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Principles and Applications
of Refinement Types

Andrew D. GORDON and Cédric FOURNET
Microsoft Research

Abstract. A refinement type {x : T | C} is the subset of the type T consisting
of the values x to satisfy the formula C. In this tutorial article we explain the
principles of refinement types by developing from first principles a concurrent λ-
calculus whose type system supports refinement types. Moreover, we describe a
series of applications of our refined type theory and of related systems.
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1. Introduction

A refinement type is a type qualified by a logical constraint; an example is the type of
positive numbers, that is, the type {x : int | x > 0} of integers qualified by the is-greater-
than-zero constraint. Although this idea has been known in the research community for
some time, it has been assumed impractical because of the difficulties of constraint solv-
ing. But recent advances in automated reasoning have overturned this conventional wis-
dom, and transformed the idea into a practical design principle.

In these lecture notes, we develop from first principles a theory of refinement types
for a concurrent λ-calculus. This theory is the foundation for a practical typechecker for
refinement types. We describe the type system in detail and sketch a range of applications
in language-based security, including verification and synthesis of security protocols and
their implementations, and type-based analysis of web application security and code-
based access control.

We begin in Section 2 with the syntax, operational semantics, and (unrefined) type
system of the Fixpoint Calculus. This calculus, FPC for short, is a typed call-by-value
λ-calculus with pairs, tagged unions, and iso-recursive types. It is a formal basis for pure
functional programming in the core of languages like ML or Haskell. Section 3 extends
FPC with concurrency and message-passing in the style of the π-calculus, so as to model
imperative programming, concurrent functional programming, and also distributed com-
munication protocols.

We introduce refinement types in Section 4, by adding them to the type system of
Concurrent FPC. As well as developing soundness results for the type system (known
as Refined Concurrent FPC, or RCF for short), we describe in detail some simple us-
ages for refinements, for example, to specify communication protocols. To complement
the theory, Section 5 outlines some substantial applications of refinement types, mostly
based on F7 [4], an enhanced typechecker for F# [34] and Objective Caml [19]. Finally,



Section 6 surveys some of the historical development of refinement types and Section 7
concludes. We include exercises, of varying difficulty, and also proof sketches for some
of the main theorems.

Exercise 1 Complete all the proofs in the article. Hint: see the technical report [4].

The web site http://research.microsoft.com/en-us/people/adg/
part.aspx has additional material, including slides for Gordon’s lectures on this topic
at the 2009 Marktoberdorf Summer School.

2. FPC: Fixpoint Calculus

As a basis for subsequent sections on concurrency and on refinement types, we describe
the core Fixpoint Calculus. This calculus first appears in lecture notes on domain the-
ory and operational semantics by Plotkin [26], although the name FPC is introduced by
Gunter [16].

We define the syntax, an operational semantics, and a type system. The syntax of
the calculus is built up from expressions and values. Expressions denote computations.
Values are the outcomes of computations. The operational semantics is a reduction rela-
tion A → A′, meaning that the next step in the computation denoted by the expression
A yields the expression A′. The main property we show of FPC is that the computation
denoted by any closed well-typed expression either diverges or yields a unique value.

2.1. Syntax and Operational Semantics of FPC

We assume a countable set of variables, ranged over by x, y, and z. We also assume three
value constructors, inl, inr, and fold, used to construct data.

The Fixpoint Calculus (FPC):

x, y, z variable
h ::= value constructor

inl left constructor of sum type
inr right constructor of sum type
fold constructor of iso-recursive type

M,N ::= value
x variable
() unit
fun x→ A function (scope of x is A)
(M,N) pair
h M construction

A,B ::= expression
M value
M N application
let (x, y) = M in A pair split (x 6= y; scope of x, y is A)
match M with h x→ A else B constructor match (scope of x is A)
M = N syntactic equality
let x = A in B let (scope of x is B)



We adopt some standard syntactic conventions concerning variable binding and sub-
stitution. The table indicates the scope of each bound variable. For example, in a function
fun x → A, the variable x is bound, with scope A. If an occurrence of a variable is not
bound, we say that it is free. An expression is closed when it has no free variables. For
any phrase of syntax φ (such as a value or expression or type), let fv(φ) be the set of vari-
ables occurring free in φ. We write φ{ψ/x} for the outcome of the capture-avoiding sub-
stitution of ψ for each free occurrence of x in the phrase φ. We identify phrases of syntax
up to the consistent renaming of bound variables (also known as alpha-conversion).

We explain the syntax and intended semantics of values and then expressions. Every
value is an expression, denoting itself. Apart from variables x, there are four kinds of
value: unit, functions, pairs, and constructions.

• Unit, the empty-tuple, is written ().
• A function is written fun x→ A, where A is an expression.
• A pair is written (M,N), where M and N are values.
• A construction is written h M , where M is a value, and either h ∈ {inl, inr} to

represent tagged data, or h = fold to represent data of recursive type.

Apart from values, there are the following kinds of expression:

• An application expressionMN applies the argumentN to the valueM , expected
to be a function fun x→ A, resulting in the expression A{N/x}.

• A split-expression let (x, y) = M in A decomposes the value M , expected to be
a pair (N1, N2), resulting in the expression A{N1/x1}{N2/x2}.

• A match-expression match M with h x→ A else B tests the value M , resulting
in A{N/x} when M is a construction h N , and in B otherwise.

• An equality-expression M = N tests whether M and N are syntactically identi-
cal; if so, it yields inr () (encoding true), and otherwise inl () (encoding false).

• A let-expression let x = A inB computes the sequential composition ofA andB;
it first evaluates A, yielding an outcome M , and then evaluates B{M/x}.

We formalize the intended semantics of expressions as a reduction relation, written
A → A′, which represents an individual step of the computation denoted by an expres-
sion. Reduction is the least relation on expressions closed under the following rules.

The Reduction Relation: A→ A′

(fun x→ A) N → A{N/x} (Red Fun)

(let (x1, x2) = (N1, N2) in A)→ A{N1/x1}{N2/x2} (Red Split)

(match M with h x→ A else B)→
{
A{N/x} if M = h N for some N
B otherwise (Red Match)

M = N →
{

inr() if M = N
inl() otherwise (Red Eq)

let x = M in A→ A{M/x} (Red Let Val)

A→ A′ ⇒ let x = A in B → let x = A′ in B (Red Let)



The first five rules correspond to the five bullet points in our prose description of
expressions. The final rule (Red Let) is a congruence rule that allows reductions within
the first expression A in a let-expression let x = A in B. We can apply (Red Let) to
reduce the expression A until it reaches a value, and then (Red Let Val) applies.

We write→∗ for the reflexive and transitive closure of→, so that A →∗ A′ means
there is a reduction sequence A = A0 → · · · → An = A′ for n ≥ 0.

A basic property of FPC is that reduction is deterministic:

Lemma 1 (Determinism) If A→ B and A→ B′ then B = B′.

Proof: By induction on the structure of A. 2

Another significant property is that reduction does not introduce new value or type
variables. We are mainly concerned with the reductions of closed expressions, repre-
senting complete programs. The following lemma assures us that reductions from closed
expression lead only to closed expressions.

Lemma 2 (Identifiers) If A→ A′ then fv(A′) ⊆ fv(A).

Proof: By induction on the derivation of A→ A′. 2

2.2. Type System of FPC

The primary purpose of a type system is to prevent errors during the execution of ex-
pressions. The type system of FPC is based on assigning types to expressions to classify
their possible values. We begin with the syntax of types.

Syntax of FPC Types:

T,U, V ::= type
α type variable
unit unit type
T → U function type
T × U pair type
T + U sum type
rec α.T iso-recursive type (scope of α is T )

The syntax of types is based on a countable set of type variables, ranged over by α,
and disjoint from the set of value variables. We include the type variables as well as the
value variables in the set fv(φ) of identifiers occurring free in a phrase of syntax φ. We
write T{U/α} for the outcome of the capture-avoiding substitution of U for each free
occurrence of α in the type T .

Apart from type variables, there are the following kinds of type:

• The unit type unit is the type of the unit value ().
• The function type T → U is the type of functions fun x→ A, that map values of

type T to values of type U .
• The pair type T × U is the type of pairs (M,N) where M has type T and N has

type U .



• The sum type T + U is the type of constructions inl(M) where M has type T ,
and inr(N) where N has type U .

• The iso-recursive type rec α.T is the type of constructions fold(M) whereM has
type T{rec α.T/α}.

Our type system is formalized as judgments, formal sentences writtenE ` J , where
E is a typing environment, and J is a predicate. The typing environmentE records infor-
mation about all the identifiers in scope for the predicate J . For FPC, each environment
is a list µ1, . . . , µn where each entry µi either declares a type variable, or a value variable
together with its type. For each entry µ, the set dom(µ) consists of the identifiers defined
by µ, while the set free(µ) consists of the identifiers used by µ. The set dom(E) is the
union of all the identifiers defined by entries in E.

