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Abstract – Today’s cellular networks are built with“macro cell”
basestations connected to the Internet via a rigid, complicated back-
haul. Even with state-of-art technologies like LTE, users get lim-
ited throughput and high latency, with high variance. Performance
enhancing IP boxes are deployed in the cellular operator’s datacen-
ters, far from the user. As a result, the most compelling cloudlet
applications are difficult to realize on such networks and cloudlet
researchers have thus far focused on Wi-Fi networks only.

We argue that the cloudlet community should consider small cell
networks in addition to Wi-Fi networks. Small cells, such as femto-
cells and picocells, are relatively new additions to the cellular stan-
dards. By reducing the cell size compared to the traditional macro
cells, they increase spatial reuse of precious licensed frequencies.
Users get higher bandwidth and lower latency, with relatively less
variance. This architecture, where small cells are deployed simply
with power and Ethernet connectivity, lends itself well to cloudlet
augmentation. In this position paper, we describe why deployed
macro cell basestations are unsuitable for cloudlet deployment. In
contrast, we describe why a small cell architecture is amenable for
cloudlet deployments. Our experience from operating a small cell
testbed in licensed frequencies matches that reported by equipment
vendors. The applications we care about require high throughput
and low latency. In a cellular network this can be achieved today
by augmenting small cells with powerful cloudlets.

1. INTRODUCTION
With the advent of Apple Siri, Google Now, and Microsoft’s

Cortana, mainstream mobile computing is moving beyond conven-
tional interactive computing. The computer reacts to its users’ ac-
tions by proactive computing [17], where it continually senses and
acts on their behalf. Today, this sensing is based on low data-
rate sensors such as time, location, acceleration, and voice snip-
pets. Higher data-rate sensors, especially vision sensors, promise
to dramatically increase the semantic richness of the sensed data.
But, vision algorithms for analyzing video in real time require a
well-provisioned computing node, equivalent to a desktop machine
of today [7]. Offloading-based solutions for vision have therefore
depended on offloading from the smartphone or wearable to fixed
infrastructure.

Researchers have recognized that many applications, which re-
quire fast response time for human interactivity, exceed the typi-
cal mobile computer’s capabilities. The cloudlet model [16] ad-
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dresses this problem by offloading computation to nearby compute
nodes that are immobile and plugged into the electrical grid. It is
imagined that Wi-Fi access points will be augmented with micro-
processors that can perform computation on behalf of the phones
associated to them. With the latest Wi-Fi standards such as IEEE
802.11ac, phones can expect upward of 100 mbps throughput and
below 10 ms latency to this compute engine. Such network per-
formance is sufficient for transmitting image and video streams to
recognition algorithms running on the cloudlet and getting a timely
response back to the user [6].

In contrast, cellular networks do not offer such network perfor-
mance today. On relatively unloaded commercial LTE networks,
users can expect roughly 70 ms median RTT latency with 20 ms
jitter, and around 12 Mbps downlink throughput and 5 Mbps up-
link throughput [9]. Furthermore, augmenting cellular basestations
with general purpose compute requires an expensive change to the
rigid architecture and infrastructure that supports cellular protocols.

A promising technology within the cellular standards is small
cells (such as femtocells or picocells). The physical size and signal
coverage of a small cell can be as small as a home Wi-Fi router.
However, unlike Wi-Fi, small cells operate in licensed frequencies
in conjunction with a pre-existing cellular operator’s backend, re-
lying on it for authentication, billing, roaming, and interoperating
with the PSTN. The small footprint of a small cell compared to
that of a macro cell (traditional cell tower) means that spatial reuse
of spectrum can increase dramatically. Requiring only Ethernet
connectivity and wall-socket power, and with SON (self-organizing
network) support to adapt transmit power and channel selection, the
deployment of a new small cell is dramatically cheaper and faster
compared to provisioning a new macro cell. Even though the small
cell will connect over IP to the cellular operator’s backend, the stan-
dard allows it to access services on the local LAN directly. Hence,
deploying a cloudlet in the small cell architecture is far easier than
on the macro cell architecture.

