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Abstract
We propose a new kind of probabilistic programming language for
machine learning. We write programs simply by annotating exist-
ing relational schemas with probabilistic model expressions. We
describe a detailed design of our language, Tabular, complete with
formal semantics and type system. A rich series of examples illus-
trates the expressiveness of Tabular. We report an implementation,
and show evidence of the succinctness of our notation relative to
current best practice. Finally, we describe and verify a transforma-
tion of Tabular schemas so as to predict missing values in a concrete
database. The ability to query for missing values provides a uni-
form interface to a wide variety of tasks, including classification,
clustering, recommendation, and ranking.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—Specialized application lan-
guages; I.2.6 [Artificial Intelligence]: Learning—Parameter Learn-
ing

Keywords Bayesian reasoning; machine learning; model-learner
pattern; probabilistic programming; relational data

1. Introduction
The core idea of this paper is to write probabilistic models by
annotating relational schemas. We illustrate this idea on a database
for recording outcomes of a two-player game without draws.

Players
Name string

Matches
Player1 link(Players)
Player2 link(Players)
Win1 bool

In this concrete schema, we have a Players table with column
Name, and a Matches table, with columns Player1, Player2, and
Win1 (“Player 1 wins”). As well as scalar types such as bool or
string, a column may have a type such as link(Players), which
means the column holds integer foreign keys to the Players table.
(For simplicity, we assume that every table has a single-column
primary key ID, a common case in practice. We also assume that
in a table with n rows the keys are integers normalized to lie in
the range 0..n− 1; thus, we omit the primary key column from
schemas.)

To illustrate some of the key ideas of Tabular, we consider
the TrueSkill model (Herbrich et al. 2006), which is deployed at
cloud-scale to make selections of players of roughly equal skill

as opponents in online gaming. In this model, each player has an
underlying numeric skill Skill, players’ performances in a match
are noisy copies of their skills, and each match is won by the player
with the greater performance.

Players
Name string input
Skill real latent Gaussian(25.0,0.01)

Matches
Player1 link(Players) input
Player2 link(Players) input
Perf1 real latent Gaussian(Player1.Skill,1.0)
Perf2 real latent Gaussian(Player2.Skill,1.0)
Win1 bool output Perf1 > Perf2

Although its starting point is the underlying concrete schema, a
Tabular schema may contain additional latent columns, which con-
tain random variables to help model concrete data. In our example,
the Players table has a latent column Skill, containing a numeric
skill for each player, while the Matches table has latent columns
Perf1 and Perf2, containing the performances of the two players in
the match.

So that a schema defines a probability distribution over database
instances, we annotate columns with probabilistic model expres-
sions, which define distributions over entries in the column. Model
expressions allow predictions to be made for the values of associ-
ated columns. Our example shows three sorts of annotated column:

(1) A concrete column marked as an output has a model expression
that predicts values of the column. For example, the Win1 col-
umn is an output; its model expression indicates the winner is
the player with the greater performance. The model expression
can be applied to predict a future match outcome based on skills
learnt from training data.

(2) A concrete column marked as an input is used to condition the
probabilistic model, but has no model expression and cannot be
predicted by the model. For example, the Player1 column in the
Matches table is an input; it is used to characterize a match but
is not considered to be uncertain.

(3) Finally, a column marked as latent is an auxiliary column, not
present in the concrete database, whose model expression forms
part of the model, and can be predicted. For example, the Skill
column has a model expression indicating each entry is drawn
from a Gaussian distribution with mean 25 and precision 0.01.
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A Tabular program divides the columns of the concrete database
into input and output columns, and determines a probabilistic
model that predicts the output columns given the input columns.
If all the cells in a concrete column have values we say the column
is observed, but otherwise, when there are missing values, we say
it is observable.

We consider two forms of inference. In both forms, input
columns are observed. In query-by-latent-column, we assume that
output columns are observed—we have data for each cell in the
column—and the task is to predict the latent columns. Towards the
end of the paper, in Section 7, we also consider query-by-missing-
value, where output columns are observable, and the task is to
predict the missing values in output columns.

Query-by-Latent-Column Given a table of players and a table
listing the outcomes of matches between those players, TrueSkill
infers a numeric skill for each player, used for matchmaking. Con-
sider the following tables of players and matches.

Players
ID Name
0 "Alice"
1 "Bob"
2 "Cynthia"

Matches
ID Player1 Player2 Win1
0 0 1 false
1 1 2 false

Initially, TrueSkill assigns the same uncertain skill prior to each
player. Given data showing that player 0 has been beaten by
player 1, who in turn has been beaten by player 2, TrueSkill infers
posterior skill distributions reflecting the likely ranking player 0 <
player 1 < player 2.