Syntax of Static Typing Environments:

µ ::= environment entry
α type variable
x : T variable typing

E ::= µ1, . . . , µn environment (written ∅ when n = 0)

We write µ ∈ E to mean that µ is an entry in the list E.
dom(α) = {α} free(α) = ∅
dom(x : T ) = {x} free(x : T ) = free(T )
dom(µ1, . . . , µn) = dom(µ1) ∪ · · · ∪ dom(µn)

The three judgments of the FPC type system are as follows.

Judgments of the Type System:

E ` � environment E is well-formed
E ` T in environment E, type T is well-formed
E ` A : T in environment E, expression A has type T

These three judgments are inductively defined by the rules in the following tables.
Said otherwise, each judgment E ` J holds just if there is a proof tree whose nodes
correspond to instances of the following rules.

Rules of Well-Formedness: E ` � E ` T
(Env Empty)

∅ ` �

(Env Entry)
E ` �
free(µ) ⊆ dom(E) dom(E) ∩ dom(µ) = ∅

E,µ ` �

(Type)
E ` �
free(T ) ⊆ dom(E)

E ` T

Exercise 2 Write down the proof tree for α, β, x : α → β ` �. Notice that y : α ` � is
not derivable (because the variable α is not defined), but α, y : α ` � is derivable.

Exercise 3 Prove that in a well-formed environment, the identifiers used by each entry
are defined, that is, if E ` � and µ ∈ E then free(µ) ⊆ dom(E).



Exercise 4 Prove that in a well-formed environment there is at most one entry per identi-
fier, that is, ifE ` � and µ1 ∈ E and µ2 ∈ E and µ1 6= µ2 then dom(µ1)∩dom(µ2) = ∅.

Exercise 5 Observe that if a type T is well-formed in E, then E itself is well-formed,
that is, if E ` T then E ` �.

Rules of Expression Typing: E ` A : T

(Val Var)
E ` � (x : T ) ∈ E

E ` x : T

(Val Unit)
E ` �

E ` () : unit

(Val Fun)
E, x : T ` A : U

E ` fun x→ A : (T → U)

(Exp Appl)
E `M : (T → U) E ` N : T

E `M N : U

(Val Pair)
E `M : T E ` N : U

E ` (M,N) : (T × U)

(Exp Split)
E `M : (T × U) E, x : T, y : U ` A : V

E ` let (x, y) = M in A : V

(Val Inl Inr Fold)
h : (T,U) E `M : T E ` U

E ` h M : U

inl:(T, T+U)
inr:(U, T+U)
fold:(T{rec α.T/α}, rec α.T )

(Exp Match Inl Inr Fold)
E `M : T h : (H,T ) E, x : H ` A : U E ` B : U

E ` match M with h x→ A else B : U

(Exp Eq)
E `M : T E ` N : U

E `M = N : unit + unit

(Exp Let)
E ` A : T E, x : T ` B : U

E ` let x = A in B : U

The main purpose of these rules is to ensure that E ` A : T implies that the value
of expression A is of type T . When reading the rules, bear in mind an auxiliary property:
that E ` A : T is derivable only when E is well-formed. This auxiliary property is
the reason why the rules (Val Var) and (Val Unit) require the environment to be well-
formed. We rely on this property in the rules that deal with bound variables, namely (Val
Fun), (Exp Split), (Exp Match Inl Inr Fold), and (Exp Let). In each of these rules we
need to ensure that bound variables are distinct from the variables already in the typing
environment (or else their types would be ambiguous). For example, in (Exp Let), we
need to ensure that x does not occur already in E. Since the rule assumes the judgment
E, x : T ` B : U , the auxiliary property implies that E, x : T ` �, and from this that
x /∈ dom(E) (see Exercise 4).

Exercise 6 Prove that E ` A : T implies E ` T . The auxiliary property follows.

The following propositions and theorem establish soundness of the type system.



Proposition 1 (Preservation for FPC) If E ` A : T and A→ A′ then E ` A′ : T .

Proof: By induction on the derivation of the relation A→ A′. 2

Proposition 2 (Progress for FPC) If ∅ ` A : T then either A is a value, or there is A′

with A→ A′.

Proof: By induction on the derivation of ∅ ` A : T . 2

Theorem 1 Every well-typed closed expression either diverges or yields a unique value.

Proof: Consider any closed expression A such that ∅ ` A : T for some type T . If
there is an unbounded computation A → A1 → A2 → · · · we say that A diverges.
Otherwise, there is a bounded computation A→ A1 → A2 → · · · → An such that there
is no An+1 such that An → An+1. By n applications of Proposition 1, we obtain that
∅ ` Ai : T for each i ∈ 1..n. We have that ∅ ` An : T and that there is no An+1 such
that An → An+1. By Proposition 2, then, it must be that An is a value. Moreover, An is
the unique value of A, since by Lemma 1 the reduction relation is deterministic. 2

In contrast, expressions that are not well-typed may lead to execution errors. For
example, the application A = (M,N) L of the pair (M,N) to the value L cannot be
reduced by the operational semantics, but neither does it diverge, nor is it a value. We
say that such an expression is stuck, or that it has gone wrong. The purpose of our type
system is to prevent such execution errors. The expression A is not well-typed because
the only rule applicable to applications is (Exp Appl), and it would require that (M,N)
have a function type, but the only rule applicable to pairs is (Val Pair), which would
assign (M,N) a pair type, and pair types are not function types.

As in most type systems, typing is conservative in that there are some expressions
whose execution cannot go wrong but that nonetheless are not well-typed. Consider the
expression A′ = match inl () with inl x→ x else A where A is the ill-typed expression
above. This expression reduces to a value, that is, A′ → (), but we cannot typecheck
A′ because the only applicable rule is (Exp Match Inl Inr Fold), which requires the else-
clause A to have a type, even if A is unreachable, as in this example.

2.3. Deriving Programming Constructs within FPC

FPC is a parsimonious core calculus, kept small for the sake of a simple theory, but
missing many features of actual programming languages. Still, we can directly encode
most of the features of pure call-by-value functional programming, such as the fragment
of ML absent side-effects, within FPC.

FPC has a reduced syntax (as in A-normal form [31]) where destructor-expressions,
such as applications, splits, and constructor matches, act on values rather than arbitrary
expressions. We can recover full applicative syntax by inserting suitable let-expressions,
as follows. (We assume the inserted bound variables are fresh.)

Implicit Lets:

(A,B)
4
= let x = A in let y = B in (x, y)

h A
4
= let x = A in h x



A B
4
= let x = A in let y = B in x y

let (x, y) = A in B 4
= let z = A in let (x, y) = z in B

match A with h x→ B else B′ 4
= let z = A in match z with h x→ B else B′

A = B
4
= let x = A in let y = B in x = y

A;B
4
= let x = A in B where x not free in B

To see that FPC includes divergent expressions and indeed is Turing complete, con-
sider the recursive type Λ = rec α.(α → α). This type admits the following simple
embedding of the untyped λ-calculus within FPC.

Encoding the Untyped Call-By-Value λ-Calculus:

app(A,B)
4
= match A with fold f → f B else fold(fun x→ x)

[[x]]
4
= x [[λx.L]]

4
= fold fun x→ [[L]] [[L1 L2]]

4
= app([[L1]], [[L2]])

The abbreviation app(A,B) evaluates A to a value fold M , and uses a match-
expression to unfold the value by binding f to M . The else-branch is unreachable since
every value of type Λ takes the form fold M , but nonetheless the syntax of match-
expressions requires an else-branch, so we use the expression fold(fun x→ x).

Exercise 7 Suppose that x1, . . . , xn are the free variables of a term L of the λ-calculus.
Prove that x1 : Λ, . . . , xn : Λ ` [[L]] : Λ.

We may obtain a divergent expression in FPC by considering the standard λ-calculus
combinator Ω = ∆ ∆ where ∆ = λx.x x. We have that [[∆]] = fold fun x→ app(x, x)
and [[Ω]] = app([[∆]], [[∆]]).

Exercise 8 Check that [[Ω]] → A1 → · · · → An → [[Ω]] for some A1, . . . , An. What
is n?

More generally, given any type T together with a value VT : T , we construct a
divergent expression ΩT : T as follows:

Divergent Expression ΩT at Type T :

∆T
4
= rec α.(α→ T )

δT : ∆T → T
4
= fun d→ match d with fold f → f d else VT

ΩT : T
4
= δT fold(δT )

As in the app(A,B) expression above, the else-branch in δT is unreachable, since d
belongs to recursive type ∆T ; nonetheless, we depend on the existence of the value VT
of type T for the whole match expression to be typable according to the rule (Exp Match
Inl Inr Fold). Hence, this construction does not work for a type such as rec α.α that has
no values.

For any recursive type rec α.T with a value VT{rec α.T/α} of the unfolded type
T{rec α.T/α}, we define an unfoldrec α.T operation, which is an inverse to fold.

Unfolding Values of an Iso-Recursive Type rec α.T :

unfoldrec α.T (M)
4
= match M with fold x→ x else VT{rec α.T/α}



(An iso-recursive type is so called because the types rec α.T and T{rec α.T/α} are not
equivalent, but are isomorphic, as witnessed by the fold and unfoldrec α.T operations.)