In this position paper, we argue that the continuous vision work-
loads of the future require low latency and high throughput, near
30 Mbps, between a mobile device and a powered cloudlet. In un-
licensed frequencies and uncoordinated deployments, Wi-Fi con-
tinues to be a viable technology for achieving this performance
via deploying cloudlets at the access point. In licensed frequen-
cies and coordinated deployments, we argue that the existing LTE
macro cellular network is not sufficient, but LTE small cells are.
A small cell can achieve close to 100 Mbps throughput with la-
tencies around 10 ms, with far tighter jitter. Cellular operators are
rapidly deploying small cells and the number of small cells over-
took the number of macro cells in late 2012 [2]. Several major cel-
lular operators are deploying them, including AT&T, China Mobile,
France Telecom/Orange, Telefonica, T-Mobile/Deutsche Telekom,
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Figure 1: Face recognition performance in fraction of interactions recognized (top) and detection latency (bottom) against through-
put (X axis), while varying (a) all parameters, (b) frames per second, (c) field of view, or (d) resolution.

and Vodafone [2]. Thus, while we continue experimenting with
cloudlets on Wi-Fi, we need not forsake cellular networks.

2. CONTINUOUS VISION WORKLOADS
There are numerous proactive computing applications based on

high-datarate sensing that we want to enable. Others [15, 16, 4, 6]
have demonstrated the low latency needs of such applications. We
additionally emphasize the need for high throughput between the
mobile device and the computation. We do so in the context of one
such application – face recognition.

2.1 Application setting
We wish to support applications that analyze continuous video

streams produced by mobile devices such as wearables. This anal-
ysis should yield detailed information about the wearer such as who
they meet, how they interact with them, what they do through the
day, how they perform these activities, and where they go includ-
ing the state of those spaces and the wearer’s relative motion within
them. Related computer vision algorithms in face recognition [3],
object recognition [12] and location [11] are now getting to the
point of achieving usably high recognition rates using large-scale
machine learning techniques. However, applying them to video
today is estimated to require a high-performance desktop-class ma-
chine [7].

Two of the most commonly proposed settings for continuous vi-
sion applications today are visual augmented reality and assisted
services for daily life. Each poses significant challenges. Visual
augmented reality requires the smooth visual augmentation of scenes
by recognizing entities in the scene and superimposing graphical
objects on them. Typically, the wearer makes an effort to focus and
stabilize the camera with respect to the object of interest. Given
that humans are sensitive to latencies higher than roughly 25-50
ms [5], this setting poses a serious latency challenge [15, 16, 4, 6]:
all related communication and computation must happen within 20
ms. Such fast computation may require, for example, specialized
circuit support [8], posing the question of how to provision such
systems as support evolves.

Perhaps less appreciated than requirements on latency are those
on throughput. Unlike the augmented reality setting, in assisted
services, the wearer is often not focused on relevant entities (e.g.,
people around them or objects they are handling). The computer
vision community has noted the importance of “lucky” frames in
this setting, i.e., frames where the entity of interest happens to not
move too fast, present a recognizable facet to the camera and be
close enough to the camera so that sufficient pixels are available for
resolution. Systems that have wide FOV (field of view), to account
for lack of spatial focus, and high frame rate (to account for lack
of motion synchronization) that maintain adequate resolution tend
to be “luckier” than others. However, these requirements add up
to high throughput requirements on the video. We examine these
requirements below.

2.2 Experiment: throughput vs. recognition
Figure 1 shows the results of an experiment to study the im-

portance of throughput. The goal of the experiment is to recog-
nize interactions between the wearer of a camera and those around
them. For our purposes, an interaction with a person is simply a se-
quence of video frames in which that person appears, such that no
appearances of that person in the sequence are separated by more
than 10s. Such a system may be useful, for instance, in triggering
person-based reminders (e.g. “remember to tell Dave about the pa-
per”) or simply to name people approaching the wearer (e.g., “that’s
Dave”). In this setting, even when the interaction partner’s face is
clearly visible to the wearer, the vision system may not detect the
face (or even more commonly, recognize who the face belongs to)
because of slight variations in pose, speed of motion, lighting or
resolution.

