |

+-+

| CTC in Packets |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 13: Example Flat Header

CTC in Bytes: 32 bits

The value of the CTC byte counter at the responder.

CTC in Packets: 16 bits

The value of the CTC packet counter at the responder.

QueryLargeTlv Upper-Level Header Format

The QueryLargeTlv frame allows the mapper to query a responder for TLVs that are too large to fit into a single Hello frame. Each QueryLargeTlv request results in a maximum of one QueryLargeTlvResp response. Repeated QueryLargeTlv requests would have to be made for sufficiently large TLVs that do not fit in a single QueryLargeTlvResp response frame.

The QueryLargeTlv frame that follows a base header is:

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Type | Offset |

+-+

Figure 14: Example QueryLargeTlv Header

Type: 8 bits

This field identifies the type of TLV that is supported. If the requested type is not one of the values below, a QueryLargeTlvResp frame should still be sent in response, but with the Length field set to zero.

The following table shows valid large TLVs type values.

	Type
	Max length
	Description

	0x0E
	32768
	Icon image. Contains an image exactly as represented in a disk file.

	0x11
	64
	Friendly name. Contains an unterminated UCS-2 string that identifies the device’s friendly name.

	0x13
	400
	Hardware ID. Contains an unterminated UCS-2 string that Plug and Play uses to match the device with an INF file on a Windows PC.

	0x16
	4096
	AP association table. Contains a table that identifies the wireless hosts that are associated with it, along with various other information.

	0x18
	262144
	Detailed icon image. Contains an icon image that is significantly more detailed than that returned by the icon image TLV.

	0x1A
	4096
	Component table. Used by multifunction devices such as APs to report their internal components. The mapper uses this information to generate a more accurate topology map.

Offset: 24 bits

Offset in octets within the TLV data to query.

QueryLargeTlvResp Upper-Level Header Format

The QueryLargeTlvResp frame is a response to a QueryLargeTlv request. It returns the maximum relevant octets that would fit into a response frame over the Ethernet media from a requested offset. If a QueryLargeTlv request is for an unsupported TLV type, a QueryLargeTlvResp frame must be sent with the Length field zeroed.

The QueryLargeTlvResp header immediately follows the base header:

 0 1

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-

|M|R| Length | Data (variable) ...

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-

Figure 15: Example QueryLargeTlvResp Header

‘More’ (M) flag: 1 bit

This field indicates that there is more data than will fit in one frame and that the mapper should follow up with a QueryLargeTlv request at the next logical offset.

‘Reserved’ (R) flag: 1 bit

This field must be zero.

Length: 15 bits

This field identifies the octet count of data that is returned in the QueryLargeTlvResp frame.

Frequently Asked Questions

Why must Hello messages be broadcast?

Consider the simple case of two machines talking to each other by using their own real MAC addresses. Suppose machines A and B communicate by using Internet Protocol (IP) in which A sends a query to B and B replies and neither A nor B sends other traffic. Assume A and B are attached to a switch with three ports: 1, 2, and 3. Assume that A is attached to port 1 and B is attached to port 2. In the beginning. they communicate just fine.

Now, someone moves machine B to port 3. How do A and B subsequently communicate? This question has several answers: If the machine was directly attached to port 2, the switch may see the link go down and therefore forget all the addresses that it had learned on that port. Subsequently, the switch floods packets with a destination of B, so B receives them. After B sends a packet, the switch knows where B is and stops flooding. If machine B was directly attached to port 2 originally, the machine may see the link go down. When machine B sees that its network interface card (NIC) is reconnected, it sends a Dynamic Host Configuration Protocol (DHCP) request to ensure that it is still on the same IP subnet and can still use the same address. This packet causes the switch to know where B is, so communication continues.

Now consider if B were not directly connected to port 2. Suppose that there were two hubs between B and port 2 and that the network goes from being:

 1 2 3 1 2 3

 / | \ / | \

A hub hub to A hub hub

 | |

 hub hub

 | |

 B B

In this scenario, neither the switch nor B sees a link disconnect or connect, so the switch does not flush its address table and B does not send a DHCP broadcast. Requests from A to B are lost until eventually the switch times out its address entry that is associated with B and subsequent requests are flooded. (Or A times out of its Address Resolution Protocol (ARP) cache entry for B and sends a broadcast ARP request that B receives and respond to. B’s response then trains the switch as to the location of B.

This example is somewhat contrived, but this circumstance occurs very easily as soon as the network has a few switches and more than two machines. This happens frequently in customer networks and confuses people.

In particular, experience shows that as soon as customers are given a new topology discovery to use, they plug and play their network randomly for a bit and expect the topology discovery to perform the correct action. Therefore, it is critically important at the start of a topology discovery mapping that every switch in the network knows the true location of every real address in the network. If responders unicast their responses to the mapper, then for every responder, every switch on the path from the responder to the mapper would know the true location of the responder in the network. But that is insufficient because it is generally a subset of the switches. That is why responders must broadcast their responses.

Wireless devices perform MAC-level NAT. The only way ensure a way through the network address translation (NAT) is to broadcast. That is the second reason why responders must broadcast their responses.

Why are Emit messages not always acknowledged?

Typically, Emit command carries a single command to emit a single Probe frame that travels to some other responder in the network. When the mapper analyzes the network, it is more concerned about whether the Probe frame arrives than whether the Probe frame was transmitted. The mapper can check that the Probe frame was transmitted by issuing a Query frame to the destination responder.

Therefore, an unacknowledged Emit frame is also more efficient in that it avoids not only the acknowledgment but also the Charge frame for the acknowledgment. When the Emit frame sends a single Probe frame, the Emit frame carries enough charge on its own.

Why does the responder not forward Probe packets to the mapper?

The responder keeps a list of Probe packets that it has seen instead of reflecting the Probe packets when they arrive to the mapper for two reasons.

· The first reason is scalability. Often Probe packets are flooded over a portion (or all) of the network. If every responder to see a Probe packet were to reflect it to the mapper, then on a large network there would be a huge implosion at the mapper and very high network load.

· The second reason is reliability. In the current protocol, the reliable communication between mapper and responder is very simple. If responders were sending reflections, then it would be difficult to determine whether the Probe packet got lost between the sender and the responder or the reflection got lost between the responder and the mapper. Therefore, the responder must record the responses until it is queried by the mapper.

How do I use the three state diagrams in Appendix C?

Scenario #1: A quick discovery request from a single mapper to an idling responder.

1.
A Discover packet (type of service: quick discovery) arrives from mapper (M) as an enumeration state engine (Diagram B.2) picks it up in quiescent state.

2.
A new session is created in the session table (Diagram B.3). Because the Discover packet does not ack the responder, the session is created in the pending state.

3.
In the enumeration state engine, a new session that is not in the complete state results in queuing a Hello packet by using the InitStats and ChooseHelloTime functions. The enumeration state engine transitions to the pausing state.

4.
In the pausing state, the responder sends a Hello packet, which causes the enumeration state engine to transition to a sent state (hello timeout / hello arc).

5.
The mapper eventually follows up with a Discover packet, explicitly ack-ing the responder in the station list of the discover upper-level header. According to the session table (Diagram B.3), an acknowledgment of a session in the pending state results in transition of the session to the complete state (Discover ack-ing arc).

6.
In Diagram A.2, because the session table has only complete sessions, the enumeration state engine transitions from the sent state to the wait state (the table has only complete sessions arc).

7.
While in the wait state, on a network with just one mapper, the completed session above would eventually time out or the mapper may send a reset packet. Diagram B.3 shows what happens to the session when either of these conditions occurs (reset and inactive timeout arcs). The result is that the session is destroyed (nascent state), which causes the enumeration state engine (Diagram B.2) to transition to the quiescent state (the session table empty arc).

Scenario #2: A topology discovery request from a single mapper to an idling responder.

1.
A Discover packet (type of service: topology discovery) arrives from a mapper (M) as an enumeration state engine (Diagram B.2) picks it up in the quiescent state. Now there is also no active topology Discover request, so the mapping engine (Diagram B.1) is also in the quiescent state.

2.
A new topology discovery session is created in the session table (Diagram B.3). Because the Discover packet does not ack the responder, the session is created in the pending state.

Note: Only one topology discovery session may be in the pending or the complete state at any one time. All subsequent topology discovery sessions are in the temporary state.

3.
In the enumeration state engine, a new session that is not in the complete state results in queuing a Hello packet by using the InitStats and ChooseHelloTime functions. The enumeration state engine transitions to pausing state.

In the pausing state, the responder sends a Hello packet, which causes the enumeration state engine to transition to the sent state (hello timeout / hello arc).

The mapper sends a Discover packet, explicitly ack-ing the responder in the station list of the discover upper-level header. According to the session table (Diagram B.3), an acknowledgment of a session in the pending state results in the session transitioning to the complete state (discover ack-ing arc). According to the mapping engine state (Diagram B.1), the ack-ing of the topology discovery session also results in the mapping engine transitioning from the quiescent to the command state (discover acking arc). This is an important transition that a Discover packet with the quick discovery type-of-service does not make.