Next, we define a type of Booleans, together with truth values and a conditional ex-
pression as follows. (We have already used this encoding in the rule (Red Eq) to represent
the result of an equality test.)

Example: Booleans and Conditional Branching

bool
4
= unit + unit

false 4
= inl ()

true 4
= inr ()

if A then B else B′ 4
= match A with inr _ → B else B′

Exercise 9 Show that if ∅ ` A : bool then either A diverges, or A →∗ true, or A →∗
false.

Exercise 10 Show that if A→∗ true then if A then B else B′ →∗ B, and similarly that
if A→∗ false then if A then B else B′ →∗ B.

Next, we define a type of natural numbers and arithmetic operations. Since there is
a value Vunit+nat = inl (), we can rely on the derived unfolding operation unfoldnat.

Example: Arithmetic

nat
4
= rec α.(unit + α)

zero
4
= fold inl ()

succ(M)
4
= fold inr M

iszero
4
= fun x→ match unfoldnat x with inl y → true else false

pred
4
= fun x→ match unfoldnat x with inr y → y else zero

Exercise 11 Calculate the reductions: iszero zero →∗ true and iszero (succ(N)) →∗
false and pred (succ(N))→∗ N .

Exercise 12 For any type T , consider the type (T )list
4
= rec α.(unit + (T × α)) of lists

of T . Derive list processing, that is, values nil and M :: N , and functions null, hd, tl
such that null nil →∗ true and null (M :: N) →∗ false and hd (M :: N) →∗ M and
tl (M :: N)→∗ N .

Exercise 13 For any function type Tf = T1 → T2, define a fixpoint function fix with
type (Tf → Tf ) → Tf such that fix M N →∗ M (fix M) N . State any additional
assumption needed. (Hint: consider our construction of the divergent expression ΩT .)
Given such a function, we may encode ML-style recursive function definitions as follows:
let rec fx = A

4
= let f = fix (fun f x→ A).

Exercise 14 Define a type int of (both positive and negative) integers, together with func-
tions for equality, addition, subtraction, etc.



Exercise 15 We say that a type variable α only occurs positively in a type T if every
free occurrence of α is to the left of an even number of function arrows in T . A recursive
type rec α.T is positive if α only occurs positively in T . For example, rec α.β → α and
rec α.(α → β) → β are positive, because α occurs in β → α and in (α → β) → β
to the left of zero and two arrows, respectively. On the other hand, rec α.α → β is not
positive, because the occurrence of α is to the left of one arrow.

Show that every well-typed expression has a value in the fragment of FPC where
each recursive type is positive. (Hint: show there is a translation of well-typed ex-
pressions into well-typed expressions of another calculus known to be normalizing
(that is, where there are no unbounded reduction sequences). Consider the polymor-
phic λ-calculus System F [14], or the variant of System F with positive types due to
Mendler [21].)

3. Concurrent FPC

In this section we extend FPC with concurrency and message-passing in the style of
the π-calculus [22,32]. The resulting language, Concurrent FPC, can directly represent
a wide range of language features, including mutable state, shared-memory parallel pro-
gramming, dynamic allocation, and channel-based communication. Moreover, it can rep-
resent distributed security protocols, an important application area for the system of re-
finement types that we add to Concurrent FPC in the next section.

We obtain Concurrent FPC by augmenting the syntax, operational semantics, and
type system of FPC with additional rules. The main result of the section is a preservation
theorem, that the reduction relation preserve typing.

3.1. Syntax and Operational Semantics of Concurrent FPC

In FPC, an expression denotes a single thread of computation that either reduces to a
unique value, or diverges. In contrast, when adding concurrency to FPC, an expression
denotes a parallel collection of threads of computation. Each thread may reduce to a
value, but along the way, as side-effects of reduction, it may send or receive messages on
named channels, create new channels, and fork additional threads. Out of the collection
of threads denoted by an expression, we distinguish a main thread, written by convention
on the right, whose value is the value of the whole expression. A thread may diverge, as
in FPC, but additionally a thread may deadlock, for example, if it blocks waiting for a
message on a channel known only to itself.

We introduce a countable set of names, ranged over by a, b, and disjoint from the set
of value and type variables. We include names as well as value and type variables in the
set fv(φ) of identifiers occurring free in a phrase of syntax φ. We write φ{a′/a} for the
operation of the capture-avoiding renaming of free occurrences of a in φ to a′. As before,
a closed expression has no free variables, but it may have free names. Closed expressions
represent run-time computations, in which all variables in source code have been bound
to values, but there may be free names corresponding to fixed, global communication
channels.

The syntax of values is unchanged but the syntax of expressions is extended as
follows. (Names occur in expressions, and hence within function values fun x→ A, but
names are not values in their own right.)



Additional Syntax:

a, b, c names
A,B ::= expression

. . . as in Section 2
A � B fork (parallel composition)
(νa)A restriction (name generation) (scope of a is A)
a!M send M on channel a
a? receive off channel a

• A parallel compositionA � B represents expressionsA andB running in parallel.
We consider B to be the main expression, and A to be an expression forked in the
background.

• A restriction (νa)A creates a fresh channel name a, then runs A.
• A send-expression a!M returns (), and asynchronously produces message M on

channel a.
• A receive-expression a? blocks until it can consume some message M off chan-

nel a, and returns M .

In a composition A � B, the semantics is that there is a foreground expression B,
whose value is the value of the whole composition, and a background expression A,
whose value is ignored. In our syntax we arbitrarily place the main expression B on the
right, and the forked expression A on the left. (In most process calculi, processes do not
return values, and so the order of processes in a parallel composition does not matter.)

As a first example in Concurrent FPC, consider the following expression:

a!42 � (νc)((let x = a? in c!x) � (let y = c? in y))

When this executes, the leftmost thread a!42 sends 42 on channel a. The restriction
(νc) creates a fresh channel c. The middle thread let x = a? in c!x receives a message 42
off channel a, calls it x, then sends it on c. Finally, the rightmost thread, let y = c? in y,
inputs 42 off c, calls it y, and then returns it as its value, and indeed as the value of the
whole expression.

The operational semantics of Concurrent FPC consists of a reduction relation, writ-
tenA→ A′, whose definition depends on an auxiliary heating relation, writtenAV A′.
The main purpose of heating A V A′ is to re-arrange an expression A into a struc-
turally similar form A′ so that a reduction rule may be applied, but without changing the
possible behaviour of A, including its value.

These two relations are defined by the rules from the previous section, together
with the rules presented in the following four tables. These tables describe (1) core rules
for the heating relation, (2) rules specific to parallel composition, (3) rules specific to
restriction, and (4) rules specific to message-passing.

The Heating Relation: AV A′

Axioms A ≡ A′ are read as both AV A′ and A′ V A.

AV A (Heat Refl)
AV A′′ if AV A′ and A′ V A′′ (Heat Trans)



AV A′ ⇒ let x = A in B V let x = A′ in B (Heat Let)

A→ A′ if AV B,B → B′, B′ V A′ (Red Heat)

(Heat Refl) and (Heat Trans) make heating reflexive and transitive, but heating is not
symmetric in general. (Process calculi often use a symmetric version of heating, usually
called structural equivalence.) (Heat Let) allows heating within let-expressions. (Red
Heat) allows reductions enabled by first heating an expression.

Operational Semantics of Parallel Composition:

() � A ≡ A (Heat Fork ())
(A � A′) � A′′ ≡ A � (A′ � A′′) (Heat Fork Assoc)
(A � A′) � A′′ V (A′ � A) � A′′ (Heat Fork Comm)
let x = (A � A′) in B ≡ A � (let x = A′ in B) (Heat Fork Let)

AV A′ ⇒ (A � B)V (A′ � B) (Heat Fork 1)
AV A′ ⇒ (B � A)V (B � A′) (Heat Fork 2)
A→ A′ ⇒ (A � B)→ (A′ � B) (Red Fork 1)
B → B′ ⇒ (A � B)→ (A � B′) (Red Fork 2)

The first group of rules above allows re-arrangements of parallel composition. (Heat
Fork ()) asserts that a () thread in the background makes no difference to an expression.
The symmetric version A � () ≡ A is not derivable and indeed unwanted, because this
would change the foreground thread from () to A, and hence may change the value of
the expression. (Heat Fork Assoc) that the bracketing of parallel compositions does not
matter. (Heat Fork Comm) asserts that the order of the background threads A and A′

does not matter. Again, we do not want (A � A′) V (A′ � A) in general, because then
heating would change the foreground thread; the value of A � A′ is the value of A′,
while the value of A′ � A is the value of A.

The second group above consists of congruence rules that allow heating and reduc-
tion to the left or right of composition.