To generate Figure 1, we collected video from a chest-worn Go-
Pro camera at 60 frames/s (fps) at 1940x1080 resolution with a
medium-sized (120◦) FOV. We used OpenCV to detect faces in the
video, label the identity of faces, and cluster these faces per person
into interaction segments. Our data includes 34 interactions with
7 people. We made versions of the video stream at various com-
binations of frame rates (f = 5, 10, 15, 30 and 60 fps), resolutions



(r = 640x360, 320x180, 160x90 pixels) and FOVs (36, 72, 120◦,
corresponding to fractions v = 0.3, 0.6 and 1 total FOV). We calcu-
late the throughput T for each combination as T = 24frv2/100
bps, accounting for 3 bytes per pixels and a compression factor of
100x via motion-compensated video encoding (our observed factor
using H.264 was 99.6).

In each of the lower-throughput configurations, we applied face
detection to the correspondingly degraded video. For each interac-
tion, we verified if any face of the person being interacted with was
detected (the fraction of interactions where at least one correct face
was detected is the y-axis of Figure 1 (top)). When an interaction
was correctly detected, we noted the number of frames after the
start of the interaction when the first relevant face was detected (y-
axis of Figure 1 (bottom) is calculated from this number times the
time per frame). The figure shows the detection rates and delays
(a) when all parameters are varied and ((b), (c), (d)), when a single
parameter is varied keeping all others at maximum.

Even though the data is not very smooth, two trends are clear.
First, recognition rates improve significantly with throughput all
the way out to 30 mbps. As the upper figures (b)-(d) show, the
improvement comes from all three parameters, but especially FOV
and resolution. At low FOV and resolution, faces of interaction
partners simply happen to not be detectable at lower speed, field
of view and resolution in many of the interactions. Second, even
with lower throughput, when faces are detectable, detection hap-
pens within 100ms or so, although high throughput further cuts this
number noticeably. Looking at the lower figures (b)-(d) it is clear
that frame rate is the dominant factor in detection latency. Not sur-
prisingly, the higher the frame rate, the sooner interaction partners
can be detected.

Two apparent anomalies in the figures are worth explaining. First
lines in figure (a) are jagged because there are multiple ways to
get a given throughput (i.e. varying FOV vs. fps vs. resolution),
and some ways affect recognition rates less than others: lower-
ing throughput by lowering frame rate is preferable to reducing the
FOV. Second, in figure (c), detection delay is surprisingly low for
the lowest FOV value. It turns out that at very low FOVs, few seg-
ments are detectable, but the ones that are detectable are relatively
easy to detect.

We have focused in this experiment on detecting social interac-
tions. However, we expect similar results whenever we seek to rec-
ognize any events that are not aided (explicitly or implicitly, e.g.,
via gaze) by the wearer to appear toward the center of the FOV,
motion stabilized, or to appear close to the camera relative to its
resolution. For instance, recognizing activities via object use and
hand manipulation patterns, handled objects, the effect of conver-
sational partners and text on ambient surfaces especially when the
wearer is not explicitly focused on these, will likely benefit from
high throughput analysis.

2.3 System design implications
Such applications that we want to enable can use latencies as low

as 20-50 ms (for augmented reality applications) and throughput as
high as 30 mbps. Even considering mobile SoC advances that we
expect in the next few years, this workload will not be feasible on
mobile devices at acceptable battery consumption. Remote compu-
tation will be needed. The network will need to support occasional
bursts of transfers as high as 30 mbps, and latencies as low as 10
ms to allow the remote computation sufficient time to process video
frames.

We do not expect video to be continuously streamed to this com-
putation, but rather the mobile device will have limited computa-
tion to identify the short periods of interaction when recognition
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Figure 2: Simplified depiction of the LTE cellular architec-
ture. MME = Mobility Management Entity; PDN-GW = Packet
Data Network Gateway; S-GW = Serving Gateway; eNB = E-
UTRAN Node B.

is needed. Most work on offloading vision algorithms so far has
ignored the power cost of offloading. Given the cost of WWAN
transmission of 700 mW to 1W, and the average battery budget of
700 mW of a modern phone with a 2000 mAh battery used over
10 hours, transmitting all data is impractical even if the bandwidth
were available. It is inevitable that the duty cycle δ of transmission
will be limited, e.g., to δ = 10% of the video data if 10% of battery
life were budgeted for vision.