As shown in Diagram B.2, because the session table has only complete sessions, the enumeration state engine transitions from the sent state to the wait state (the table has only complete sessions arc).

4.
The enumeration state engine still processes the Discover, Hello, and Reset frames. All other frames are directed to the mapping state engine, although those that are not marked for topology discovery type-of-service are ignored. The logic for timing out or resetting a session is still handled by a combination of the enumeration state engine (Diagram B.2) and session table (Diagram B.3) as described in Step 7 of Scenario #1.

QoS Diagnostics Specification for Network Test

The QoS diagnostics protocol facilitates the network test functionality that is used to determine the bottleneck bandwidth (or “capacity”) of a path, the available bandwidth of a path, whether the network equipment of a path has a prioritization mechanism, and so on

Function codes 0x00 through 0x06 are used for this protocol.

Operational States

A network test session has two different roles: the controller and the sink. The controller’s job is to manage a network test session by:

· Initializing and resetting the sink.

· Sending probe packets to the sink.

· For timed probes, querying the sink for test result and, for probegaps, accepting a probe response from the sink.

A responder must implement only the sink functionality.

Each network test session operates in one of the following scenarios:

· Initialization

 Controller

 | ^

 a| |

 | |b

 V |

 Sink

The controller initializes the sink:

1.
A QosInitializeSink frame is sent to the sink.

2.
The sink acknowledges the request and agrees to the assigned role by sending a QosReady frame. Otherwise, the sink sends a QosError frame.

· Emit

 Controller

 | ^

 a| |

 | |b

 V |

 Sink

The controller emits Probe frames to the sink:

1.
One or more QosProbe frames are sent from the controller to the sink. No more than 82 consecutive QosProbe frames are sent in this mode.

2.
In a probegap test, a QosProbe frame that is received at the sink must be reflected to the controller, with the appropriate timestamps applied.

In a timed probe test, the sink records the QosProbe frames that it sees but does not respond.

· Query

 Controller

 | ^

 a| |

 | |b

 V |

 Sink

The controller queries for test results:

1.
A QosQuery frame is sent to the sink in a timed probe test.

2.
A QosQueryResp frame is returned to the controller with the test results.

Network Test Session

Each network test session is identified by the MAC address of the controller station. Depending on the type of test requested (probegap or timed probe), a session may be required to dynamically allocate more memory to support the operation.

The type of test performed over a network test session may be arbitrary and is indicated by the Test Type field in a QosProbe packet.

A probegap test requires that a sink immediately copy a received packet payload as is and return it to the source along with the appropriate QoS specification (that is, 802.1p tagging). This type of experiment does not impose additional memory requirement on a network test session.

A timed probe test requires that a sink receive and record up to 82 consecutive QosProbe packets (with the Test Type field set to 0x01) of the same sequence number. All timed probe packets following the 82nd should be ignored completely. For the purpose of discussion, let’s call this collection, a sequence bucket. The sink records specific bits of information from each packet in the form of an 8-octet high-resolution timestamp of the send operation on the controller side, an 8-octet high-resolution timestamp of the receive operation on the sink side, and a 1-octet identifier. The controller requests this recorded information immediately after the last QosProbe packet is sent via the QosQuery frame.
In some rare cases, the QosQuery frame may be dropped and the controller would have to resend it. However, such a retransmission might imply the overlapping arrival of the next series of QosProbe packets under a subsequent sequence number. Meanwhile, the QosQuery frame for the previous sequence bucket may yet arrive in the near future. In view of this, the sink must be prepared to handle at least 2 sequence buckets worth of recordings at any point in time; up to a maximum of 10 sequence buckets where possible. As a new sequence bucket is needed, the oldest one should be cleared. In cases where it’s desirable, each sequence bucket should have a time-to-live period of at least 10 seconds.
In the timed probe test, memory may have to be dynamically allocated. If a device does not have the memory to allocate the 82-entry storage table, it is suggested that it split the allocation into multiples of 24-entry segments. In memory allocation failure, the sink should report the error condition in the QosQueryResp packet.

Network Load Control

A sink must support at least three unique network test sessions up to a recommended maximum of ten sessions. If a sink cannot support additional sessions, it must return the QosError frame along with a valid error code.

If a QosInitializeSink frame is received for an existing network test session, the QosReady frame must be sent in response.

Timing

Network test sessions expire after at least 2 minutes of inactivity. If timers are expensive resources, the use of one global recurring timer to service all existing sessions is recommended. This timer should operate at a maximum fixed interval of 30 seconds.

The following frames must reset the inactivity timer for the relevant session:

	Function
	Note

	QosInitializeSink
	Only if a QosInitializeSink frame is received for an existing network test session.

	QosQuery
	N/A

	QosProbe
	Only if the Test Type field in a QosProbe frame is 0x01.

Reliability

Reliability is ensured by using sequence numbers (that is, the Identifier field in the base header) in controller requests and having the sink quote this value in any response packet. The request/response pairs are:

	Controller
	Sink

	QosInitializeSink
	QosReady/QosError

	QosProbe
	QosProbe (only probegap test)

	QosQuery
	QosQueryResp

	QosReset
	QosAck

The following table shows which function types are allowed to be sent to the broadcast address, which may have a nonzero sequence number, and which must have a nonzero sequence number:

	Function
	Value
	Broadcast?
	Sequence?

	QosInitializeSink
	0x00
	No
	Required

	QosReady
	0x01
	No
	Required

	QosProbe
	0x02
	No
	Permitted

	QosQuery
	0x03
	No
	Required

	QosQueryResp
	0x04
	No
	Required

	QosReset
	0x05
	No
	Required

	QosError
	0x06
	No
	Required

	QosAck
	0x07
	No
	Required

	*
For more information on how the sequence number field is used for QosProbe frames, refer to "Sequence Number Management" later in this specification.

Session Identifier

A network test session is identified by the network address of the controller and sink stations. For a network test frame to be properly associated with the correct session, both addresses must be known. This can be achieved by examining the network address fields in the base header.

Sequence Number Management

The sequence number is a 16-bit field. Commands and requests from the controller to the sink may have no sequence number (in which case the field is zero) or may be sequenced (in which case they have a nonzero sequence number). Sequence numbers are advanced by using increment in ones-complement arithmetic; that is, they advance from 0xFFFF to 0x0001 and skip 0x0000.

The responder always takes the first sequence number of a test session, introduced in the QosInitializeSink frame. Subsequent sequence numbers must have the correct value (either a retransmission that is reacknowledged as mentioned earlier or the successor value).

The QosProbe frame uses a loosely managed sequence numbering system; that is, the sink does not enforce the validity of the sequence number. The controller uses this number to correlate and validate QosProbe frames that it sends and receives in a probegap experiment.

Detailed Packet Formats

Base Header Format

The base header format is as follows:

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| |

+ Real Destination Address +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| | |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Real Source Address +

| |

+-+

| Sequence Number |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 16: Base Header for Network Test

Real Destination Address: 48 bits

Real Source Address: 48 bits

The real source and destination MAC addresses are set by a sender to its own MAC address and its intended destination MAC address, respectively. These fields are required because the Source Address and Destination Address fields of the Ethernet header are rewritten by some network devices and thus may not survive an end-to-end transmission.

Sequence Number: 16 bits

The sequence number ensures reliability of certain packets in the protocol. Although all frames in this protocol have a sequence number field, it must be zero in some cases.

For function codes 0x07 and 0x08, this field must be nonzero.

QosInitializeSink Upper-Level Header Format

To set up a network test session, a QosInitializeSink frame is sent to the sink.

The QosInitializeSink header that follows the base header is:

+-+-+-+-+-+-+-+-+

| Interrupt Mod |

+-+-+-+-+-+-+-+-+

Figure 17: Example QosInitializeSink Header

‘Interrupt Mod’ (I) flag: 8 bits

This field is set to indicate the interrupt moderation requirement of a network test session:

0x00
=
Disable interrupt moderation

0x01
=
Enable interrupt moderation

0xFF
=
Use existing interrupt moderation setting

Where applicable, the following error codes are used in the resulting QosError response:

 0x01 = Insufficient resources

The responder ran out of resources while attempting to set up the session.

 0x02 = Busy; try again later

The responder has reached its session limit.

 0x03 = Interrupt moderation not available

The interrupt moderation requirement cannot be satisfied, or the ability to control it is not available.

QosReady Upper-Level Header Format

A QosReady frame is sent in reply to a QosInitializeSink frame, to confirm the creation or existence of a network test session. Note that a QosReady frame is sent even if the network test session already exists.

The QosReady header that follows a base header is:

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Sink Link Speed |

+-+

| |

+ Performance Counter Frequency +

| |

+-+

Figure 18: Example QosReady Header

Sink Link Speed: 32 bits

This field allows a responder to report its link speed in 100-bit-per-second units.

Performance Counter Frequency: 64 bits

This field allows a responder to identify how fast its timestamp counters run in ticks per second.