Operational Semantics of Name Generation:

a /∈ free(A′)⇒ A′ � ((νa)A)V (νa)(A′ � A) (Heat Res Fork 1)
a /∈ free(A′)⇒ ((νa)A) � A′ V (νa)(A � A′) (Heat Res Fork 2)
a /∈ free(B)⇒ let x = (νa)A in B V (νa)let x = A in B (Heat Res Let)

AV A′ ⇒ (νa)AV (νa)A′ (Heat Res)
A→ A′ ⇒ (νa)A→ (νa)A′ (Red Res)

A restriction (νa)A represents the scope of a fresh channel name a. The rules (Heat
Res Fork 1) and (Heat Res Fork 2) formalize the idea that these scopes are mobile, and in
particular that they may expand to embrace an expressionA′ in parallel with a restriction
(νa)A, unless the bound name a would be confused with existing occurrences of a inA′.
We can always satisfy the side-condition that a /∈ free(A′) by renaming the bound name.
The rule (Heat Res Let) allows a restriction to move outside a let-expression.

The second group above consists of congruence rules that allow reduction and heat-
ing within restriction.



Operational Semantics of Message Passing:

a!M V a!M � () (Heat Msg ())
a!M � a?→M (Red Comm)

The rule (Heat Msg ()) formalizes that message sending is asynchronous. A fore-
ground output a!M immediately returns () and becomes a background thread. The reduc-
tion (Red Comm) represents the communication of a message M between background
thread a!M to a foreground thread a?, leaving the message M itself as the resulting
foreground thread.

As we have discussed, parallel composition is not symmetric, and so we cannot
directly apply (Red Comm) to allow the two threads in the expression a? � a!M to
communicate. Instead, we can apply the heating rules, including (Heat Msg ()), to deduce
the following.

a? � a!M V a? � (a!M � ()) by (Heat Msg ()) and (Heat Fork 2)
V (a? � a!M) � () by (Heat Fork Assoc)
V (a!M � a?) � () by (Heat Fork Comm)
→M � () by (Red Comm) and (Red Fork 1)

By combining the individual steps above with (Heat Trans), (Red Heat), and (Heat Refl),
we obtain a? � a!M → M � (). This reduction step represents a message sent from the
foreground thread to the background thread, resulting in the termination of both threads.
The background thread terminates with the value M and the foreground terminates with
the value (). (As usual, the value M of the background thread is ignored.)

Exercise 16 Apply the heating and reduction rules to show that:

a!42 � (νc)((let x = a? in c!x) � (let y = c? in y))→∗ (νc)42

(Hint: use (Heat Res Fork 1) to pull (νc) to the top, use (Heat Fork Let) to float a!42 into
the left-hand let-expression, apply (Red Comm) and (Red Let Val). The rest is similar.)

Exercise 17 What are the reductions of the expression: a!3 � let x = a? in M x

Exercise 18 What are the reductions of the expression: a!true � a!false

As the following exercises show, reduction is nondeterministic, and may deadlock.

Exercise 19 What are the reductions of the expression: a!3 � a? � a!5

Exercise 20 One of the expressions (a?; b!()) � (b?; a!()) and (a!(); b?) � (b!(); a?) is
deadlocked. Which one?

3.2. Type System of Concurrent FPC

We extend the type system of Section 2 to Concurrent FPC. The main new idea is that we
extend the syntax of environment entries a l T to record the type T of messages allowed
to be exchanged on the channel a.



Syntax of Typing Environments:

µ ::= environment entry
. . . as in Section 2
a l T channel typing

dom(a l T ) = {a} free(a l T ) = free(T )

The three judgments have the same form as before (E ` �, E ` T , and E ` A : T ),
and are defined by the rules in Section 2 together with the following rules.

Rules for Restriction, I/O, and Parallel Composition:

(Exp Fork)
E ` A1 : T1 E ` A2 : T2

E ` (A1 � A2) : T2

(Exp Res)
E, a l T ` A : U

E ` (νa)A : U

(Exp Send)
E `M : T (a l T ) ∈ E

E ` a!M : unit

(Exp Recv)
E ` � (a l T ) ∈ E

E ` a? : T

The rule (Exp Fork) says that a composition A1 � A2 is well-typed when its com-
ponents are, and that the type of the composition is the same as the type T2 of the fore-
ground expression A2. The rule (Exp Res) says that a restriction (νa)A is well-typed
when its body is, assuming there is a type T for messages exchanged on the restricted
name. The rule (Exp Send) says that a message send a!M has type unit so long as the
type of the message matches the type of the channel. The rule (Exp Recv) says that the
result type of a message receive a? is the type of the channel a.

The key soundness property of the resulting type system is that both heating and
reduction preserve well-typing.

Lemma 3 If E ` A : T and AV A′ then E ` A′ : T .

Proof: By induction on the derivation of the relation AV A′. 2

Proposition 3 (Preservation for Concurrent FPC) If E ` A : T and A → A′ then
E ` A′ : T .

Proof: By induction on the derivation of the relation A→ A′. 2

The type system of Concurrent FPC rules out neither nondeterminism (see Exer-
cise 19) nor deadlock (see Exercise 20). Hence, Concurrent FPC enjoys neither the
progress property of FPC, Theorem 2, nor the property that every well-typed expression
either diverges or reduces to a value

Exercise 21 Find a well-typed expression that is not a value, but has no reductions.

Still, as the following exercise shows, as in FPC, being well-typed does avoid exe-
cution errors arising from applying operations to the wrong sort of value.



Exercise 22 Prove for every closed well-typed expression that (1) if it is an application
M N then the value M is a function; (2) if it is a split let (x, y) = M in A′ then the
value M is a pair; (3) if it is a match match M with h x→ A′ else B then the value M
is a construction.

3.3. Deriving Programming Constructs within Concurrent FPC

Our core syntax (a? and a!M for message passing, (νa)A for channel name creation,
and A � B for concurrency) is a mathematical notation in the style of process calculi. In
applications it is convenient to represent these features as programming language func-
tions, as in various extensions of ML with concurrency [18,20,28].

In the following representation of Concurrent ML primitives, a channel with name
a is a pair (!a, ?a) consisting of a send function !a = funx→ a!x and a receive function
?a = fun _ → a?. (Recall that although names occur in the syntax of Concurrent FPC
they are not themselves values.)

Example: Concurrent ML

!a
4
= fun x→ a!x capability to send on a

?a
4
= fun _→ a? capability to receive off a

chan
4
= fun _→ (νa)(!a, ?a) create fresh channel

send
4
= fun c x→ let (s, r) = c in s x send x on c

recv
4
= fun c→ let (s, r) = c in r () block for x on c

fork
4
= fun f → (f() � ()) run f in parallel

Exercise 23 Define a type (T )chan
4
= (T → unit) ∗ (unit → T ), where T → unit is

the type of a send capability and unit → T is the type of a receive capability. Use this
type to write down the types of the functions chan, send, recv, and fork.

Hence, our running example can be written as the following ML code, assuming that
variable a is bound to (!a, ?a). The code is more verbose than the core syntax, but we can
directly execute this code in ML.

fork (fun ()→ send a 42);
let c = chan() in
fork (fun ()→ let x = recv a in send c x);
let y = recv c in y

It is convenient to write systems models in this executable notation. Still, one may
wonder if we have lost expressiveness by moving to Concurrent FPC instead of the π-
calculus. We show below a basic reassurance, that there is a direct translation from π-
calculus processes to the expressions of Concurrent FPC. A more sophisticated answer—
beyond the scope of this article—would be to study the relationship between the formal
semantics and behavioural equivalences of the two calculi.

We introduce the syntax and informal semantics of an asynchronous, polyadic
π-calculus . Let u, v range over π-calculus values, each of which is either a vari-
able x or a name a. An asynchronous polyadic output u〈v1, . . . , vn〉 represents the tu-



ple 〈v1, . . . , vn〉 sent on channel u. A polyadic input u(x1, . . . , xn).P blocks until there
is an output u〈v1, . . . , vn〉, and then may consume it, leading to the continuation pro-
cess P{v1/x1} . . . {vn/xn}. A composition P | Q runs P and Q in parallel. (In the
π-calculus, processes do not return results, and parallel composition is symmetric, that
is, P | Q behaves the same as Q | P .) A replication !P acts like an unbounded array
P | P | P | . . . of replicas of P running in parallel. A restriction (νa)P creates a new
channel a and runs P . A nil process 0 has no behaviour.

Encoding the Untyped Polyadic Asynchronous π-Calculus:

[[x]]
4
= x

[[a]]
4
= (!a, ?a)

[[u〈v1, . . . , vn〉]]
4
= send [[u]] ([[v1]], . . . , [[vn]])

[[u(x1, . . . , xn).P ]]
4
= let x1, . . . , xn = recv [[u]] in [[P ]]

[[P | Q]] = [[P ]] � [[Q]] � ()
[[!P ]] = (fix fun f → fun x→ [[P ]] � f()) ()
[[(νa)P ]] = (νa)[[P ]]
[[0]] = ()

Exercise 24 The encoding relies on n-ary tuple expressions and splitting, which are de-
finable from the binary tuples that are primitive in FPC. For n = 3, we can define
(M1,M2,M3)

4
= (M1, (M2,M3) and let x1, x2, x3 = M in A

4
= let x1, x23 =

M in let x2, x3 = x23 in A for some fresh variable x23. Define the encoding of n-ary
tuples in general, for n ≥ 0.