At those times, video at high frame rate, high FOV, and high res-
olution will need to be processed quickly. This remote processing
will need to multiplex multiple users and applications. This may re-
quire appropriate isolation between the computation, and perhaps
use of hardware acceleration. This could come from GPUs or cus-
tom circuits, leading us to consider the intriguing possibility that
low-latency processing may be attached in a modular fashion.

3. CELLULAR NETWORKS
Prior work on cloudlets has already identified Wi-Fi as appropri-

ate networks for supporting such applications by augmenting the
Wi-Fi AP with cloudlet computation. We now argue that for cel-
lular networks, existing macro cells do not offer the performance
today that we need for such cloudlet-enhanced applications.

3.1 LTE network architecture
The top of Figure 2 shows a simplified view of the LTE cellular

architecture. Cell towers (macro cell eNBs) are typically connected
via dedicated links to the cellular operator’s backbone. There, they
communicate with a number of other elements of the architecture.
The MME helps with control plane signaling. Data plane traffic
between the phone and the Internet is encapsulated in a tunnel that
terminates at the PDN-GW. Once the user’s traffic is decapsulated
at the PDN-GW, it may traverse firewalls, NAT boxes, and proxy
caches before it reaches the public Internet.

In this architecture, there exist several potential bottlenecks due
to aggregation. Each cell tower typically has long range and multi-
ple sectors, and hence serves many users at peak times. With lim-
ited licensed spectrum, the width of radio channels and the number



metric median 25th % 75th %
DL throughput 12.6 mbps 7.6 mbps 19.7 mbps
UL throughput 5.5 mbps 1.9 mbps 11.2 mbps
RTT 71 ms 50 ms 98 ms

Table 1: Summary of crowd-sourced LTE performance num-
bers from Figure 5 of the 4GTest paper in ACM MobiSys 2012.
The median, 25th percentile, and 75th percentiles are listed.

of resource blocks within those channels that are allocated to each
user device can be small. This is typically referred to as the “spec-
trum crunch” and limits the maximum throughput available to each
device. Signaling load on the eNB can exacerbate the problem by
slowing down how quickly devices can connect and change radio
power states. The long distance backhaul link from the tower to
the packet core can also limit the aggregate throughput that users
experience.

Prior work [9] has deployed a measurement application called
4GTest to measure speeds that users experience over LTE. We sum-
marize their findings for LTE in Table 1. Despite their data being
primarily from 2011 when fewer LTE handsets were in use com-
pared to today and fewer deployed macro cells, users experience
high latency to the Internet and wide variance in both throughput
and latency. For the continuous vision workloads we want to en-
able, this performance is grossly inadequate.

To alleviate the problem of limited computation, memory, and/or
battery on mobile devices, cloudlets [16] could be used. In this
model, the mobile device will offload computation to the cloudlet,
which has direct access to the electrical grid and hence energy con-
sumption is of relatively minor concern. However, the applications
envisioned that need heavy computation on mobile devices also re-
quire low latency in interaction with the user. In the LTE cellular
architecture, the nearest location where such a compute node can
be easily placed today is the cellular operator’s data center, between
the PDN-GW and the Internet. The performance bottlenecks that
users experience on LTE are unfortunately closer to the mobile de-
vice than the cellular operator’s data center, and hence there is little
benefit to deploying a cloudlet there. Equipment vendors [13] are
proposing “intelligent base stations” that can break out the traffic
at the tower and provide computation there. However, that will re-
quire us to wait for these modified towers to be deployed, which
may be a costly and time consuming proposition.