QosProbe Upper-Level Header Format

The QosProbe frame should be time stamped upon transmission and again when it is received. Responders receiving QosProbe frames should log to their event list the two timestamps, ready to report them in a subsequent QosQueryResp frame.

In probegap analysis, a QosProbe frame is transmitted by the controller, received by the sink, and then returned by the sink to the Controller. The frame is time stamped by the controller and time stamped by the sink when it is received and again when it is returned to the controller. The controller makes a final timestamp when it receives the QosProbe packet from the sink.

In timed probe analysis, the controller may send up to 82 consecutive QosProbe frames. This represents the maximum number of records that may be returned in a single QosQueryResp frame.

Sequence numbering is used only for probegap test type.

The QosProbe header that follows the base header is:

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| |

+ Controller Transmit Timestamp +

| |

+-+

| |

+ Sink Receive Timestamp +

| |

+-+

| |

+ Sink Transmit Timestamp +

| |

+-+

| Test Type | Packet ID |T|802.1p Value | Payload ...

+-

Figure 19: Example QosProbe Header

Controller Transmit Timestamp: 64 bits

This field is the timestamp of the controller upon transmission in vendor-specific units. The measurement unit that is used is specific to the controller host.

Sink Receive Timestamp: 64 bits

This field must be zeroed in a timed probe test. In a probegap test, this field must be zeroed upon transmission from the controller and contains a valid timestamp upon transmission from the sink in vendor-specific units as declared by the QosReady frame.

Sink Transmit Timestamp: 64 bits

This field must be zeroed in a timed probe test. In a probegap test, this field must be zeroed upon transmission from the controller and contains a valid timestamp upon transmission from the sink in vendor-specific units as declared by the QosReady frame.

Test Type: 8 bits

This field specifies the test type in which this packet is involved.

0x00 = Timed probe

0x01 = Probegap originating from the controller

0x02 = Probegap originating from the sink

Packet ID: 8 bits

This field is an application-specific identifier that is given to the controller.

‘802.1p Value’ (T) Flag: 1 bit

This field specifies the presence of the following 802.1p value in the 802.1q tag for each packet.

802.1p Value: 7 bits

This field specifies the 802.1p value to be included in the 802.1q tag for each QosProbe packet that is reflected to the controller in the case of a probegap test.

Payload: variable

The meaning of the payload data is specific to the controller. In a probegap experiment, the payload content is duplicated on the sink’s send path.

QosQuery Upper-Level Header Format

The QosQuery frame has no upper-level header other than the base header itself. It must have a nonzero sequence number.

QosQueryResp Upper-Level Header Format

The QosQueryResp frame is the response to a QosQuery frame. It lists QosProbe events (also known as “QosEventDesc structures”) that have been observed since the previous QosQuery frame. QosQueryResp frames are not acknowledged, but must set the base header’s Identifier field to match the QosQuery frame that is generated in response to the QosQueryResp frame. The ordering of QosEventDesc items in this frame should represent the ordering of the arrival time.

The QosQueryResp header that follows the base header is:

 0 1

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-

|R|E| Num Events | QosEventDesc list (variable) ...

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-

Figure 20: Example QosQueryResp Header

‘Reserved’ (R) flag: 1 bit

This field must be set to zero.

‘Error’ (E) flag: 1 bit

This field indicates that the responder was unable to allocate enough memory for one or more QosEventDesc structures. The Num Events field should be zero, and no QosEventDesc structures should follow the field.

Num Events: 16 bits

This field identifies the count of QosEventDesc items that follow.

QosEventDesc list: variable

Each QosEventDesc item is an 18-octet structure:

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| |

+ Controller Transmit Timestamp +

| |

+-+

| |

+ Sink Receive Timestamp +

| |

+-+

| Packet ID | Reserved |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 21: Example QosEventDesc Header

Controller Transmit Timestamp: 64 bits

This field is the timestamp of the controller on event transmission in vendor-specific units. The measurement unit that is used is specific to the controller host.

Sink Receive Timestamp: 64 bits

This field is the timestamp of the sink on event reception in vendor-specific units as declared by the QosReady frame.

Packet ID: 8 bits

This field corresponds to the Packet ID field from the QosProbe frame that generated the event.

Reserved: 8 bits

This field is not currently used, but exists only to pad the structure to an even size.

A single QosQueryResp frame may contain a maximum of 82 QosEventDesc structures because it must fit into a 1514-octet Ethernet frame:

 1514
 - 14 (Ethernet header)
 - 4 (Demultiplex header)
 - 14 (Base header)
 - 2 (QosQueryResp header)

 1480 / 18 octets per QosEventDesc structure
 = 82 QosEventDesc structures

QosReset Upper-Level Header Format

The QosReset frame has no upper-level header other than the base header itself.

QosError Upper-Level Header Format

The QosError header that follows the base header is:

0 1

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Error Code |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 22: Example QosError Header

Error Code: 16 bits

This field specifies the error code that identifies the reason that a request failed, resulting in this response. Valid error code values are:

 0x00 = Insufficient resources

 0x01 = Busy; try again later

 0x02 = Interrupt moderation not available

QosAck Upper-Level Header Format

The QosAck frame has no upper-level header other than the base header itself.

QoS Diagnostics Specification for Cross-Traffic Analysis

Overview

The QoS diagnostics protocol also facilitates cross-traffic analysis by efficiently returning per-network interface IP performance counters. Participating responders must maintain a running history of the following counters:

	Counter
	Importance

	Number of bytes received
	Mandatory

	Number of bytes sent
	Mandatory

	Number of packets received
	Optional(*)

	Number of packets sent
	Optional(*)

	* Devices with limited memory may choose to record only the byte counters.

Both byte counts and packet counts use a fixed scaling factor inclusively between 1 and 256 kilobyte units. Each individual implementation of the protocol should choose the most appropriate scaling factors.

All counters are sampled at 1-second intervals, and each counter is measured relative to that from the previous interval. At least 3 seconds of history must be maintained for each counter. Devices with sufficient spare memory should collect up to 30 seconds of history.

In this specification, all four counters that exist in any 1-second interval are referred to as the "4-tuple". Function codes 0x07 through 0x09 are also used.

Per-Interface Counters

Intermediate devices such as APs and bridges must make per-interface counters and aggregate subnet counters available through the protocol.

The per-interface counters allow cross-traffic detection on these devices even when the nodes on the network are not running the responder. Examples of available interfaces on a typical AP are:

· The BSSID of a wireless band. Multi-band APs must use separate BSSIDs for each band that they support. This is already true for APs that are coming to market.

· The wired Ethernet interface that is usually connected to a built-in switch.

The aggregate subnet counters indicate the amount of traffic that is entering and leaving the subnet, which enables consideration of the capacity of the uplink in QoS wireless area network (WAN) admission decisions.

The device should never respond to cross-traffic request for an interface that is connected to a different subnet than the one upon which the request is received. Moreover, the device should never respond to requests that are coming from the WAN interface, if one is available.

It is assumed that for APs, the bottleneck point is always the wireless link. As such, APs are not required to provide the wired LAN counters.

Operational States

A source station broadcasts periodic QosCounterLease frames to the subnet. A responder station that sees this frame begins collecting the relevant IP performance counters for the network interface on which it saw the QosCounterLease frame. The collection process continues for a predefined time period and may be renewed with each subsequent QosCounterLease frame that is received on the same network interface. (More information on this is available in "Timing" later in this specification.)

Responders must follow each QosCounterSnapshot request with an appropriate QosCounterResult reply frame, even if they are not collecting the counters on the specific interface.

Network Load Control

All responder implementations should service at least ten QosCounterSnapshot requests per second. Any requests beyond that may be ignored.

No backlog of QosCounterSnapshot requests should exist because of this restriction and the low turnaround time between a QosCounterSnapshot frame and the subsequent QosCounterResult frame.

Timing

For at least 5 minutes following receipt of a QosCounterLease frame, the protocol guarantees availability of the historical counter data on the network interface on which the frame was received.

If no preexisting history collection process exist, one should be started no more than 1 second from the time that the QosCounterLease frame is seen. If a process cannot be started for any reason, the QosCounterLease request is quietly ignored.

Reliability

The protocol is not intended to guarantee delivery of QosCounterSnapshot and QosCounterResult frames. However, sequence numbers (that is, the Identifier field in the base header) are used in QosCounterSnapshot requests and quoted back in each QosCounterResult response so that mapper stations can match responses to requests.

The following table shows which function types can be sent to the broadcast address, which may have a nonzero sequence number, and which must have a nonzero sequence number:

	Function
	Value
	Broadcast?
	Sequence?

	QosCounterSnapshot
	0x08
	No
	Required

	QosCounterResult
	0x09
	No
	Required

	QosCounterLease
	0x0A
	Yes
	No

Sequence Number Management

The sequence number is a 16-bit value that is advanced by using increment in ones-complement arithmetic, that is, the advance from 0xFFFF to 0x0001 and skip 0x0000.

