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Abstract
We continue our investigations of Word-Phrase-Entity (WPE)
Language Models that unify words, phrases and classes, such
as named entities, into a single probabilistic framework for the
purpose of language modeling. In the present study we show
how WPE LMs can be adapted to work in a personalized sce-
nario where class definitions change from user to user or even
from utterance to utterance. Compared to traditional class-
based LMs in various conditions, WPE LMs exhibited compa-
rable or better modeling potential without requiring pre-tagged
training material. We also significantly scaled the experimental
setup by widening the target domain, amplifying the amount of
training material and increasing the number of classes.
Index Terms: Language model personalization, class-based
LMs, Word-Phrase-Entity LMs

1. Introduction
Situation-aware modeling of human behavior is necessary to
produce high quality human-machine interactions for a variety
of tasks and scenarios. In speech recognition, and specifically
language modeling, a wide spectrum of techniques have been
proposed to dynamically adjust statistical language models to
the interaction context: from customized turn specific gram-
mars in traditional telephony IVR, to cache- and trigger-based
language models that learn from the immediate past [1, 2], to
topic-specific language models that derive topic information
from the utterance itself [3, 4]. We are interested in scenar-
ios where the underlying language structure can be considered
fixed within the domain, but contents of individual syntactico-
semantic slots, such as named entities, vary from case to case,
from user to user. Class-based language models is the tradi-
tional solution for such scenarios. For personalization purposes,
class definitions can be compiled from meta-information associ-
ated with the user. Class-based language models view sentences
as sequences of class tokens (rather than words) where each to-
ken can be realized in a number of different ways. Since there
are generally several possible parses ccck to express sentence www
in terms of tokens cki with respective instantiations πk

i , its total
probability can be decomposed as follows:

P (www) =
∑
k

∏
i

P (cki |hk
i )P (πk

i |cki ). (1)

where hk
i is the history of cki in ccck. Typically, classes would

be either pre-defined or derived from the data by analyzing con-
text similarity of candidate words [5]. In parallel, considerable
effort has been invested into finding sequence of words that fre-
quently occur together and turning them into special “phrase”
tokens (e.g. [6, 7]). In most realizations, decisions to replace a
word or a sequence of words by a class- or phrase token were
made greedily for the entire corpus: for instance, once it was

determined that several words formed a phrase, all their occur-
rences would be replaced by the corresponding phrase token.

Recently, we proposed an extension of the class-based
paradigm that not only unified classes and phrases in a single
probabilistic framework, but also departed from the greedy ap-
proach by making individual token-replacement decisions for
each candidate group of words [8]. The Maximum-Likelihood
approach would start with a word-level corpus and several
generic class-definitions (encoded as word tries or finite au-
tomata). It would then iterate by alternating ML-parsing of the
corpus with the current WPE language models with updating
token n-gram statistics constituting these models from the pro-
duced parses. A simple extension of this approach allowed for a
simultaneous optimization of the class definitions as well. Ap-
plied to a limited target scenario, WPE language models signif-
icantly reduced perplexity and WER on unseen data.

In the present report we demonstrate that WPE LMs offer
themselves as a natural choice for personalized speech recog-
nition. We show how WPE LMs, in comparison with tradi-
tional class-based personalized language models trained on pre-
tagged training material, achieve similar or slightly better per-
plexity while making no assumptions on availability of entity-
specific taggers. Several speech recognition experiments in var-
ious setups are presented to further support our findings regard-
ing usability of personalized WPE LMs.

The rest of this paper is organized as follows. Section 2
introduces WPE LMs. In Section 3 we suggest modifications
to the training algorithm to incorporate personalized class def-
initions and discuss ways to overcome engineering challenges
that a developer of such a system would face. Our experimen-
tal setup is described in Section 4 followed by discussion of the
results. Suggestions for future work and a summary of the most
important results conclude the paper.