Finally, we show how to represent heap-allocated mutable state using channels. In
particular, we represent ML-style references, as follows.

Example: Mutable State

(T )ref 4
= (T )chan

ref M 4
= let r = chan() in send r M ; r new reference to M

!M
4
= let x = recv M in send M x;x dereference M

M := N 4
= let x = recv M in send M N update M with N

Exercise 25 What are the reductions of the expression: let x = ref 5 in x := 7

Exercise 26 In his article in this volume, Xavier Leroy describes the prototypical imper-
ative language IMP. Write a semantics for IMP in Concurrent FPC, based on storing
each IMP variable in a ref.

Exercise 27 For those familiar with process calculi, define a labelled transition system
for concurrent FPC, and prove its correspondence with the reduction semantics. Investi-
gate behavioural equivalence for concurrent FPC.



4. RCF: Refined Concurrent FPC

In this section, we obtain RCF, our final calculus, by extending expressions with logical
assumptions and assertions, and by extending types with logical refinements to ensure
that all assertions follow from prior assumptions. Operationally, the resulting language
is essentially unchanged: assumptions and assertions do not affect evaluation; they are
inserted only to specify the expected properties of the computation. On the other hand,
refinement types are much more expressive, inasmuch as types now carry logical for-
mulas and typechecking now involves logical deductions. The section ends with detailed
typing examples.

4.1. Syntax and Operational Semantics of RCF

RCF is a calculus parameterized by a logic, which is used to specify the properties of its
computations. We introduce a new syntactic category of logical formulas, ranged over
by C. We use the values of RCF (M ) as logical terms, and we build formulas from pred-
icates on terms, of the form p(M1, . . . ,Mn). These predicates includes at least equality,
written M = N , interpreted as syntactic equality of values up to alpha-conversion. In
the following, we use the standard syntax and semantics of first-order logic, with con-
junctions, disjunctions, existential quantifiers, and so on. We write for instance C ∧ C ′
and C ⇒ C ′ for logical conjunction and implication, respectively.

As illustrated below, the choice of a particular logic depends on the target verifi-
cation properties, and also on the availability of provers for the logic. Hence, to reason
about integer arithmetic and array bounds, we may let C range over conjunctions of
equalities and inequations between integers. Formally, our semantics and typing theo-
rems for RCF apply to any logic that meets a series of basic properties, given in detail
elsewhere [4]. For instance, we require that deducibility be closed by extension (adding
hypotheses Ci) and by value substitution.

A General Class of Logics:

C ::= p(M1, . . . ,Mn) |M = M ′ | . . .
{C1, . . . , Cn} ` C deducibility relation

We now extend our operational semantics to formalize the notion of a global set of
formulas, the log, drawn from some logic. The log collects all assumptions that have
been made during a particular run. RCF values and expressions are those of Concurrent
FPC, supplemented with the following:

Additional Syntax:

A,B ::= expression
. . . as in Section 3
assume C logical assumption
assert C logical assertion

Formulas appear in the syntax of values and expressions only as the parameters of
assumptions and assertions.



• When executed, an assumption introduces a logical formula, deemed to be true,
and records it as part of a global knowledge on the computation. For exam-
ple, the code that sends a request with content 42, may include the expression
assume Request(42) to record this fact.

• When executed, an assertion claims that a given logical formula should logically
follow from prior assumptions. When this is not the case, the computation does
not follow its logical specification. The main purpose of refinement types is to
statically exclude such specification errors.

Additional Rules of Heating and Reduction:

assume C V assume C � () (Heat Assume ())
assert C → () (Red Assert)

Operationally, these expressions immediately yield (). To evaluate assumeC, addC
to the log, and return (). To evaluate assert C, return (). If C logically follows from the
logged formulas, we say the assertion succeeds; otherwise, we say the assertion fails.

To specify expression safety, we apply the heating relation to rewrite expressions in
normal form, up to renaming and reordering of auxiliary threads. These normal forms
are named structures, and ranged over by S.

Structures and Static Safety:

e ::= M |MN |M = N | let (x, y) = M in B |
match M with h x→ A else B |M? | assert C∏

i∈1..nAi
4
= () � A1 � . . . � An

L ::= {} | (let x = L in B)

S ::= (νa1) . . . (νa`)

(
∏

i∈1..m
assume Ci) � (

∏
j∈1..n

cj !Mj) � (
∏
k∈1..o

Lk{ek})


Let a structure S be statically safe if and only if,
for all k ∈ 1..o and C, if ek = assert C ′k then {C1, . . . , Cm} ` C ′k.

In a structure, all name restrictions are lifted to the top level (to ensure that all
threads are in the same scope) and all active threads are flattened, then grouped de-
pending on their elementary expression: either an assumed formula—after applying
(Heat Assume ())—or a pending message on a channel—after applying (Heat Msg ())—
or some other elementary expression ek in a let-context L. (These let-contexts represent
the continuations to be executed when the expressions ek complete.) Hence, structures
represent the global state of the computation, with a log of assumed formulas, a store of
pending messages, and a run-queue of expressions being evaluated in parallel contexts.

In a given structure, some of the active expressions ek may be assertions, of the form
assert C ′k. We define static safety by requiring that, for each such assertion, the asserted
formula C ′k logically follow from the current content of the log, seen as a conjunction of
logical formulas C1, . . . , Cm.

The following lemma show that every expression can be heated into a structure. This
enables us to lift our definition of safety from structures to expressions.



Lemma 4 For every expression A, there is a structure S such that AV S.

Proof: By induction on A and definition of the heating relation. 2

Exercise 28 Show that, for a given expression, static safety does not depend on the
choice of a particular structure. Which properties of the logic does this rely on?

Exercise 29 Let A be an expression that uses concurrency only to implement ML-style
references, as defined at the end of Section 3.3. Suppose that A →∗ A′ and A′ V S.
What is the shape of the structure S?

We are now ready to define our semantic notion of safety for expressions at run-time:
an expression is safe when, after any sequence of reductions, any executable assertion
follows from the current log, as specified on structures.

Expression Safety:
Let expression A be safe if and only if,
for all A′ and S, if A→∗ A′ and A′ V S, then S is statically safe.

Exercise 30 Which of the following expressions are safe when the formula C is x = 1?
When C is x > 0? When C is x = 0 ∧ x > 0?

(1) let x = c? in assert C
(2) a!1 � let x = a? in assert C
(3) a!1 � let x = a!2 � a? in assert C
(4) a!1 � let x = a? in a!2 � assert C

4.2. Type System of RCF

We now extend our type system to ensure that any well-typed expression is safe.
The types for RCF are similar to but more precise than those of FPC. As explained in

the introduction, they include refinement types, of the form {x : T | C}. An expression
A of type T can be given this more precise type when, for any value M it may reduce
to at run-time, the formula C{M/x} holds in its evaluation context. Said otherwise, this
type ensures that the expression let x = A in (assert C;x) is safe.

In general, A may be a sub-expression within the scope of other variables (for in-
stance, A may be the body of a function with formal parameter y), and the refinement
formula C may have free variables that refer to any value in scope (for instance x and y).

Thus, our types are value-dependent, since they include formulas that include values.
This leads to the following extended syntax of types for RCF, with dependent function-
and pair-type constructors in addition to refinement types.

Syntax of RCF Types:

H,T, U, V ::= type
unit unit type
{x : T | C} refinement type (scope of x is C)
Πx : T. U dependent function type (scope of x is U )



Σx : T. U dependent pair type (scope of x is U )
T + U disjoint sum type
rec α.T iso-recursive type (scope of α is T )
α iso-recursive type variable

• A value of {x : T | C} is a value M of type T such that C{M/x} holds
• A value of type Πx : T. U is a function M such that if N has type T , then M N

has type U{N/x}. This subsumes function types T → U (in case x does not
occur in U ).

• A value of Σx : T. U is a pair (M,N) such that M has type T and N has type
U{M/x}. This subsumes function types T × U (in case x does not occur in U ).

Hence, functions can now be given types of the form Πy : {y : T | C ′}. {x : U | C}
with two refinements, C ′ on its formal argument y, and C on y and its result x. Intu-
itively, this types specifies that the function has precondition C ′ and postcondition C.
Anticipating on the typing rules, we may thus type the function fun y → y + 2 as
Πy : {y : int | y ≥ 0}. {x : int | x > y}.

We extend environments with entries that record recursive variables during subtyp-
ing, and we let recvar(E) be just the type variables occurring in subtyping entries of E.

Syntax of Typing Environments:

µ ::= environment entry
. . . as in Section 3
α <: α′ subtype (α 6= α′)

dom(α <: α′) = {α, α′} free(α <: α′) = ∅
recvar(E) = {α, α′ | (α <: α′) ∈ E}

The RCF type system involves five judgments, as follows:

Judgments of the Type System:

E ` � environment E is well-formed
E ` T in environment E, type T is well-formed
E ` C in environment E, formula C is deducible
E ` T <: U in environment E, type T is a subtype of U
E ` A : T in environment E, expression A has type T

These five judgments are inductively defined by rules that are either given below or
are identical to those presented in Sections 2 and 3. For instance, well-formedness is still
defined by the rules (Env Empty), (Env Entry), and (Type) of Section 2, applied to our
extended definitions for types and type environments.