Detailed Packet Formats

Base Header Format

The base header format is as follows:

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| |

+ Real Destination Address +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| | |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Real Source Address +

| |

+-+

| Sequence Number |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 23: Base Header for Network Test

Real Destination Address: 48 bits

The real destination MAC address allows querying of per-interface counters in wireless access points. For these devices, this address field may identify the BSSID of a wireless band or if it is the special FF:FF:FF:FF:FF:FF address, the aggregate subnet counters are requested instead. For all other devices, this field must be equal to the MAC address of the interface upon which it is received.

Real Source Address: 48 bits

A sender sets the real source MAC address to its own MAC address. This field is required because the Source Address field of the Ethernet header is rewritten by some network devices and thus may not survive an end-to-end transmission.

Sequence Number: 16 bits

The sequence number ensures the reliability of certain packets in the protocol. Although all frames in this protocol have a Sequence Number field, it must be zero in some cases.

For function codes 0x07 and 0x08, this field must be nonzero.

QosCounterSnapshot Upper-Level Header Format

The QosCounterSnapshot header immediately follows the base header:

+-+-+-+-+-+-+-+-+

| History Size |

+-+-+-+-+-+-+-+-+

Figure 24: Example QosCounterSnapshot Header

History Size: 8 bits

This field indicates the maximum number of most recent full 4-tuples to return from the history.

QosCounterResult Upper-Level Header Format

Each QosCounterResult frame reports as many full 4-tuples as are requested in the preceding QosCounterSnapshot request. When the QosCounterSnapshot request is received, a snapshot of the 4-tuples is also taken and the time span since the last sampling interval is recorded. This subsecond sample is also returned in the QosCounterResult frame.

The QosCounterResult header immediately follows the base header:

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

|Sub-second Span| Byte Scale | Packet Scale | History Size |

+-+

: Snapshot List (variable) ... :

Figure 25: Example a QosCounterResult Header

Subsecond Span: 8 bits

This field indicates the time span (expressed as 1/256s of a second) since the last sampling interval, taken at the time that the QosCounterSnapshot request is received. This field may be zero, in which case the subsecond sample is still present in the snapshot list.

Byte Scale: 8 bits

This field indicates the chosen 1-based scaling factor of the byte counters. The valid scaling range is between 1 and 256 kilobytes, inclusive; for example, a value of 0 translates to a scaling factor of 1 kilobyte.

Packet Scale: 8 bits

This field indicates the chosen 1-based scaling factor of the packet counters. The valid scaling range is between 1 and 256 packets, inclusive; for example, a value of 0 translates to a scaling factor of 1 packet.

History Size: 8 bits

This field indicates the number of full 4-tuples that the responder can return. This number does not include the subsecond sample that is taken when the QosCounterSnapshot request is received.

Snapshot List: variable

This field indicates how many 4-tuple snapshots were counted by the History Size field, plus the subsecond snapshot. Each snapshot has the following format:

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Bytes Received | Packets Received |

+-+

| Bytes Sent | Packets Sent |

+-+

Figure 26: Example Snapshot Entries

A single QosCounterResult frame may contain a maximum of 184 snapshot entries, including the subsecond snapshot:

 1514
 - 14 (Ethernet header)
 - 4 (Demultiplex header)
 - 14 (Base header)
 - 4 (QosCounterResult header)

 1478 / 8 octets per snapshot entry
 = 184 snapshot entries

In other words, the maximum number for the History Size field is 183, which is over 3 minutes of historical data.

Entries in the snapshot list are arranged starting with the oldest 4-tuple snapshot and ending with the subsecond 4-tuple snapshot.

QosCounterLease Upper-Level Header Format

When a device receives this frame, the leasing period should apply to all interfaces on the subnet. In a wireless access point device, it should also start collecting history for the aggregate subnet counters.

Wireless access points are not required to provide counters for the wired local area network (LAN) interfaces because such interfaces are not the bottleneck in congestion scenarios.

The QosCounterLease frame has no upper-level header other than the base header itself.

References

IANA, “IANAifType MIB,” Internet Assigned Numbers Authority

http://www.iana.org/assignments/ianaiftype-mib
The BAND paper, “Fast Scalable Robust Node Enumeration,” Richard

Black, Austin Donnelly, Alexandru Gavrilescu and Dave Thaler, May 2005
http://research.microsoft.com/research/pubs/view.aspx?type=Publication&id=1419
Appendix A: TLV Definitions

The following TLVs describe the properties of the responder device:

End-Of-Property list marker

+--------+

|00000000|

+--------+

Type=0x00

This property marks the end of the TLV list and must exist in a valid Hello frame.

Host ID

+--------+--------+--------+--------+

|00000001|00000110| a1 | b1 |

+--------+--------+--------+--------+

| c1 | d1 | e1 | f1 |

+--------+--------+--------+--------+

Type=0x01 Length=6

This property provides a way to uniquely identify the host upon which the responder is running. On a host with multiple network interfaces, this may be the lowest MAC address across these interfaces.

Characteristics

+--------+--------+--------+--------+--------+--------+

|00000010|00000100| Characteristics |

+--------+--------+--------+--------+--------+--------+

Type=0x02 Length=4

This property allows a responder to report various simple characteristics of its host or the network interface that it is using.

MSB

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|N|N|F|M|L| | | | | | | | | | | |

|P|X|D|W|P|0|0|0|0|0|0|0|0|0|0|0|

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| | | | | | | | | | | | | | | | |

|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 LSB

Bits 0-28: Reserved, must be zero.

Bit 27: (LP) 1
=
Interface is looping back outbound packets.

Bit 28: (MW) 1
=
Device has management Web page accessible via HTTP protocol. The mapper constructs a URL from the reported IPv6 address. If one is not available, the IPv4 address is used instead. The URL is of the form: http://<ip-address>/

Bit 29: (FD) 1
=
Interface is in full duplex mode.

Bit 30: (NX) 1
=
Interface is NAT-private side.

Bit 31: (NP) 1
=
Interface is NAT-public side.

Physical Medium

+--------+--------+--------+--------+--------+--------+

|00000011|00000100| Physical Medium |

+--------+--------+--------+--------+--------+--------+

Type=0x03 Length=4

This property allows a responder to report the physical medium type of the network interface it is using. The values are published by the Internet Assigned Numbers Authority (IANA) for the ifType object that is defined in MIB-II’s ifTable.

Examples of interesting values are:

 6
=
Ethernet
71
=
Wireless 802.11

Wireless Mode

+--------+--------+--------+

|00000100|00000001| Mode |

+--------+--------+--------+

Type=0x04 Length=1

This property allows a responder to identify how its IEEE 802.11 interface connects to the network. Valid values are:

0x00 = IBSS or ad hoc mode
0x01 = Infrastructure mode
0x02 = Automatic mode

802.11 BSSID

+--------+--------+--------+--------+

|00000101|00000110| |

+--------+--------+ BSSID |

| |

+--------+--------+--------+--------+

Type=0x05 Length=6

This property allows a responder to identify the media access control (MAC) address of the access point with which its wireless interface is associated.

802.11 SSID

+--------+--------+-

|00000110| Length | 8-bit SSID String (variable) ...

+--------+--------+-

Type=0x06

This property allows a responder to identify the service set identifier (SSID) of the BSS with which its wireless interface associates.

Note that the string is not null terminated and is case sensitive. The maximum length of the string is 32 characters.

This TLV always complements the existence of the 802.11 BSSID TLV (0x05).

IPv4 Address

+--------+--------+--------+--------+--------+--------+

|00000111|00000100| IPv4 Address |

+--------+--------+--------+--------+--------+--------+

Type=0x07 Length=4

This property allows a responder to report its most relevant IPv4 address, if available. An IPv4 address is considered to be most relevant if it satisfies one of the following conditions, in order of decreasing priority:

1.
If more than one address is available, the first public address found is the most relevant.

2.
If more than one address is available, none of which are public, the first address in the list is the most relevant.

3.
There is only one address from which to choose.

IPv6 Address

+--------+--------+--------+ +--------+

|00001000|00010000| IPv6 Address |

+--------+--------+--------+ +--------+

Type=0x08 Length=16

This property allows a responder to report its most relevant IPv6 address, if available. An IPv6 address is considered to be most relevant if it satisfies one of the following conditions, in order of decreasing priority:

1.
If more than one address is available, the first global address found is the most relevant.

2.
If more than one address is available, none of which are global, the first site-local address found is the most relevant.

3.
If more than one address is available, none of which are global or site-local, the first link-local address found is the most relevant.

4.
If there is only one address from which to choose or more than one address is available, none of which are global, site local, or link local, the first address found is the most relevant.

802.11 Maximum Operational Rate

+--------+--------+--------+--------+

|00001001|00000010| Rate |

+--------+--------+--------+--------+

Type=0x09 Length=2

This property allows a responder to identify the maximum data rate at which the radio can run on its 802.11 interface. The data rate is encoded in units of 0.5 megabit per second (Mbps).