2. Word-Phrase-Entity Language Models
WPE Language models [8] are used just like regular class-based
language models (except for treating a number of word-phrases
as special pseudo-words), but their training is carried out in an
iterative manner. Each EM iteration consists of two steps:
Expectation: use the current model to produce a collection of
alternative parses for each sentence with joint probabilities

P (www,ccck) =
∏

ck
i
∈ccck

P (cki |hk
i )P (πk

i |cki ). (2)

This is currently carried out with the trellis decoder from the
SRILM toolkit [9].
Maximization: re-estimate token n-gram probabilities from the
produced parses as

PML(c|h) :=
∑
www

∑
k

L′(www,ccck)
#ch

#h

∣∣∣∣
ccck

(3)



with count contributions #ch
#h

∣∣
ccck

from a particular parse ccck of a
particular training sentencewww being weighted by a combination
of relative frequency of the sentence in the corpus and the parse
posterior for the sentence:

L′(www,ccck) = L′(www) ∗ P (www,ccck)∑
ccc
P (www,ccc)

(4)

This step is implemented via standard n-gram LM training and
therefore can benefit from discounting methods (that understand
fractional weights). Similarly, the algorithm can tune up shared
class definitions by updating their internal probabilities with

PML(π|c) =
∑
www

∑
k

L′(www,ccck)
#(c, π)

#c

∣∣∣∣
ccck

(5)

Optimization starts with a simple unigram language model
based on counts of all word n-grams (up to a given length)
in the training corpus. During our experiments we have found
out that certain heuristic adjustments such as scaling joint log-
probabilities P (www,ccc) by the word length of w improve conver-
gence and can lead to better accuracy on unseen data.

3. Adding Personalization
Language models can be personalized in many ways across dif-
ferent applications such as speech recognition, search and rec-
ommendation. For instance, in search, adaptive techniques to
predict the applicability of user personal data given the current
task and activity context have shown to be effective [10]. In
[11], language models trained from the most frequent tags of the
users in bookmarks are used to deliver personalized recommen-
dations. For speech recognition, in the space of contextual word
probabilities, pre-trained language models can be adapted on
the training material collected for a particular user [13] or, for
exponential LMs, user affiliation information can be encoded
as an additional feature [14]. The range of sources that the per-
sonal data can come from is diverse and includes user’s histori-
cal behavior [12, 14], social environment [13], or even eye gaze
[15]. For the experiments in this paper, we restrict the notion
of personalization to only substituting class-definitions, such as
contact names found in the address book of a mobile user. We
call such classes “personal grammars”. This extension will have
two implications on the optimization process. First, personal
grammars will need to be taken into account when computing
joint probabilities

P (www,ccc, u) =
∏
ci∈ccc

P (ci|hi)P (πi|ci, u), (6)

which is essentially saying that probabilities of class instances
(e.g. “john smith” in class CONTACT NAME) are now specific
for a particular user u. Formulae (3-5) are adjusted accordingly
to employ user-dependent weight L′(www,ccc, u) and re-estimate
updated value for PML(π|c, u). Second, optimization of the
personal grammars will need to happen on a per-user basis. Be-
cause of data scarcity, we did not attempt this in our experi-
ments.

The brute force application of the WPE training algorithm
would require too much memory or time (an average user has
several dozens or even hundreds of items in the grammar). On
the other hand, for the purpose of training (and perplexity eval-
uation), one does not need to load the entire grammars but
rather small subsets of them that only contain the words al-
ready present in the respective sentences. This trick along with

some intelligent dictionary optimization allows to scale train-
ing of personalized WPE LMs to millions of sentences and still
conduct it on a single CPU.

4. Experimental Setup
One major weakness in the setup of our previous experiments
in [8] was the narrow domain (calendar tasks) and a small size
of the training corpus (only 20K unique sentences). The present
investigation goes beyond these limitations. We remain within
the Personal Assistant scenario but remove any domain restric-
tions. More specifically, our new training corpus consists of
about 940K professionally transcribed queries and utterances
from users’ interactions with Microsoft’s automated personal
assistant Cortana. The examples cover a wide range of do-
mains from voice search to message dictation, from command
and control to chit chat. A pair of validation and test sets from
the same source comprising 20K and 5K sentences respectively
was also prepared. A separate set of 5K utterances was used
only for recognition experiments1.