3.2 Small cells
To deal with the impending “spectrum crunch” brought on by a

plague of faster smartphones and video streaming applications, sev-
eral strategies are being pursued by cellular operators and standards
bodies. Some cellular operators have deployed Wi-Fi hotspots and
configured mobile OSes to prefer Wi-Fi whenever available. Wi-Fi
networks are much more amenable to the cloudlet model as prior
work has demonstrated [6]. Small cells are another strategy that
cellular operators are rapidly embracing today. They improve spa-
tial efficiency, are significantly cheaper to deploy, and can be in-
stalled trivially by a home owner.

We do not view small cell technology as a replacement for Wi-Fi.
Each has its own advantages and disadvantages, and we expect both
licensed and unlicensed frequencies to be employed in the foresee-
able future for network connectivity. However, we find LTE small
cells to have interesting properties distinct from Wi-Fi that warrant
deeper investigation at the networking layer as well as at the appli-
cation layer.

The bottom of Figure 2 shows the small cell architecture. Small
cells are being deployed in a variety of situations – “femto” sized
ones are installed in homes by users in coordination with the cellu-

metric value
DL throughput ∼110 mbps
UL throughput ∼10 mbps
RTT ∼11 ms

Table 2: Summary of small cell performance numbers reported
by Huawei. The network was configured with 20 MHz channel
width, 2x2 MIMO for DL, 1x2 MIMO for UL, and a LTE TDD
subframe configuration where the vast majority of the trans-
mission subframes were allocated for DL.

lar operator, while “pico” sized ones are deployed in public spaces
such as malls. Even here, the backhaul throughput can be a bottle-
neck, where we expect cable modem or DSL throughput to be in the
range of 10-50 mbps. However, when augmented with a cloudlet,
that bottleneck need not be a concern for our applications.

Given that small cells operate in licensed frequencies, only equip-
ment associated with that licensee can operate in a given location.
Interference is now limited to only those devices under such coor-
dinated control. Access to the spectrum can be allocated in time
and frequency domains, and power control and channel allocation
is achieved across all devices that interfere with each other through
the SON (self organizing network) part of the standard. In compar-
ison to CSMA, this model can offer different latency and through-
put capabilities in different operating conditions. Such coordina-
tion also allows for distinct QoS channels for different application
classes across the entire network. Handoff from one cell to another
can be streamlined. Radio sleep behavior can be made consistent
across devices. This can come at the expense of additional coordi-
nation protocol overhead and a more complex architecture.

As shown in Figure 2, the core network continues to provide the
same set of services that are offered via the macro cell. Voice calls
(associated components not shown in the figure) and data traffic are
tunneled via the eNB-GW to the same set of network components
as with the macro cells. However, small cells can use LIPA [1]
(Local IP Access) as defined in the standard to access services and
computation local to the subnet in which they are deployed (such
as in a home, coffee shop, or enterprise). Any traffic from the mo-
bile device to local IP addresses is not tunneled to the core network
but instead exits locally at the small cell’s Ethernet interface, while
any other traffic is sent over the tunnel to the cellular network core.
Clearly, cloudlets can be deployed on the local LAN that the small
cell is connected to and can provide an application experience that
relies on high data rate processing. This mode of operation does
not require any architectural change nor hardware change to ex-
isting equipment. While commercial small cells typically have an
application processor, memory, and storage, those components are
provisioned for running network management code and not the de-
manding cloudlet workloads such as vision. However, through the
use of LIPA, that additional compute can be provisioned via a sep-
arate compute server on the same LAN without requiring hardware
or software changes on the small cell (other than configuring LIPA).

Due to the small range of the small cell, a similar amount of li-
censed frequency as in the macro cell is now available to a smaller
set of users. The throughput and latency that users can experi-
ence is significantly closer to the LTE specification. Qualcomm has
demonstrated [14] peak throughput near 150 mbps to a phone from
an Ericsson small cell with a 20 MHz LTE channel. Huawei has re-
leased more detailed measurements [10] that we summarize in Ta-
ble 2. Our own research deployment of small cells in licensed fre-
quencies demonstrates similar performance. Most evaluations tend
to be focused on download throughput such as in Table 2, under the
assumption that future workloads will primarily stream video con-
tent from the Internet. However, small cells can be re-configured



for our workload – for instance in the case of LTE TDD, it can use
subframe configuration 0 instead, where 3 times as many subframes
are allocated for uplink as are for downlink. In such a configuration,
our vision workload requiring upward of 30mbps can be supported
with a wide margin, while still offering DL throughputs exceeding
those of commercial macro cell networks.