Performance Counter Frequency

+--------+--------+--------+--------+--------+--------+

|00001010|00001000| Perf. Counter Frequency (MSB) |

+--------+--------+ +--------+--------+

| Perf. Counter Frequency (LSB) |

+--------+--------+--------+--------+

Type=0x0A Length=8

This property allows a responder to identify how fast its timestamp counters run in ticks per second. This information is particularly useful for deciphering results from timed probe and probegap tests in the QoS diagnostics type of service.

Link Speed

+--------+--------+--------+--------+--------+--------+

|00001100|00000100| Link Speed |

+--------+--------+--------+--------+--------+--------+

Type=0x0C Length=4

This property allows a responder to report the maximum speed of its network interface in units of 100 bps.

802.11 RSSI

+--------+--------+--------+--------+--------+--------+

|00001101|00000100| RSSI (signed integer) |

+--------+--------+--------+--------+--------+--------+

Type=0x0D Length=4

This property allows a responder to identify the IEEE 802.11 interfaces’ received signal strength indication (RSSI) in dBm. The normal range for the RSSI values is -10 through -200.

Icon Image

+--------+--------+

|00001110|00000000|

+--------+--------+

Type=0x0E

This property contains an icon image that represents the host that is running the responder. The data returned here is exactly as it would be represented in a disk file.

The only supported icon image format is Windows icon format (ICO). The icon dimension should be at least 48 pixels wide by 48 pixels tall. Icons should also use the built-in transparency support.

This is a large TLV.

Machine Name

+--------+--------+-

|00001111| Length | UCS-2 String (variable) ...

+--------+--------+-

Type=0x0F Max=32

This property contains the device's host name.

The maximum length of the string is 16 characters or 32 octets.

Note that the string is not null terminated.

Support Information

+--------+--------+-

|00010000| Length | UCS-2 String (variable) ...

+--------+--------+-

Type=0x10 Max=64

This property contains the device manufacturer's support information (such as telephone number or support URL). Do not use an Internet URL, which may be filtered so that users cannot see it.

The maximum length of the string is 32 characters or 64 octets.

Note that the string is not null terminated.

Friendly Name

+--------+--------+-

|00010001| Length | UCS-2 String (variable) ...

+--------+--------+-

Type=0x11 Max=64

This property is used only by computer devices. It contains the friendly name or description that is assigned to the computer.

The maximum length of the string is 32 characters or 64 octets.

Note that the string is not null terminated.

Device UUID

+--------+--------+--------+--------+

|00010010|00010000| |

+--------+--------+ +

| |

+ +

| Device UUID |

+ +

| |

+ +--------+--------+

| |

+--------+--------+

Type=0x12 Length=16

This property returns the UUID of a device that supports UPnP. The device UUID is essentially the same UUID that is found in the device unique service name (USN) portion of an SSDP discovery response.

Hardware ID

+--------+--------+

|00010011|00000000|

+--------+--------+

Type=0x13

This property is the string that Plug and Play uses to match a device with an INF file on a Windows PC.

For an UPnP device, the required information comes from the UPnP device description phase that has the XML elements that PNP-X uses to derive the PnP hardware ID string.

It is important that the hardware ID follow the formatting rules currently used by Windows PnP:

· Characters with an ASCII value less than 0x20 are not allowed.

· Characters with an ASCII value greater than 0x80 are not allowed.

· Commas are not allowed.

· All spaces " " must be replaced with an underscore character "_".

Note that the string is not null terminated.

The maximum length of the string is 200 characters or 400 octets and must be stored in UCS-2 format.

This is a large TLV.

QoS Characteristics

+--------+--------+--------+--------+--------+--------+

|00010100|00000100| QoS Characteristics |

+--------+--------+--------+--------+--------+--------+

Type=0x14 Length=4

This property allows a responder to report various QoS-related characteristics of its host or the network interface that it is using.

MSB

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|Q|8|8| | | | | | | | | | | | | |

|W|Q|P|0|0|0|0|0|0|0|0|0|0|0|0|0|

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| | | | | | | | | | | | | | | | |

|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 LSB

Bits 0-28: Reserved, must be zero.

Bit 29: (8P) 1
=
Interface supports 802.1p priority tagging.

Bit 30: (8Q) 1
=
Interface supports 802.1q VLAN tagging.

Bit 31: (QW) 1
=
Interface is qWave-enabled.

802.11 Physical Medium

+--------+--------+--------+

|00010101|00000001|PHY Type|

+--------+--------+--------+

Type=0x15 Length=1

This property allows a responder to report the 802.11 physical medium in use.
Valid values are:

	0x00

0x01

0x02

0x03

0x04

0x05

0x06

0x07-0xFF
	Unknown

FHSS 2.4 GHz

DSSS 2.4 GHz

IR Baseband

OFDM 5 GHz

HRDSSS

ERP

Reserved for future use

AP Association Table

+--------+--------+

|00010110|00000000|

+--------+--------+

Type=0x16

This property allows an access point to report the wireless hosts that are associated with it. This information is particularly useful for discovering legacy wireless devices that do not implement the responder. Additionally, it allows the mapper to conclusively match wireless hosts that are associated to the same access point via different BSSIDs (for example, one for each supported band).

This is a large TLV.

Each table entry is 10 octets long and has the format:

+--------+--------+--------+--------+--------+--------+

| MAC address of wireless host |

+--------+--------+--------+--------+--------+--------+

| Max Oper. Rate |PHY type|Reserved|

+--------+--------+--------+--------+

MAC address of wireless host:

No further description needed

Max Oper. Rate (maximum operational rate):

Describes the maximum data rate at which the selected radio can run to the given host. The data rate is encoded in units of 0.5 megabit per second (Mbps).

PHY type (physical medium type):

Describes the physical medium selected for the given host. Valid values are:

	0x00
	Unknown

	0x01
	FHSS 2.4 GHz

	0x02
	DSSS 2.4 GHz

	0x03
	IR Baseband

	0x04
	OFDM 5 GHz

	0x05
	HRDSSS

	0x06
	ERP

	0x07-0xFF
	Reserved for future use

Reserved:

Must set to zero.

Detailed Icon Image

+--------+--------+

|00011000|00000000|

+--------+--------+

Type=0x18

This property is similar to the Icon Image property (type=0x0E). The maximum size of this property is 262,144 octets. It enables good coverage of resolutions larger than the standard 48 by 48 pixels.

If you choose to make this TLV available in your responder, you are also highly encouraged to make the smaller Icon Image TLV available. This is because the mapper chooses to use only one of these TLVs based on the size of the network.

If space is restricted and you can only afford to store one icon image, then ensure that the Icon Image TLV is set in the Hello frame if the image is smaller than or equal to 32,768 octets. Otherwise, set only this Detailed Icon Image TLV in the Hello frame if the icon image is greater than 32,768 octets and smaller than or equal to 262,144 octets.

This is a large TLV.

Sees-list Working Set

+--------+--------+--------+--------+

|00011001|00000010| Max. Entries |

+--------+--------+--------+--------+

Type=0x19 Length=2

This property allows a responder to report the maximum count of RecveeDesc entries that may be stored in its sees-list database.

Embedded devices with limited memory resource are good candidates for returning this property. When in doubt, return this property.

Component Table

+--------+--------+

|00011000|00000000|

+--------+--------+

Type=0x1A

This property identifies the components in a multifunction device. This is a large TLV.

The table begins with a 2-octet-long header:

+--------+--------+

|Version |Reserved|

+--------+--------+

Version:
Must be set to 1.

Reserved:
Must be set to zero.

This header is followed by an arbitrary number of component descriptors, each carrying a mandatory header:

+--------+--------+

| Type | Length |

+--------+--------+

Type:
The component type. Valid values are:

	0x00
	A bridge that interconnects all identified WLAN and/or LAN segments. It is assumed that the responder reporting the component table TLV is connected directly into this bridge.

	0x01
	Wireless radio band.

	0x02
	Built-in switch. If a bridge component (type 0x00) exists, it is assumed that this switch connects directly into the bridge. If a bridge does not exist, the switch is assumed to connect directly to the built-in responder.

Components not defined through the type enumeration above do not have to be reported.

Length:
The length of the descriptor payload immediately following this header in octets.

A bridge component descriptor with type value 0x00 has the format:

+--------+--------+--------+

|00000000|00000001|Behavior|

+--------+--------+--------+

Type=0 Length=1

Behavior:
Identifies the behavior of the bridge. Valid values are:

	0x00
	Hub: All packets transiting through the bridge are seen on the responder.

	0x01
	Switch: Packets from LAN or WLAN are seen only on the responder if they are broadcast or explicitly targeted at the responder.

	0x02
	Internal hub-switch: Packets transitioning through the bridge are seen on the responder; however, the bridge learns addresses like a switch, provided they initiate on components other than the responder. Please check with Microsoft before using this value.

A wireless radio band component descriptor with type value 0x01 has the format:

+--------+--------+--------+--------+--------+--------+

|00000001|00001010| Max Oper. Rate |PHY type| Mode |

+--------+--------+--------+--------+--------+--------+

| BSSID |

+--------+--------+--------+--------+--------+--------+

Max Oper. Rate (maximum operational rate):
The maximum data rate at which the radio can run, encoded in units of 0.5 megabit per second (Mbps).