It is important to understand that recognition accuracy of a
personalized model on natural language sentences actually con-
taining user-specific references (such as contact names) is likely
to be underestimated. Indeed reference transcriptions against
which the models are evaluated, are generated by human la-
belers without access to users’ personal information. As a re-
sult, they tend to suggest common spelling variants for acous-
tically ambiguous cases (e.g. “chris” and not “kris”), while
the personalized model that actually does have access to user’s
personal information might expect/suggest correct though less
common forms. Therefore, we have devised two alternative
testing scenarios to evaluate our personalized WPE LMs. In
the first scenario, contrived grammars are generated based on
tagged representations of the reference transcriptions and true
entity-related statistics from the corpus. In the second scenario,
true user grammars are employed.

4.1. Contrived Grammars

We started by analyzing our training and test corpora with a
pre-trained sequence tagger designed to recognize named enti-
ties (contact names among them) in user requests. The tagger
was trained with Conditional Random Fields (CRF) using lex-
ical features such as the identity of the current word, preced-
ing and following words, and associated n-gram features. A
small set of regular expressions, and gazetteers for named enti-
ties, built by mining various relevant web resources, was used
to trigger presence of entity features [16].

For each training/test sentence u, we generate its gram-
mar in four steps: first, a number s(u) of distinct grammar
entries is sampled from an empirical distribution histogram S
estimated from real examples (typically less than few hundred
entries are expected). If a contact name was hypothesized in
the sentence by the tagger, with probability θ we seed the gram-
mar with this hypothesis. For instance, if the tagger marked
“john” and “mary” as contact names in sentence “tell john that
mary is out”, either of them will be present in the correspond-
ing contrived grammar with probability θ. We also call θ entity
precision. The remaining entries are sampled from a cumula-
tive distribution of all contact names hypothesized in the entire
training set (for instance, “mom”, “my wife” are likely to have
high probabilities in this distribution). Finally, we set weights of

1The separation had to be enforced due to a combination of user
privacy restrictions and internal implementation details.



all individual entries in the grammar at random, except for the
seeds (such as “john” and “mary” in the example above) whose
relative weight is µ times the average. The heuristics θ ≈ 0.6
and µ≈ 10 were obtained based on careful evaluation of a few
hundred samples from the training corpus with the real personal
meta-data (contact names with corresponding use frequencies).

4.2. Realistic Grammars

The realistic personal grammars for contact names are gener-
ated per-user based on the user’s address book data that is col-
lected with the user’s consent. We utilize call and text history
counts collected over the recent few months to weigh the items
in the personal contacts grammar. For each contact in the ad-
dress book, we generate items with first name, last name, first
and last name, as well as nickname, each associated with their
respective call and text history counts. We merge identical items
in the list, aggregating the counts in the process and then pro-
ducing an <item,weight> tuple list. A ceiling function with
an upper bound is applied, giving more weight to first name
items. The weights for the list of items are then normalized. The
weighted list of items is processed to generate the final personal
CONTACT NAME class grammar for a given user. Standard pre-
cautions are taken to guarantee confidentiality of all personally
identifiable information.

In addition to the personalized CONTACT NAME grammar,
21 generic named entity classes are used in this setup. This is a
significant increase compared to our pilot experiments from [8]
where only six classes were used. Their exhaustive list along
with sizes and examples (obvious and less obvious) is shown in
Table 1. All named entities are initialized as lists of alternatives,
except DATE and TIME which are FSMs. Decisions as to which
named entities to create classes for were made based solely on
data availability, and all class definitions were harvested from
publically available online sources, such as Wikipedia, with a
small amount of manual adjustments.

Table 1: Named Entity (NE) classes used in the experiments
with realistic grammars.