Beyond the local cloudlet, a phone connected to a small cell has a
different path to Internet servers than a phone connected to a macro
cell. Internet-bound traffic will traverse the small cell’s Internet
connection (such as DSL or cable modem or metro Ethernet) to
the eNB-GW in the cellular operator’s network, and then reach the
destination Internet server. Depending on where on the Internet
the eNB-GW, Internet server, and small cell are situated and where
network bottlenecks are, this latency may be lower or higher. How-
ever, we are primarily concerned with latency for continuous vision
workloads that will run on a cloudlet, which will experience laten-
cies similar to that listed on Table 2. We expect this interaction with
the cloudlet will hide larger latencies to Internet servers.

4. SUMMARY
We predict that the current trend of proactive computing on small

form-factor mobile devices will accelerate toward applications that
require continuous visual processing. Such applications tend to
produce large amounts of data that require significant computing
power to process and, in some cases, demand extremely tight end-
to-end latency.

Cloudlets are an important piece of the performance puzzle where
computing is co-located with wireless access points. While re-
searchers have focused exclusively on combing cloudlets with Wi-
Fi, we examine the possibility of implementing cloudlets in cellular
networks. We argue that while traditional macro-cell based cellu-
lar networks are currently not suitable, the newer small cell based
cellular networks lend themselves well to the cloudlet paradigm.

Several avenues of future work are available to the community in
this space. For example, continuously uploading 30 mbps of video
will help users stay warm in cold climates but not for long. Admis-
sion control and gating mechanisms will be needed as the software
on the mobile device searches for the lucky image frames, which
require further processing at the cloudlet. Consequently, the net-
work workload will consist of bursts of high throughput video up-
loads. This leads to open problems both in finding the lucky frames
and network scheduling to satisfy hard deadlines while minimizing
battery impact.

An approach one might purse is as follows: once the video data
is available for uploading, the software on the device would wake
up the radio and negotiate delivery with the small cell. In response,
the small cell scheduler would dynamically adjust the LTE network
frame length to accommodate the high upload throughput demand.
How to do this in the presence of demands from other devices is an
unsolved problem.

If we look beyond small cells and into cloudlets, there are sev-
eral other problems we must solve. For example, for continuous
vision recognition applications, we need to thoroughly understand
the limits of today’s image sensors and battery capacities. In addi-
tion to the high bandwidth demand issue, the constantly-streaming
model implicit in today’s proposed systems is impractical from a
energy consumption and associated battery lifetime perspective.
For augmented-reality applications, driving latency down to the
sub-50 ms level will require careful system tuning and provision-
ing. For assistance-style applications, it is important to identify
and validate scenarios where the constraints of today’s recognition
systems are acceptable. More broadly, it is poorly understood how
vision-based systems need to be architected to scale to recognize

subsets of the millions of places, people and objects that users may
experience.

Note, we do not take on the question of LTE small cells for
cloudlets versus Wi-Fi for cloudlets. Nonetheless, it is important
to ask the question which is a better solution? Most modern smart-
phones come equipped with both Wi-FI and LTE capabilities and
most indoor locations have Wi-Fi available. So the answer perhaps
lies in evaluating performance against metrics such as which of the
two provides better quality of service (latency and bandwidth) and
better battery lifetime under a variety of workloads.

There is ongoing activity in standards bodies on using the LTE
protocol in unlicensed frequencies, such as those that Wi-Fi oper-
ates in. In the future, will users rely on Wi-Fi for high speed wire-
less connectivity, or licensed LTE small cells, or unlicensed LTE
small cells, or some combination? Are there inherent advantages
to any one model such as power consumption on the phone or ro-
bustness to flash crowds that will make the difference in the end, or
will it boil down to spectrum ownership and technology licenses?
As a community we need to answer these and related questions be-
fore we can take a position on which of the two cloudlet solutions
is better.
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