PHY type (physical medium type):
The selected physical medium. Valid values are:

	0x00
	Unknown

	0x01
	FHSS 2.4 GHz

	0x02
	DSSS 2.4 GHz

	0x03
	IR Baseband

	0x04
	OFDM 5 GHz

	0x05
	HRDSSS

	0x06
	ERP

Mode:
How the radio connects to the wireless network. Valid values are:

	0x00
	IBSS or ad-hoc mode

	0x01
	Infrastructure mode

	0x02
	Automatic mode

BSSID:
Identifies the MAC address that the radio band uses.

A built-in switch component descriptor with type value 0x02 has the format:

+--------+--------+--------+--------+--------+--------+

|00000001|00000100| Link Speed |

+--------+--------+--------+--------+--------+--------+

Type=2 Length=4

Link Speed:
The maximum speed of the switch in units of 100 bps.

Repeater AP lineage

+--------+--------+--------+--------+--------+--------+

|00011011| length | Parent AP address |

+--------+--------+--------+--------+--------+--------+

| | Optional grandparent address . . .

+--------+--------+--. . .

Type=0x1B Max=36

This property is used only by 802.11 Access Points operating in repeater mode as part of an 802.11 Wireless Distribution System. It contains the address of the parent (which should be the same as the reported BSSID, since this device is also a client) and optionally each subsequent parent towards the root, if available.

The maximum length of the value is 6 addresses or 36 octets.

Note that if this AP is the root of the Wireless Distribution System, then this TLV should be present with a length of zero.

Repeater AP Table

+--------+--------+

|00011100|00000000|

+--------+--------+

Type=0x1C

This property allows an access point operating in Wireless Distribution System mode to report the routing table it is using for packets to addresses that are not directly associated. Table entries are not required for addresses routed to the parent, since this is assumed for all unknown addresses.

This is a large TLV.

Each table entry is 12 octets long and has the format:

+--------+--------+--------+--------+--------+--------+

| MAC address of destination host |

+--------+--------+--------+--------+--------+--------+

| MAC address of next hop access point |

+--------+--------+--------+--------+--------+--------+

MAC address of destination host:

No further description needed

MAC address of next hop access point:

This should be one of the addresses listed in the AP Association Table.

Appendix B: Diagrams

Diagram D.1. Mapping Engine State

[image: image1.emf]Key: normal transition

expected recovery

error recovery

(ie decreasing likelihood of traversal)

INPUT / ACTION

When the / ACTION is missing this

indicates that no action is taken.

ACTION can be the name of a

protocol message, which is output.

INPUT can be the name of a protocol

message, or a timeout.

Arc labels are of form: Discover flavors:

Discover acking: seenlist does contain

this responder’s address

Quiescent

ACK

Charge

Emit

Flat

Hello

Probe

Query

QueryLargeTlv

QueryLargeTlvResp

QueryResp

Reset

Train

Command Emit

Discover acking

Emit

QueryLargeTlv /

QueryLargeTlvResp

Query/

QueryResp,

trim from log

Probe /

add to log

ACK

Flat

Hello

QueryLargeTlvResp

QueryResp

Train

charge timeout/

ctc=0

done emitees / ACK

pause/

tx emitee (Probe

or Train)

ACK

Charge

Emit

Flat

Hello

Probe

Query

QueryLargeTlv

QueryLargeTlvResp

QueryResp

Reset

Train

Reset

Cancel charge

timeout when

enteringQuiescent

inactive timeout

Reset

inactive timeout

Charge/ctc++ then

restart charge timeout

Probe /

add to log

Diagram B.2. Enumeration Engine State

[image: image2.emf]Key: normal transition

expected recovery

error recovery

(ie decreasing likelihood of traversal)

INPUT / ACTION

When the / ACTION is missing this

indicates that no action is taken.

ACTION can be the name of a

protocol message, which is output.

INPUT can be the name of a protocol

message, or a timeout.

Arc labels are of form:

Actions:

ChooseHelloTime:Choose Hello time Th randomly from 0 .. Ni*I;

if Th < Tb queue “hello timeout” for Th if none pending.

DoHello: For all sessions, if session is temporary delete it; else if

session is pending decrement Txc(session) and mark as

Complete if Txc(session) == 0; If topology session is marked as

Complete, topology state machine DOES NOT transition to

Command state

InitStats:N = Nmax; Txc(session) = TXC; begun = false; Queue

“block timeout” for Tb.

ResetNi: Ni = Nmax; r = 0

UpdateStats: Value = RoundUp(r * N(old) * I / Ta);

Bound = RoundUp(N(old) * Gamma / (Beta * Alpha));

N(new) = Max(Bound, Min(100*N(old), Value)); r=0;

if (begun)

 if (N < Nmax/2) N *= 2; else if (N < Nmax) N = Nmax;

begun = false;

Queue “block timeout” for Tb if none pending.

new session not in complete

state/ InitStats then

ChooseHelloTime

new session

in complete

state

block timeout/

UpdateStats

Pausing Quiescent Wait

new session in

complete state

session table

complete

session table

empty

session table

empty

Hello /

r++

existing session in

complete state,

session table

incomplete

block timeout/

UpdateStats then

ChooseHelloTime

new session not in

complete state/

InitStats then

ChooseHelloTime

new session /

begun = true

hello timeout / Hello

then DoHello

Although the most likely outcome

is to remain in Pausing state, this

may also cause a transition to

Wait state given the right

conditions (section 5.6.2).

Diagram B.3. Session Table State

[image: image3.emf]Nascent Pending

Hello sent

inactive timeout

Reset

Discover acking

changed xid

Key:

normal transition

expected recovery

error recovery

(ie decreasing likelihood of traversal)

INPUT / ACTION

When the / ACTION is missing this

indicates that no action is taken.

ACTION can be the name of a

protocol message, which is output.

INPUT can be the name of a protocol

message, or a timeout.

Arc labels are of form:

Discover flavors:

Discover conflicting: came from mapper other than associated one

Discover noack: seenlist DOESNOT contain this responder’s address

Discover noack changed xid: seenlist DOESNOT contain this responder’s address and xid defers from

session table

Discover acking: seenlist DOES contain this responder’s address

Discover acking changed xid: seenlist DOES contain this responder’s address, and xid defers from

session table

Complete

Reset

If this is the active topology

discovery session then the

topology discovery system

must also be reset

inactive timeout

inactive timeout

Temporary

Discover conflicting

Discover acking

If this is the active topology

discovery session then the

topology discovery system

must also be reset

Discoveracking

changed xid

If this is the active topology

discovery session then the

topology discovery system

must also be reset

If this is the active topology

discovery session then the

topology discovery system

must also be reset

If the topology discovery

session is reset then all

temporary sessions are also reset

If it is the topology discovery

session that is being reset

then all temporary sessions

are also reset

Discoveracking

Discover

noack

Reset

Reset

If it is the topology discovery

session that is being reset

then all temporary sessions

are also reset

Discover noack

changed xid

Discover noack

changed xid

[image: image4.jpg]MICROSOFT WINDOWS RALLY PROGRAM
LICENSE AGREEMENT

This MicrosoRt Windows Rally Program License Agreement (the “Agreement’) is by and between
MICROSOFT CORPORATION, a corporation organized under the laws of Washington (“Microsoft"),
and the individual or entity identified and signing below (“You™ or “Licensee”). If ¥ou want a License
Jfrom Microsoft to access, view or implement one or more Licensed Technologies (as defined below),
You must (1) complete the designated information i the box below, and (2) sign and return this
Agreement AS IS to Microsoft at the address shown in Section 8.3. This is an offer to be accepted only
on the terms set forth in this Agreement. 1f any other changes are made to this Agreement, the offer is
revoked. This Agreement, completed and fully executed by You, will become effective on the date it is
received by MicrosoRt pursuant to Section 8.3 (the “Effective Date”).

Licensee full legal name.
Type oflegal entity (corporation, partnership, sole proprietorship, individual or other):
State Province organized:

Street address:

City, State & Country

Email contact for notices:

Recitals

Microsoft has developed certain “Windows Rally” technologies, including communications protocels, that
are intended to facilitate certain tasks performed by or in conjunction with network connected devices.
Licensee desires a license from Microsoft to access, view or implement the Licensed Technology(ies) for
which the applicable box(es) are checked on Exhibit A, and to use the comesponding Technical
Documentation (as defined below) for the purpose of such implementation().

L. Definitions

L1 “Affiliate” means, with respect to any legal entity, any other such entity diectly or indirectly
Controlling, Controlled by, or tnder commen Control with such entity. “Cantzol” means the possession,
directly or indirectly, of the power to direct or cause the direction of the management and policies of a
legally recognizable entity, whether thiough the ovnership of voting shares or other voting interests, by
contract, or othersise,

12 “Authorized Purpose” means, with respect to each Licensed Technology, the function(s)
comesponding to such Licensed Technology as set forth in Exhibit A.