NE size examples
ACTOR 16585 meryl streep, da brat
MOVIE 10957 forrest gump, talk to her
LASTNAME 9716 jones, summer
CITY 3934 san francisco, franklin
MUSICIAN 3128 beattles, suzanne vega
FIRSTNAME 3036 john, will
MODEL 2204 adriana lima, queen rania
WEBSITE 1610 wikipedia dot org, qq
SONG 1231 stairway to heaven, happy
BUSINESSMAN 1125 larry ellison, estée lauder
ATHLETE 1059 lebron james, kaka
COUNTRY 249 france, us
WORLD CITY 100 rome, nice
NFL TEAM 94 new york giants, the bears
MLB TEAM 87 boston red sox, tigers
NBA TEAM 82 lakers, bulls
NHL TEAM 79 boston bruins, kings
STATE 55 california, c a
DAY OF WEEK 7 monday
DATE 16st/132arcs march first two thousand
TIME 11st/72arcs seven twenty p m

Figure 1: Test set perplexity as a function of entity precision in
the personal grammars; comparison of traditional class-based
and WPE LMs.

5. Experiments and Results
In our first series of experiments with contrived grammars, we
compare WPE LMs against traditional class-based language
models. No classes except personalized CONTACT NAME
grammars are used in this experiment. Our baseline is a class-
based 4-gram LM trained on the automatically tagged training
corpus with personal grammars generated as described in Sec-
tion 4.1. The WPE alternative is a 4-gram token-level LM that
allows instances of the personalized class as well as phrases of
up to six words with cumulative frequency in the parsed cor-
pus of at least 30. It was trained with 10 iterations of the EM-
algorithm as described in [8]. Depending on setup between
3700 and 3900 such phrases ended up in the final WPE LM.
While keeping other heuristics fixed, we focus on entity preci-
sion θ which can be interpreted as the probability of referenc-
ing a contact name that is present in the corresponding gram-
mar definition. Since individual runs exhibit vastly different
OOV rates, our perplexity metric assigns the OOV-words uni-
gram probability of 1e-7 which is a conservative estimate only
slightly below the lowest unigram probabilities in the training
corpus. The results are summarized in Figure 1.

It can be seen that both LM types exhibit similar behavior
with a slight but consistent advantage for the WPE language
models, perhaps more so in the lower precision range. This can
be explained, in part, by the soft class labeling in WPE which
tends to preserve entity wording alongside the hypothesized
class-name. Another, though closely related, explanation for
improved perplexity is how WPE training distributes weight be-
tween alternative parses [8]. For instance, while “mom” could
be in the address book of the user, the command “call mom” is
so common that it is cheaper to model it via a word bigram or a
special phrase “call+mom” and not via class CONTACT NAME.

However, the most important distinction between the two
approaches lies in their expectations regarding training mate-
rial. While WPE LMs tag the data on their own as we train the
language model, to train a traditional class-based LM, a pre-
tagged training corpus must be available. It can either be pro-
duced manually, which makes scaling prohibitively expensive,
especially in the case of personalized class definitions, or it can
rely on pre-trained taggers, as in our experiments. Nonetheless,
even with the high quality domain-specific tagger, the WPE LM
ended up exhibiting better modeling potential.

The rest of the experiments in this paper pertain to the re-
alistic scenario in which actual grammars assembled for each
utterance from user’s address book are used for personaliza-



tion. First, we would like to see the effect of personaliza-
tion and generic classes on LM perplexity. This experiment
has two baselines: a large general purpose 5-gram language
model (GLM) trained on trillions of examples and the afore-
mentioned word level 4-gram LM (LM0). The traditional class-
based baseline was abandoned for this setup, because the latter
does not leave room for approximation and would require the
entire training set to be manually tagged.

The top part of Table 2 compares perplexities and WERs
of three WPE LM versions against the baselines above on the
entire test set and on its personalizable and non-personalizable
subsets2. The first WPE LM (LM21) was built with 21 generic
classes whose initial weights in the respective tries and FSMs
are optimized in the course of the training process from [8].
The second (LM1) only has a single class of personal gram-
mars CONTACT NAME. With 21+1 classes, the last WPE LM
(LM21+1) is a combination of the first two. As before, in order to
bring all runs down to a common denominator, OOV probabil-
ities are set for perplexity evaluations: 1e-7 for all LMs trained
on the in-domain training corpus and 1e-9 for the large general
purpose baseline LM.

Table 2: Test set perplexity, WER(%) and WERR(%) for
baseline LMs and WPE configurations in the realistic sce-
nario. For perplexity evaluation, personalizable (PER) and
non-personalizable (NPER) subsets are considered separately.