We first explain how to extract and prove formulas from a typing environment, and
then we define the subtyping relation and typing for expressions.

An important idea of refinement typing is to treat the typing environment as a con-
servative approximation of the logical formulas that will hold at run-time. For instance,
if a function receives an argument with refined type {y : T | C}, then its body can be
typechecked under the assumption that formula C will hold for y at run-time. To this



end, we let forms(E) collect the logical refinements for all entries in the typing envi-
ronment E, and we rely on a new auxiliary judgment, E ` C, stating that a formula is
deducible from the formulas of a given environment.

Rules for Formula Derivation:

forms(E)
4
={C{y/x}} ∪ forms(y : T ) if E = (y : {x : T | C})

forms(E1) ∪ forms(E2) if E = (E1, E2)
∅ otherwise

(Derive)
E ` � free(C) ⊆ dom(E) forms(E) ` C

E ` C

In the rule (Derive), the first two hypotheses ensure that E is well-formed and de-
fines any variable that occurs free in C. The third hypothesis refers to logical deducibil-
ity. In implementations of typechecking, this proof obligation is usually passed to an aux-
iliary theorem prover. For instance, typechecking the integer function above will involve
proving that y + 2 > y.

Exercise 31 A handy abbreviation is {C} 4
= {_ : unit | C}, where _ stands for a fresh

variable. We refer to such types as ok-types. What is forms(x : {C})?

Exercise 32 What is forms(x1 : {y1 : int | Even(y1)}, x2 : {y2 : int | Odd(x1)})?

Instead of a simple type int for all integers, refinement types enables us to give many
different types to the same value. For instance, 1 may be given any of the types int,
{x : int | x = 1}, {x : int | x > 0}, {x : int | x 6= 42}, {x : int | x > 0 ∧ x 6= 42}, or
even, assuming that y is a variable in scope, the type {x : int | y > 0⇒ x = 1}.

Accordingly, expression typing relies on an auxiliary subtyping judgment, written
E ` T <: U , which lets us convert between different logical variants of refinement types
in a given context. Informally, a “smaller” refinement type is a type whose formulas are
more precise: if A : T and T <: U then A : U .

We begin with subtyping and typing rules for refinements.

Rules for Refinement Types:

(Sub Refine Left)
E ` T <: T ′

E ` {x : T | C}
E ` {x : T | C} <: T ′

(Sub Refine Right)
E ` T <: T ′

E, x : T ` C
E ` T <: {x : T ′ | C}

(Val Refine)
E `M : T
E ` C{M/x}

E `M : {x : T | C}

For subtyping, (Sub Refine Left) states that a refinement is always more precise than
its base type—the second hypothesis only requires that the refinement be well-formed.
In contrast, (Sub Refine Right) states that a refinement may be added to form a supertype
of T only when its formula C logically follows from the formulas in environment E. For
typing, the rule (Val Refine) states that any value may be refined with any valid formula.



Exercise 33 How would we derive ` {x : int | x > 0} <: int.

Exercise 34 Derive the following subtyping rules:

(Sub Refine)
E ` T <: T ′ E, x : {x : T | C} ` C ′

E ` {x : T | C} <: {x : T ′ | C ′}

(Sub Ok)
E ` C ⇒ C ′

E ` {C} <: {C ′}

Next, we give the typing rules for assumptions and assertions, which relate refine-
ments to our semantic notion of expression safety.

Rules for Assume and Assert:

(Exp Assume)
E ` � free(C) ⊆ dom(E)

E ` assume C : {_ : unit | C}

(Exp Assert)
E ` C

E ` assert C : unit

The rule (Exp Assume) states that an assumption is always typable, as long as its
formula is well-formed, and records the assumed formula in an ok-type. Hence, type-
checking within the scope of the assume can use formula C to prove other formulas.
Since typechecking accepts any formula, assumptions in programs should be carefully
reviewed. The rule (Exp Assert) checks that C is deducible from the formulas in the
current typing environment. Otherwise, typechecking fails.

The rules for functions and pairs are dependent variants of those given in Section 2.
As regards subtyping, functional arguments are contravariant (with subtyping hypothe-
sis T ′ <: T rather than T <: T ′), whereas functional results and pair projections are
covariant.

Rules for Function Types:

(Sub Fun)
E ` T ′ <: T E, x : T ′ ` U <: U ′

E ` (Πx : T. U) <: (Πx : T ′. U ′)

(Val Fun)
E, x : T ` A : U

E ` fun x→ A : (Πx : T. U)

(Exp Appl)
E `M : (Πx : T. U) E ` N : T

E `M N : U{N/x}

Rules for Pair Types:

(Sub Pair)
E ` T <: T ′ E, x : T ` U <: U ′

E ` (Σx : T. U) <: (Σx : T ′. U ′)

(Val Pair)
E `M : T E ` N : U{M/x}
E ` (M,N) : (Σx : T. U)

(Exp Split)
E `M : (Σx : T. U) E, x : T, y : U, _ : {(x, y) = M} ` A : V {x, y} ∩ fv(V ) = ∅

E ` let (x, y) = M in A : V



Exercise 35 Understand why ` (Πx : int. bool) <: (Πx : {x : int | x > 0}. bool) but
not ` (Πx : {x : int | x > 0}. bool) <: (Πx : int. bool).

We also refine our typing rule for equality, to record the outcome of the dynamic
equality test as a refinement on its Boolean result.

Rule for Equality Test:

(Exp Eq)
E `M : T E ` N : U x /∈ fv(M,N)

E `M = N : {x : bool | (x = true ∧M = N) ∨ (x = false ∧M 6= N)}

We include from previous sections the typing rules (Exp Let), (Val Var), (Val Unit),
(Val Inl Inr Fold), (Exp Match Inl Inr Fold), (Exp Res), (Exp Send), and (Exp Recv)
unchanged, except that the rules (Exp Let), (Exp Match Inl Inr Fold), and (Exp Res)
for expressions with bound identifiers need additional side-conditions to ensure that the
bound identifiers do not appear in the type of the whole expressions. For example, the
rule (Exp Res) for assigning a type U to a restriction (νa)A needs the side-condition that
a /∈ free(U).

We give below some standard rules for subtyping.

Standard Rules of (Dependent) Subtyping:

(Exp Subsum)
E ` A : T E ` T <: T ′

E ` A : T ′

(Sub Refl)
E ` T
recvar(E) ∩ free(T ) = ∅

E ` T <: T

(Sub Var)
E ` � (α <: α′) ∈ E

E ` α <: α′

(Sub Sum)
E ` T <: T ′ E ` U <: U ′

E ` (T + U) <: (T ′ + U ′)

(Sub Rec)
E,α <: α′ ` T <: T ′ α /∈ free(T ′) α′ /∈ free(T )

E ` (rec α.T ) <: (rec α′.T ′)

Exercise 36 Prove that E ` T <: T ′ is decidable, assuming an oracle for E ` C.

Exercise 37 (Hard.) Prove that E ` T <: T ′ is transitive.

Finally, here is a revised version of the rule for typing threads in parallel.

Dependent Rule for Fork:

(Exp Fork)
E, _ : {A2} ` A1 : T1
E, _ : {A1} ` A2 : T2

E ` (A1 � A2) : T2

(νa)A = (∃a.A)

A1 � A2 = (A1 ∧A2)
let x = A1 in A2 = A1

assume C = C
A = True if A matches no other rule

This rule relies on an auxiliary function from expressions A to formulas A that
inductively collects all the active assumptions of A and returns their conjunction. (The



first case, for name restriction, approximates a local name as an existential value.) Hence,
the assumptions of A1 are available for typing A2, and the converse.

Exercise 38 Let S be a structure, as defined in Section 4.1. Suppose that ∅ ` S. Show
that the active expressions of S can be typed in an environment that includes an ok-type
for each of the assumed formulas C1, . . .Cm.

We can now state our main theorem for RCF, which guarantees that any well-typed
closed expression is indeed safe. (In the theorem statement, the typing environment ac-
counts for the free names of A.)

Theorem 2 (Safety) If a1 l T1, . . . , an l Tn ` A : T then A is safe.

Exercise 39 Which of the expressions of Exercise 30 are typable? Can you provide other
examples of expressions that are safe but not typable?

Exercise 40 Relying on the refinement provided by rule (Exp Eq), establish a derived
typing rule for the conditional expression if M = N then A else B.

Can we prove the judgment x : int ` if x = 0 then (if x = 1 then assert (0 = 1))?

Exercise 41 To confirm that RCF is a refinement of Concurrent FPC, let us recursively
define refinement erasure on types, by ({x : T | C})# = T#, and on expressions, by
(assume C)# = () and (assert C)# = (). (1) Show that ∅ ` A : T in RCF implies
∅ ` A# : T# in Concurrent FPC. (2) Show that ∅ ` A# : T# in Concurrent FPC
implies {False} ` A : T in RCF (where False is a contradiction, that is, a formula that
entails any other formula).