13 “Licensed Implementation(s)” means only those specific portion(s) of Licensee’s products that (a)
implement Licensed Technology (Ges) solely to camry out the corresponding Authorized Purpose(s), and (b)
are compliant with all Required Portions of the relevant Technical Documentation.

L4 “Licensed Product” means a product, branded with 2 trademark owned or controlled by Licensee, that
includes Licensed Implementation(s) either alone or with other compenents.

15 “Licensed Technology(ies)’ means the version(s) of the software communications protocol(s) and
related technology(ies) which Licensee indicates it has selected from the list on Exhibit A. “Licensed
Technology(ies)” also includes any version(s) of such protocal(s) or technology(ies) and any new
protacal(s) or technology(ies) that may be added to this Agreement by muual written agreement between
Licensee and Microsof in the fture.

16 “Necessary Claims™ means claims of an unespired patent or patent application that (2) are ovmed or
controlled by Microsoft or 2 MicrosoRt Affiiate; and (b) are necessarlly infringed by implementing the
‘Required Portions of the Technical Documentation, wherein 2 claim is necessarly infringed only when it is
not possible to avoid infringing it because there is no nonnfiinging altemative for implementing the
‘Required Portion of the relevant Technical Documentation. “Necessary Claims” do not include any claims:
(3) other than those set forth above even if contained in the same patent as Necessary Claims; (i) that, if
licensed, would require a payment of royalties or other fee(s) by a party to unafiliated third partes; (i) to
any wnderlying or enabling technologies that may be used or needed to make or use a system or product or

[image: image5.jpg]portion thereof that implements the relevant Licensed Technology(ies). or (1v) to any implementation of
other technical docmentation, specifications or technologies that are merely refemred to in the body of the
Technical Documertation.

17 “Required Portions” means all portions of Technical Documentation with the exception of any
portions that are expressly identified by Microsoft as being “optional.

L8 “Technical Documentation” means Microsoft's propritary technical documertation for the Licensed
Technology(ies).

2. Windows Rally Program Administration; Program Additions and Updates

21 Delivery. Microsoft has made the Technical Documertation available to Windows Rally program
Hcensees at wwmicrosoft commlly. The Technical Documentation shall be deemed accepted by
Licensee upon its download.

22 Program Additions and Updates. Microsoft may in its discretion elect to include additional software
conmaunications protacols or ofher technologies in the Windows Rally program in the fture by publishing
technical documertation for them at i microsof com rally and making available amended temns of this
Agreement at such website in order to make such protocals or other technologies available under this
Agreement. Except in the event Microsoft makes such additional protacols or other techrologies available
and Licensee accepts applicable tems goveming their inclusion under this Agreement, no ofher protocls,
technologies, technical documertation, or MicrosoR enhancements or updates to the Licensed
Technology(ies) andor Technical Documentation are licensed under this Agreement

23 No Technical Support. This Agreement does not include technical support by Microsoft to Licensee
its chamel entiies, or end users. Licensee s solely responsible for all such support and shall advise
channel entiies and end users accordingly

3. Licenses

31 Copyright License. Microsoft hereby grants Licensee a non-exclusive, royalty-fiee, non-
sublicensable, noniransferble, personal, worldwide license to make a reasenable number of complete
copies of the Tedhnical Documentation for use solely in developing and testing such Licensed
Implementation(s). Licensee shal retain in all copies of, and shall comply with, any copyright-related
notices that are included in such Technical Documentation.

32 Patent License. Microsoft hereby grants Licensee a nonexclusive, royalty-free, non-sublicensable,
nontmansferable, personal, worldwide license under the Necessary Claims to use the Tedmical
Documentation for the Licensed Technology(ies)s to:

(@) make, use, import, offer to sell, sell and distribute directly or indirectly to end users, object code
versions of Licensed Implementations only as incorporated into Licensed Products and solely for the
purpose of conforming with the comesponding Technical Documentation in order for Licensed
Inmplementations to carry ot the Authorized Purpose comesponding to such Licensed Technology(ies), and

(®)to distribute or otherwise disclose source code capies of the Licensed Implementation(s) licensed in
Section 3.2(a) enly if Licensee (i) prominently displays the following notice in all copies of such source
code, and (i) distributes or discloses the source code only under a license agreement that includes the
following notice as a temn of such license agieement and does not include any other terms that are
inconsistent with, or would prohibit, the following notice:

This source code incorporates iniellectual property owned by Microsoft Corporation and cannot be.
mads, used, sold, offered for sale, iported or redistributed without a licenss from Microsoft
Corporation. Our provision of this source code does not include any licenses or any other rights to you
under any Microsoft intellectual property. If you would ke a license from Microsoft, you need
contact Microsoft directly (send mail to rally@nicrosoftcom.”

33 License Clarifications. The licenses granted to Licensee in this Agreement do not include any right to

(i) modify the Technical Documertation, change any of the packet types or content types described in the

Technical Documentation, or extend any such packet types or contert fypes except as described in the

Technical Documertation, or (i) implement any Licensed Technology(ies) or exercise rights under any

[image: image6.jpg]Necessary Claims in any software other than a Licensed Inplementation or to support any communications
betsveen computing devices andor computing functions other than as expressly provided in the definition
ofthe Authorized Purpose comesponding to the applicable Licensed Techmology(ies). For the avoidance of
doul, regardless of whether a Licensed Implemertation performs or is capable of perfomning fimctions
other than the Authorized Purpose, the licenses set forthin Section 3.2 apply only to the perfomance of the
Authorized Purpose comesponding to such Licensed Implementation.

3.4 Licensee Covenant Not to Sue. In consideration of the terms of this Agreement, Licensee covenants
onbehalf o itself and its Affilates that it will not sue Microsoft or any Microsoft Affiiate for infringement
of any claims of paterts reading on any Technical Documertation (*Licensee Patents™) on accourt of any
manufacture, use, sale, offer for sale, importation or other disposition or promotion, worldwide, of any
Microsoft product, technology, service or portion thereof. If Licensee assigns or transfers any Licensee
Patents, applications therefor, or rights to enforce the same, Licensee shall require as a condition of any
such assignment that the assignee agrees to be bound by the provisions of this Section 3.4 with respect to
Licensee Patents. Any puported assignment or trnsfer of rights in derogation of the foregoing
requirements shall be mull and void.

35 No Warranties. Licensee shall make no representation, or any express or implied wamanty to third
parties (including, without limitation, to any end users) on behalf of Microsoft

36 Excluded Licenses. Nothing in this Ageement awhorizes Licensee to subject the Licensed
Technology(ies), Technical Documentation or any Microsoft intellectual property right in any Licensed
Inplementation to the terms of any license that requires, as a condition of se, modification or distribution
of technology subject to such license, that such technology or other tetmology cambined or distributed
with such techmology (a) be disclosed or distributed in source code oz (b) be Hcensed for the purpose of
making derivative works: or (c) be re-distributable at no charge.

3.7 Reservation of Rights. Al rights not expressly granted in this Agreement are reserved. No additional
fights whatsoever (including, without limitation, any implied licenses) are granted by implication, estoppel
or othersise. Without limiting the generality of the foregoing, this Agreement does not grant Licensee any
Hicense or other right to use or display any name, trade mame, logo, trademark or other identifier of
Microsoft (provided, however, that this Agreement also does not restrict any right that Licensee may have
under applicable laws to make accunate, descriptive and nominative references to Microsoft or its products
in any press release, public announcement or ather disclosure, including pursuant to Section 7.

4. Term and Termination

41 Term. The tem of this Agreement shall commence as of the Effective Date and continue unless and
until terminated in accordance with the provisions of this Agreement.

42 Termination (2) Licensee may temminate this Agreement at any time upon written notice to
Microsoft. Microsoft may terminate this Agreement (i) immediately wpon written notice at any time, if
Licensee is in material breach of Section 3.2(b); or (i) if Licensee othersise materially breaches this
Agreement and fail to cure the breach within thirty (30) days after Licensee receives nofice of the breach
ftom Microsoft. (b) Upon termination, Licensee’s licenses under this Agreement shall end and Licensee
shall cease all use of the Technical Documentation (ncluding but not hmited to all production and all
d@istribution of Licensed Implementations and Licensed Products).

43 Survival. Sections 1,22,3.4,3.6,3.7,42,52,6, 8 and this Section 4.3 shall survive any termination
of this Agreement. Licenses granted prior to the termination of this Agreement by Licensee to end users
For Licensed Implemertations in accordance with the tems of this Agreement shall survive any termination
of this Agreement.

[image: image7.jpg]- Representations and Disclaimers of Warranty

1 Licensee represents and wanrants that the person signing this Agreement on Licensee’s behalf has all
necessary power and autherity to do 5o, and that upon such signature this Agreement is a binding obligation
on Licensee.