LM PER NPER total WER WERR
GLM 151.16 40.17 46.57 13.83 -
LM0 136.25 41.06 46.93 16.59 0
LM21 112.68 39.28 44.18 15.58 6.1
LM1 48.66 41.24 42.02 14.91 10.1
LM21+1 47.13 39.48 40.27 14.62 11.9
LM0+GLM 109.69 32.25 36.97 13.23 0
LM21+GLM 97.99 31.94 36.19 12.99 1.8
LM1+GLM 40.82 32.61 33.44 12.11 8.5
LM21+1+GLM 40.38 32.1 32.93 11.97 9.5

Looking at the perplexity numbers, we observe that 21
generic classes (LM21) are helpful for sentences with or without
suspected personal references. The effect on the latter can be at-
tributed to the NE classes FIRSTNAME and LASTNAME. On the
other hand, the setup with the personal CONTACT NAME gram-
mars as the only class (LM1), while slashing perplexity of the
personalizable set almost three times, has a slightly adverse ef-
fect on the rest of the test corpus. In line with our expectations,
the overall perplexity of the LM1 model matches almost ex-
actly the perplexity of the WPE model in the contrived-grammar
setup (see Figure 1) at θ = 0.6, the value gauged from the re-
alistic grammars. The ensemble of all classes (LM21+1) brings
about the largest overall perplexity reduction of more than 14%.
Similar improvements are achieved for WER on the audio cor-
pus with a total of 11.9% relative reduction to LM0 (mind, how-
ever, that the absolute WERs of the in-domain LMs are higher
than might be suggested by perplexity numbers, due to a later
time stamp of the audio test set and possible overtraining).

Next, we would like to see how the personalization advan-
tage of the LM21+1 propagates through interpolation with the
GLM. The interpolation algorithm from [17] for class-based,
and in particular WPE LMs, is employed for this purpose. Just

2An example is deemed personalizable if the grammar contains at
least one entry whose text can be matched in the sentence.

Figure 2: WER reduction relative to LM0 for in-domain LMs,
and products of their parallel and interpolated combinations
with GLM.

like the WPE training in Section 3, this algorithm also had to
be adjusted to accommodate personal class definitions. Our
in-domain validation set was used to optimize 8.5K context-
dependent interpolation weights [18] that preserved cumulative
frequency in the corpus of at least 3.0 throughout all EM it-
erations. The weights were seeded with context-independent
values previously tuned-up on the same validation set. The bot-
tom part of Table 2 summarizes perplexities for interpolated
versions of all four in-domain LMs (P(OOV)=1e-9). It shows
that the WPE advantages for personalized and non-personalized
classes are largely preserved even after interpolation with a
strong baseline such as our GLM. For instance, measured on
all test material, LM21+1 had a 11% lower perplexity than LM0

and 9.5% lower WER.
To further validate the conclusion, Figure 2 summarizes

WERR of various in-domain LMs and their combinations with
the GLM, this time also including empirically best parallel com-
binations (Kleene closures) LM || GLM. The advantage of the
WPE LMs, especially in conjunction with LM interpolation is
evident.

Finally, the practical value of the WPE approach needs to be
assessed. Indeed, recognition is expected to take longer when
a large LM references many moderately sized classes, espe-
cially if contents of these classes is dynamic as is the case with
personalized grammars. Our measurements revealed that the
21 generic classes added an average of 15% extra recognition
time and the personal grammar CONTACT NAME added 9%.
No combination of the two exceeded 30% added latency, which
is comparable to a setup where large GLM and medium sized
WPE are run in parallel.

6. Future Work and Conclusion
We have demonstrated how Word-Phrase-Entity language mod-
els can be successfully used in scenarios that rely on per-
sonalized class definitions such as user contact names. With
simulated personal class definitions, personalized WPE LMs
slightly outperformed traditional class-based LMs while not re-
quiring specially tagged training material. In a setup with real-
istic class-definitions, WPE LMs using combinations of generic
classes with tunable weights and personalized classes with fixed
weights, achieved WER reduction of 12%. This gain was
largely preserved even after interpolation with a strong baseline.
We plan to continue our investigations of WPE language models
focusing on scaling and supporting more underlying LM types
such as continuous space LMs.