4.3. Examples of Typing Expressions in RCF

Typing the Running Example. In the following version of our running example from
Section 3, the assumption assume Sent(x) marks the intention of the middle thread to
send the message x, while the assertion assert Sent(x) marks the expectation of the
rightmost thread that the received message has been sent from the middle thread.

a!42 � (νc)((let x = a? in assume Sent(x) � c!x) � (let y = c? in assert Sent(y)))

To type this, the key idea is that while the initial message on a has type int, the subsequent
message on channel c has the refined type {x : int | Sent(x)}. We calculate the typing
derivation for the three threads as follows, where we define A2 = (assume Sent(x) �
c!x) and A3 = assert Sent(y).

(1) a l int ` a!42 : unit
by (Exp Send).

(2) a l int, c l {x : int | Sent(x)}, x : int ` A2 : unit
by (Exp Fork), (Exp Assume), (Exp Send), noting assume Sent(x) = Sent(x).

(3) a l int, c l {x : int | Sent(x)}, y : {x : int | Sent(x)} ` A3 : unit
by (Exp Assert).

(4) a l int ` (νc)(let x = a? in A2 � let y = c? in A3) : unit
by (2), (3), (Exp Fork), and (Exp Res).



(5) a l int ` a!42 � (νc)(let x = a? in A2 � let y = c? in A3) : unit
by (1), (4), and (Exp Fork).

Hence, by Theorem 2, it follows that the example is safe.

Typing a Request/Response Protocol. As a second example, the code below implements
a simple request/response protocol. A call service s f creates a replicated service that
repeatedly consumes request messages (x, r) from the channel s, computes the value y
of f x, and sends y on the reply channel r. A call client s x creates a client to invoke the
service on channel s with request x.

let rec service (s:service) (f:int→ int) : unit =
let x,r = (recv s):service_payload in
assert(Request(x));
let y = f x in
assume (Response(x,y));
send r y;
service s f

let client (s:service) (x:int) =
let r = chan() in
assume (Request(x));
send s (x,r);
let y = recv r in
assert(Response(x,y));
y

The client code logs Request(x) to mark its intent to request service, while the
server code logs Response(x, y) to mark that y is its reply to the request x. The service’s
assertion of Request(x) indicates its expectation that it has received a legitimate request,
while the client’s assertion of Response(x, y) indicates its expectation that the answer y
that it has just received is indeed a response to the data x sent in its previous request.

We can typecheck this code using the following types (in a notation like that imple-
mented by the F7 typechecker).

(;x)reply
4
= {y : int | Response(x, y)}

service
4
= (Σx : {x : int | Request(x)}. (;x)reply)chan

A value of type service is a channel for pairs (x, r) where x is an int such that
Request(x) holds, and r is a channel of type (;x)reply, that is, a channel for sending
integers y such that Response(x, y) holds. Even though the original request x is not
returned on the reply channel r with the response y, the type of r mentions x, and hence
can guarantee to the recipient that Response(x, y) holds. Again, we can apply Theorem 2
to guarantee the safety of systems modelled with the functions service and client.

The two examples in this section show the basic techniques of modelling distributed
protocols via parallel processes and message passing on channels, of specifying safety
properties using assumptions and assertions, and of verifying these properties using re-
finement types in RCF. These tutorial examples are small and rather abstract, but as we
outline in the following section, the underlying techniques scale up to modelling and
verifying substantial amounts of code.

Exercise 42 Develop a theory of session types for RCF. Hmm, maybe this needs RSM,
or some concurrent version of it.



5. Some Applications of RCF

We describe a series of applications of RCF, where refinement types are used to establish
a series of properties, mainly concerning security.

5.1. F7: An Implementation of RCF

F7 [6] is a refinement-typechecker for F# closely related to RCF [4]; its distribution
includes a series of programming examples and libraries.

F7 supports modular typechecking. It takes as input both refinement-typed module
interfaces (e.g. part.fs7) and F# module implementations (e.g. part.fs). When
typechecking succeeds, it also generates plain F# module interfaces (e.g. part.fsi)
obtained by erasing all type refinements. Since refinements play no role at run-time, F7
can be used for verifying code developed and compiled using F# tools and libraries. For
instance, it is usually a good idea to typecheck first using F#, then using F7.

The F7 typechecking algorithm implements the typing rules of RCF, with some
specific extensions: it performs partial type inference, implements type- and value-
polymorphism, carefully controls the application of subtyping, and directly supports al-
gebraic datatypes, whereas RCF formally relies on their encoding into sums. F7 uses
first-order logic for its refinements, and Z3 for logical verification. Each time it applies a
typing rule with a (non-trivial) logical deducibility condition, F7 passes a query to Z3.

5.2. Verifying Cryptographic Protocols and their Implementations

The main application of F7 so far is the security verification of cryptographic protocols
and their implementations. In contrast with earlier type systems and verification tools
dedicated to cryptography, most of the verification effort consists in developing reusable,
typed libraries for a range of cryptographic primitives and protocol patterns—see [4]
and [7] for their detailed description.

Digital Signatures In these notes, we only outline the use of refinement types for digital
signatures. The purpose of a digital signature is to guarantee the authenticity of a piece
of data, naturally modelled as a logical refinement. For simplicity, let us assume that
signatures are used only to authenticate requests, of type {x : int | Request(x)}. (A
more realistic refinement for security would also include the originator of the request, its
header, and its intended recipient.)

Using a trusted channel, as illustrated in Section 4, one can directly exchange in-
tegers with that type. However, this implicitly assumes that all programs with access to
the channel are well-typed in F7. In contrast, integers exchanged on a public, untrusted
channel can only be given the plain type int, inasmuch as anyone may inject any inte-
ger value. To dynamically verify that a received integer is a genuine request, one needs
to receive a signature and to cryptographically verify that signature using a trusted key.
For this example, the cryptographic primitives for signing a message, and for verifying a
message signature may be given the following types.

sign : skey→ {x : int | Request(x)} → bytes
verify : vkey→ Πx : int. (bytes→ {b : bool | b = true⇒ Request(x)}))



where skey is the type of signing keys, vkey is the type of verification keys, and bytes
is the type of signatures (an array of bytes). The refinement formula Request(x) can be
seen as a contract between signers and verifiers. It appears as a precondition for calling
the sign function, and as a postcondition after successfully calling the verify function.
(When verify returns false, nothing is learned about x.) For more complex protocols, this
refinement formula would cover all the potential usages for signing and verification keys.

In this example, values of type int and bytes can be freely exchanged on public
channels, but this is not the case for key types. For instance, if we send a signing key
on an untrusted channel, then anyone can sign any value, whether or not it is a genuine
request. As explained in [4] and [7] respectively, one can flexibly control which values
can be exchanged on a public network and when, using either kinds or a particular form
of refinements, and show that typechecking then suffices to ensure security against any
active network attacker.

CardSpace F7 has been applied to the verification of authorization, authenticity and se-
crecy properties for a variety of protocol implementations. As an example, the CardSpace
protocol for federated identity management builds upon standards for XML security,
leading to complex message formats with a dozen cryptographic operations per message.
We have typechecked a functional reference implementation of this protocol, initially de-
veloped for verification using a cryptographic protocol analyzer [8], and confirmed that
modular verification by typing yields the same guarantees but scales much better than
global proof techniques [7].

Zero-Knowledge Proofs Backes and others are independently developing F5, another
implementation of RCF for cryptographic verification [2]. Their type system extends
RCF with features including union and intersection types so as to support non-interactive
zero-knowledge proofs of knowledge. In terms of refinements, this yields formulas
existentially-quantified over the values used to build the cryptographic proof. The “zero-
knowledge” aspect of the model is reflected by the fact that, from the viewpoint of the
proof verifier, these values occur only in the refinements, much like ghost variables, and
are thus not available at run-time. Their main case study is the verification of authenticity
properties for the Direct Anonymous Attestation Protocol embedded in TPMs.

5.3. Security Protocol Synthesis for Multiparty sessions [5]

Many distributed protocols can be specified as a fixed, global graph where the nodes rep-
resent protocol participants and the edges represent their exchanged messages. This sort
of specification simplifies the task of each protocol participant, who knows in advance
which messages will be exchanged, and in what order. For instance, the picture below
represents a session with three participants (a client, a proxy, and a web server); each
edges carries a message label plus variables that indicate the message payloads.
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However, on an open network with untrusted participants, there is usually no way to
guarantee that remote participants will actually follow this multiparty session discipline.



Instead, each participant must carefully check whether each messages it receives is valid
at each point of the session.

This is the purpose of a prototype multiparty-session compiler that automatically
generates, implements, and verifies a communication protocol with enough crypto-
graphic checks to ensure that, from the viewpoint of the session participants that use this
defensive protocol, every message complies with the global session discipline. This ses-
sion compiler is fairly complex, but it need not be trusted. Instead, to establish the cor-
rectness of the generated protocol code, the compiler also generates detailed refinement
types that embed the structure of the global session graph and the causal dependencies
between all messages. (For a 3-party session with loops, the generated code is a few thou-
sand lines of F#, and the generated annotation is a few thousand lines of F7 refinement-
type declarations.) The F7 typechecker is then called to verify that the protocol code
indeed enforces the global session discipline.