52 DISCLAIMERS. THE TECHNICAL DOCUMENTATION, LICENSED TECHNOLOGY(IES)
AND ALL INTELLECTUAL PROPERTY MADE AVAILABLE ANDOR LICENSED BY
MICROSOFT UNDER. OR IN CONNECTION WITH THIS AGREEMENT ARE PROVIDED “AS IS
WITHOUT WARRANTY OF ANY KIND. MICROSOFT DISCLAIMS ALL WARR ANTIES, DUTIES
AND CONDITIONS, EITHER. EXPRESS, IMPLIED OR STATUTORY WITH RESPECT TO SUCH
TECHNICAL DOCUMENTATION, LICENSED TECHNOLOGY(IES) AND INTELLECTUAL
PROPERTY, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, TITLE OR NON-INFRINGEMENT.

6. Limitation of Liability

MICROSOFT SHALL NOT BE LIABLE FOR ANY DAMAGES ARISING FROM OR OTHERWISE
RELATED TO THIS AGREEMENT, INCLUDING INDIRECT, INCIDENTAL, CONSEQUENTIAL,
PUNITIVE OR SPECIAL DAMAGES, EVEN IF MICROSOFT HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES IN ADVANCE.

7. Marketing
7.1 Press Release.

@) Promptly following the Effective Date, Licensee will issue a press release in which
Licensee announces that it has entered into a Microsoft Windows Rally Program License Agreement and
describes Windows Rally techmology as being intended to provide effortless, secure and reliable
connectivity between devices and PCs, support for new connectivity scenarios, and richer experiences for
customers.

® The parties may cooperate with each ofher on press releases and similar communications
regarding the non-confidentil subject matter of this Agreement. The content and specific timing of each
such press release (ncluding the press release to be issued pursuant to Section 7.1() or similar public
conmmunications must be agreed upon in writing by both partes.

72 Microsoft Marketing Materials. Notwithstanding Section 7.1(b), Licensee conserts to Microsoft's
Kisting Licensee as a party to its Microsoft Windows Rally Program License Agreement on the Microsoft
Windows Rally website, as well as in marketing materials generated by or for Microsoft

8. Miscellancous

8.1 No Parmership, Joint Venture or Franchise. Neither this Agreement, nor any temms and conditions
contained herein, shall be construed as creating a partnership, joint venture or agency relationship or as
ganting a franchise as defined in the Washington Franchise Investment Protection Act, RCW 19.100, a5
amended, or 16 CFR Section 436.2(a), or any similarlaws in other jurisdictions.

82 Export Regulations. Licensee acknowledges that the Technical Documentation and Licensed
Implementations may be subject to U.S. export jurisdiction and other applicable national or intemational
laws. Licensee aggees to comply with all applicable intemational and national laws that apply to the
Technical Documertation and Licensed Inplementations, including the U.S. Export Administration
Regulations, as well as end-user, end-use and destination restrictions issued by U.S. and other govemments,
and privacy laws. See hitp://sw microsoft com/exporting

83 Executed Agreements and Effectiveness: Notices. To be effective, executed Agreement(s) must be
sent by messenger, traceable express mail or prepaid certified mai, retum receipt requested, addressed to
Microsoft as follows:

[image: image8.jpg]Microsoft Corporation
One Microsoft Way

Redmond, WA 98052-6399

Attention: Windows Rally Program Manager (Scott Manchester or successor)

Copyto: Law & Corporate Affairs

Except for the foregoing, all notices in conneetion with this Agreement shall be deemed given as of the day
they are received sither by messenger, delivery service, o in the United States of America mails, postage
prepaid, certified or registered, zetum receipt requested, and addressed either to Licensee s stated in the
box an the first page of this Agreement or to Microsoft as stated abave, or to such other address as 2 party
may designate pursuant to this notice provision,

8.4 Governing Law; Jurisdiction; Attorneys' Fees. This Agreement shall be construed and controlled
by the ks of the State of Wasington, and Licensee consents ta exclusive jurisdiction and venue in the
fedenal courts siting in King County, Washington, unless no federal subject matter jurisdiction exists, in
wwhich case Licensee consents to exchusive junsdiction and venue in the Superior Court of King Courty.
Washington. Licensee waives all defanses of lack of personal jurisdiction and forum non canveniens.
Pracess may be served on either party in the manrer authorized by applicable law or court rule

85 Assignment Licensee shall not transfer or assign this Agreement, or any rights or obligations
hereunder, whether by operation of contract, law or otherwise, except with the express written consent of
Mictosoft, and any attempted assignment by Licensee in violation of this Section is void. For purposes of
this Agreement, an “assignment” by Licensee is deemed to include, without Imitation, cach of the
following: () 2 change in beneficial oxmership of Licensee of greater than twenty percent (20%) (whether
in 2 single transaction or series of transactions) if Licensee is a partnership, trust, Emited liability compary
or other like entity: (b) a merger of Licensee with another party, whether or not Licensee is the surviving
entity: (c) the acquisition of more than twenty percent (20%) of any chass of Licensee’s voting stock (or any
class of non-voting secuity convertible into voting stock) by another party (shether in a single transaction
or series of transactions): and (d) the sale or other transfer of more than fity percent (50%) of Licensee's
assets (whether in a single transaction or series of transactions). In the event of such assigament or
attenpted assignment by Licensee, MicrosoRt may, but is not obligated to, immediately teminate this
Agreement and any licenses or rights grants hereunder.

8.6 Construction. If for any reason a court of competent jurisdiction finds any provision of this
agreement, or portion thereof, to be wenforceable (other than Section 3.2(b)), such provision and the rest
of the Agieement will be enforced to the maximum extent permissible 50 as ta effect the intent of the
parties, and the Agreement will continue in full force and effect. In the event that 2 cout of conpetert
jurisdiction finds that Section 3.2(b) is unenforceable, this entite Agreement and any enses granted
hereunder shall be rendered mull and void. Failure by a party to enforce any provision of this Agreement
sill not be deermed a waiver of fifure enforcemert of that or any other provision.

8.7 No Requirement to Implement. Nothing in this Agreement shall be construed as requiring Licensee
to use or implement Licensed Technology(ies), or Limit either party from campeting in any way without
infiinging the intellectual property rights of the other pany, including by engaging in adivities,
independently or with others, that may be deemed conpetiive with Licensed Technology(ies), Licensed
Inmplementation(s) or Licensed Praduct(s).

8.8 Entire Agreement. This Agreement constitutes the enfire agreement betsveen the parties with respect
to its subject matter, and merges all prior and contemporansous commumications. It shall not be modified
except by a witten agreement dated subsequert to the date of this Agreement and signed on behalf of
Licensee and Microsoft by their respective duly authorized representatives.

[image: image9.jpg]By signing below Licensee agrees to the foregoing and represents that Licensee has not modified this
Agreementin any vay

By (gnatue) Ticenses Name

Name (printzd) Dated:

Tile

[image: image10.jpg]EXHIBIT A
LICENSED TECHNOL OGY(ES)

The Licensed Technology(ies) that Licensee has chosen to license under this Agreement are indicated by
check(s) in the bax(es) on the left. Each Licensed Implementation is licensed to perfomn only the
comesponding Authorized Purpose and i subject to the further terms of this Agreement

Technology Authorized Purpose

[m] Ticensed Tmplementations of this Licensed Technology may use such
LikLayer | Ticensed Technology only for the folowing pupose: to request of
Topolosy | repond to requests (m ither case in commumications with other
DIscovery | gevices that include & Licensed hplementation) for infonmation
describing (i) the device on which the Licensed Implemertation is
tunning, (i) information about cther devices connected to or which
have wireless access to the same network as the device on which the
Licensed Inplementtion is running, and (i) characteristics about the
physical media to which the device n (i) is cormected

n] Ticensed Implemantations of s Licensed Technology may use uchk
PabX Licensed Technology only for the following purpose: 1o implement the

methodology described in the Technical Documemtation for how
specific communications protocols described in (but not Hcensed under)
such Technical Documentation can be extended and amployed to
provide a plug and ply experience.

Ticensed Implementations of this Licensed Technology may use such
Licensed Technology only for the following pupose: to pemit the
transfer of Windows Connect Now Settings to a Licensed Product from
a computing device and then fom such Licensed Product to other
devices.

O Ticensed Tmplementations of this Licensed Technology may use such
DEWS Licensed Technology orly for the following purpose: to perform the

functions of a Compliant Device or a Compliant Control Point, as
defined below

A Compliant Device means a Licensed Product that includes a
Licensed Implementation which implements the mandatory
aspects of at least one DCP (as defined below) for the sole
purpose of respanding to requests from a Compliant Centrol
Point.

A Compliant Cortrol Point means a Licensed Product that
includes a Licensed Emplementation the sole fimction of shich
i to send requests to a Compliant Device.

A DCP means a device contral protocl, including 2 device-
specific schema described using the web-services description
Language, which device control protocal enables interaction
between a device associated with one device class and devices
associated with the same or different device chisses in a
networked environment.

Version 1.0.9 – September 15, 2006 - © 2006 Microsoft Corporation. All rights reserved. Access to and viewing and implementation of the technology described in this document is covered under the Microsoft Windows Rally Program License Agreement, provided at the end of this document and also available from the Windows Rally Web site at http://www.microsoft.com/rally.

[image: image11.png][image: image12.png]4% Windows

[image: image13.png]