7. References
[1] Kuhn, R. and De Mori, R.: “A Cache-based Natural Lan-

guage Model for Speech Recognition”; in IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 12(6),
pp.570-583, 1990.

[2] Lau, R., Rosenfeld, R. and Roukos S.: “Trigger-based
Language Models: A Maximum Entropy Approach”; in
Proc. of ICASSP, 1993.

[3] Haidar, M.A. and O’Shaughnessy, D.: “Topic n-gram
Count Language Model Adaptation for Speech Recogni-
tion; in Proc. of SLT, pp.165-169, 2012.

[4] Mikolov, T. and Zweig G: “Context Dependent Recur-
rent Neural Network Language Model”; in Proc. of SLT,
pp.234-239, 2012.

[5] Brown, P. F., deSouza, P. V., Mercer, R. L., Della
Pietra, V. J. and Lai, J. C.: “Class-based n-gram Mod-
els of Natural Language”; in Comput. Linguistics, 18(4),
pp.467–479, 1992.

[6] Kuo, H. K. J. and Reichl, W.: “Phrase-based Language
Models for Speech Recognition”; in proc. of Eurospeech,
1999.

[7] Saon, G., Padmanabhan, M.: “Data-driven Approach
to Designing Compound Words for Continuous Speech
Recognition”; in IEEE trans on Speech and Audio Pro-
cessing, 9(4), 2001, pp.327–332.

[8] Levit, M., Parthasarathy, S., Chang, S., Stolcke, A. and
Dumoulin, B.: “Word-Phrase-Entity Language Models:
Getting More Mileage out of N-grams”; in Proc. Inter-
speech, 2014.

[9] Stolcke, A.: “SRILM — an Extensible Language Model-
ing Toolkit”; in proc. of Interspeech, 2002.

[10] Luxenburger, J., Elbassuoni, S. and Weikum, G.: “Match-
ing Task Profiles and User Needs in Personalized Web
Search”; in Proc. of CIKM, pp.689698, ACM, 2008.

[11] Krestel, R. and Fankhauser, P.: “Language Models and
Topic Models for Personalizing Tag Recommendation”;
in Proc. of International Conference on Web Intelligence
and Intelligent Agent Technology, vol.1, pp.82-89, 2010.

[12] Paek, T. and Chickering, D.: “Improving Command and
Control Speech Recognition on Mobile Devices: Us-
ing Predictive User Models for Language Modeling”; in
“User Modeling and User-Adapted Interaction”, Special
Issue on Statistical and Probabilistic Methods for User
Modeling, 17(1-2), pp.93- 117, 2007.

[13] Wen, T. H., Heidel, A., Lee, H. Y., Tsao, Y. and Lee, L. S.:
“Recurrent Neural Network Based Language Model Per-
sonalization by Social Network Crowdsourcing”; in Proc
of Interspeech, pp.2703-2707, 2013.

[14] Zweig, G. and Chang, S.: “Personalizing Model M for
Voice-Search”; in Proc. of Interspeech, pp.609-612, 2011.

[15] Slaney, M., Stolcke, A. and Hakkani-Tür, D.: “The Re-
lation of Eye Gaze and Face Pose: Potential Impact on
Speech Recognition”; in Proc. of 16th ACM International
Conference on Multimodal Interaction, 2014.

[16] Anastasakos, T., Kim, Y.-B. and Deoras, A.: “Task Spe-
cific Continuous Word Representations for Mono and
Multi-lingual Spoken Language Understanding”; in Proc.
of ICASSP, 2014.

[17] Levit, M., Stolcke, A., Chang, S., Parthasarathy, S.:
“Token-level Interpolation for Class-Based Language
Models”: in Proc. IEEE ICASSP, 2015.

[18] Liu, X., Gales, M. J. F. and Woodland, P. C.: “Context
Dependent Language Model Adaptation”; in Proc. of In-
terspeech, 2008.