For example, the generated refinement-type for the final Reply message from the
web server to the client indicates that the proxy must have received a Request message
with some query q from the client

5.4. Security of Multi-Tier Web Programming [3]

A multi-tier programming language is a high level web programming language that runs
as code split between the multiple tiers of a web application. For example, Links [11]
is a multi-tier programming language based on functional programming; a single Links
source file results in application code to run in a web server, to HTML and JavaScript to
run in the browser, and to SQL to run in the database.

An ideal of high level languages is that review of source code, and its source-level
semantics, should suffice to establish security properties of compiled code [1]. In fact,
a common problem with multi-tier languages is that there are low-level attacks on the
compiled code that are not apparent from inspection of the source code. For example,
the Links compilation strategy involve storing some session state, such as variable bind-
ings, within HTML forms in the browser. This strategy makes Links vulnerable to an
untrustworthy user reading or modifying these variable bindings. In particular, like some
other web applications, Links is vulnerable to price-changing attacks, where if a shop-
ping cart is held as variable bindings in the browser, the customer can modify the cart
before checking out so as to obtain items at reduced prices.

To address this problem, an improved compilation strategy for Links is to rely on
keyed hashes and encryption to protect the secrecy and integrity of web application data
held in HTML forms. To validate the strategy, a type and effect system for Links source
code is developed to allow reasoning about integrity properties, such as tracking that
prices held in a shopping cart have indeed been obtained from the price database. Using
the models of cryptography described in Section 5.2, the secure compilation strategy can
be modelled in RCF, to show that the source-based properties proved with the type and
effect system are preserved by the implementation.

5.5. Auditability by Typing [17]

Security protocols often rely on a pre-established mechanism to resolve conflicts: for a
given auditable property on the outcome of the protocol, all protocol participants agree



on a fixed resolution procedure, the judge, and they log data obtained during the protocol
run, the evidence. After the protocol completes, and if there is a conflict, every participant
that rightfully followed the protocol should have collected enough evidence to convince
the judge of their claim. This security property is called auditability.

For a target auditable property C with free variable x, say of type int, the judge
function has an F# type of the form int→ evidence→ bool. The judge is correct when it
returns true only when formula C holds for its first parameter substituted for x. An audit
point in a protocol is a place where a participant collects evidence E that C holds for
some value M substituted for x. This evidence is complete when the judge will always
return true when presented with value M and collected evidence E.

Both correctness and completeness can be verified by refinement typing, as follows:
find (and typecheck) a logical refinement D for the pair (x,E) at every audit point; and
check that the judge function can be given the refinement type:

Πx : int. Πe : evidence. {b : bool | (b = true⇒ C) ∧ (D ⇒ b = true)}

The first postcondition is for correctness; the second postcondition is for complete-
ness of the evidence. For instance, the evidence may be a digital signature, the judge
may cryptographically verify that this is a valid signature on x using some authorized
key (with verification postconditionC), and the complete-evidence propertyD may state
that the digital signature has been verified at every audit point.

5.6. Verifying Stateful Properties with the Refined State Monad [9]

A classical idea in pure functional programming is to represent imperative code as a
function of the type shown below, known as the state monad.

Πs0 : state. Σx : T. state

A function of this type is a state-passing imperative computation. The function ac-
cepts an initial state s0 : state, and returns a result type x : T , paired with a final state.
For example, the function get

4
= funs0 → (s0, s0) is the computation to fetch and return

the current state. Another example is set(M)
4
= fun s0 → ((),M), the computation to

replace the current state with a new state M : state.
The refined state monad is the refined function type {(s0)C0}x : T {(s1)C1} ob-

tained by adding refinement formulas C0 and C1 to the initial and final states.

{(s0)C0}x : T {(s1)C1}
4
= Πs0 : {s0 : state | C0}. Σx : T. {s1 : state | C1}

In particular, we have the following types for the get and set(M) computations.

get : {(s0)True}x : state {(s1)(s1 = s0) ∧ (x = s0)}

set(M) : {(s0)True}x : unit {(s1)(s1 = M)}

A paper [9] derives a calculus based on the refined state monad in RCF, and inves-
tigates its application to checking code for compliance with state-based access control
mechanisms. State-based access control deals with the situation when both trusted and
untrusted code share the same execution environment. We need to allow trusted code to



access privileged resources, such as the file system, and to prevent untrusted code from
doing so. With state-based access control, the runtime system maintains state represent-
ing the set of permissions currently available to each thread of control. Calls to sensitive
library functions, such as to access the file system, only succeed if sufficient permissions
are available, and otherwise throw security exceptions. As execution proceeds, the cur-
rent permissions are modified both implicitly by function calls and returns, and explicitly
by system calls to add and subtract permissions.

In practice, state-based access control is hard to program. A common problem arises
from unnecessary security exceptions when trusted code is running with insufficient per-
missions, due to implicit updates to the state. Pottier, Skalka, and Smith [27] pioneered
a state-sensitive type system to help detect such unnecessary security exceptions early.
The idea is that being well-typed implies that expressions raise no security exceptions,
so that code that may lead to exceptions is flagged statically by the typechecker.

We sketch how the system of Pottier, Skalka, and Smith can be recast and extended
using the refined state monad. We choose state to be sets of permissions. For example,
ReadFile(M) : state is the set containing just the right to read the file M . Permissions
form a lattice. We use the predicate Subsumed(M,N) to mean that the permissions M
are less than the permissionsN , and assume the axioms for a lattice. Hence, for example,
the library function readFile(M) has the following type:

readFile(M) : {(s0)Subsumed(ReadFile(M), s0)}x : string {(s1)(s1 = s0)}

The type says that readFile(M) can only be called when the current permissions s0
include at least ReadFile(M), and that on return the current permissions are unchanged.
See [9] for further explanations of the refined state monad and its applications.

6. Further Reading

Operational Semantics The textbook by Gunter [16] describes the operational seman-
tics of FPC, together with a domain-theoretic denotational semantics and type system.
Gunter’s book also explains the basic techniques of syntax up to alpha-conversion, struc-
tural induction, and inductive definitions.

Type Systems For more background on type systems see Cardelli’s article [10] or
Pierce’s book [25]. The division of type safety into progress and preservation theorems
is due to Wright and Felleisen [35].

Process Calculi There are two standard textbooks on the π-calculus by Milner [22]
and Sangiorgi and Walker [32]. Pierce and Sangiorgi [24] introduced typed channels
with subtyping for the π-calculus. (Their system allows the send and receive capabilities
for a channel to be communicated separately, and to have separate types). A reduction
semantics with an asymmetric fork operation A � B appears first in a concurrent object
calculus [15].

Refinement Types Refinement types are also known as subset types (in constructive type
theory [23]) or predicate subtypes (in the PVS prover [30]). More recently, a mechanism
of subset types has been added to Coq [33]. The refinement types of Pfenning and Free-
man [13] are subsets of preexisting inductive definitions; for instance, the even numbers



are a refinement of the natural numbers. Subsequently, DML [36] allows a more gen-
eral form of refinement types, where base types may be refined by Boolean expressions.
The expressions that may appear in DML refinements are known as indexes, and are re-
stricted so as to make typechecking decidable. Hybrid typechecking [12] is the later idea
that if static heuristics fail to settle whether the refinement expression in a refinement
type is satisfied, instead of rejecting the program we can instead insert code to check the
refinement expression at run time.

A cost of using refinement types in DML and other systems is that the program-
mer must provide many type annotations including refinement formulas. Liquid types
(Logically Qualified Data Types) [29] are a specialized form of refinement type suitable
for type inference. A liquid type takes the form {x : T | Q1 ∧ · · · ∧ Qn} where each
qualifier Qi is an instance of a finite user-supplied collection of predicates. Given an ML
expression and the corresponding ML type derivation, liquid type inference generates
a liquid type derivation by generating a formula variable for each unrefined type in its
input, and then it applies an iterative algorithm to find a finite conjunction of qualifiers to
assign to each formula variable. The algorithm shows promise; it can automatically infer
refinement types for a variety of DML benchmarks (but ported to Objective Caml), with
far fewer user-supplied types or formulas than in the original DML files.

7. Conclusions

We explained the principles of refinement types in terms of the concurrent λ-calculus
RCF. We presented some applications in terms of a series of projects based on F7, an
enhanced typechecker for F# and Objective Caml, whose theoretical foundation is RCF.
We outlined the historical development of refinement types and described some other
approaches.

We have found that several pre-existing type systems can be implemented as refine-
ment types within RCF and F7 by assuming suitable predicates and axioms. It seems to
us likely that many more existing and new static analyses may be discovered to be in-
stances of refinement types, and can usefully and efficiently be implemented within this
general framework. Consider these tutorial notes an invitation to learn the foundations of
this framework, to discover its deficiencies, and to stretch it further.
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