The query-by-latent-column problem for Tabular is to deter-
mine the probability distribution over latent databases for a given
schema, given a concrete database. In theory, the latent database
is a joint distribution over all latent columns of the database. In a
practical implementation, we consider only the marginals (projec-
tions) of each of the variables in the latent database. In particu-
lar, for the TrueSkill schema, conditioned on the concrete database
above, the marginal representation of the distribution over latent
databases consists of the following tables.

PlayersLatent
ID Skill
0 Gaussian(22.51, 1.45)
1 Gaussian(25.22, 1.53)
2 Gaussian(27.93, 1.45)

MatchesLatent
ID Perf1 Perf2
0 Gaussian(22.49, 1.11) Gaussian(25.25, 1.14)
1 Gaussian(25.25, 1.14) Gaussian(27.96, 1.11)

The distribution over the latent database can be stored in the same
relational store as the original concrete database, joined with the
concrete tables. While Tabular is specific to the domain of specify-
ing probabilistic models for relational data, users are free to deploy
whatever programming or query notation is appropriate to prepro-
cess the data into relational form and to postprocess the results of
inference.

Query-by-Missing-Value In this mode, we use tables with miss-
ing values in observed columns as queries. For example, the follow-
ing amounts to a query asking how likely it is that player 2 would
beat player 0, to help decide on placing a bet.

Matches
ID Player1 Player2 Win1
3 2 0 ?

The result of such a query might be the following, indicating there
is an 85% chance player 2 will beat player 0.

MatchesQueryLatent
ID Win1
3 Bernoulli(0.85)

1.1 A Schema-Driven Recipe for Probabilistic Modelling
In designing Tabular, we have in mind data enthusiasts (Hanrahan
2012), the large class of end users who wish to model and learn
from their data, who have some knowledge of probability distri-
butions and database schemas, but who are not necessarily profes-
sional programmers.

Tabular supports the following recipe for modelling data.

(1) Start with the schema (such as the Players and Matches tables).

(2) Add latent columns (Skill, Perf1 and Perf2).

(3) Write probabilistic models for latent and observed columns
(skills have a prior, performances are noisy copies of skills, the
player with the highest performance wins).

(4a) Learn latent columns and table parameters from complete data
(we learn players’ skills from a dataset of match outcomes).

(4b) Or predict missing values from partially-observed data
(we predict a future match outcome based on a row (p1,p2,?)).

There is more to the whole cycle of learning from data—such as
gathering and preprocessing data, and visualizing and interpreting
results—but the recipe above addresses a crucial component.

Models as Factor Graphs Factor graphs are a standard class
of probabilistic graphical models of data, with many applications
(Koller and Friedman 2009). Having modelled data with a factor
graph, one can apply a range of inference algorithms to infer prop-
erties of the data or make predictions. The TrueSkill model was
originally expressed as a factor graph such as the one below, in
typical “plates and gates” notation.

The circular nodes of the graph represent random variables, and
the black squares are factors relating random variables. The large
enclosing boxes labelled “Players i” and “Matches m” are known
as plates, and indicate that the enclosed subgraphs are to be repli-
cated. The two dotted boxes are known as gates (Minka and Winn
2008), and indicate choices governed by an incoming edge. (Gates
are essential for many models, and we include gates here to illus-
trate their use, but they are not strictly necessary in TrueSkill, as
the player links are not stochastic. If we had uncertainty about the
players, the gate would be essential for inference.) The nodes for
some random variables are shaded to indicate they are observed,
while unshaded variables are latent. Together with exact factor an-
notations, factor graphs represent joint probability distributions.

Like many visual notations, factor graphs become awkward as
models become complex. Instead, we turn to probabilistic program-
ming languages, where models are code, random variables are pro-
gram variables, factors are primitive operations, plates are loops,
and gates are conditionals or switches. BUGS (Gilks et al. 1994;
Lunn et al. 2013) is the most popular example, and there is much
current interest, witness the wiki probabilistic-programming.
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org. In this paper, we create models with a direct interpretation as
factor graphs by writing schema annotations in a high-level proba-
bilistic language.

1.2 Innovations in the Design of Tabular
By using the relational modelling of the data encoded in the con-
crete schema, we write models succinctly because each table de-
scription implicitly defines a loop (a plate) over its rows. More-
over, we save our user the trouble of writing code to transfer data
and results between language and database. The main conceptual
innovations in Tabular are:

(1) Annotations on a relational schema so as to construct a graphi-
cal model, with input, output, and latent columns.

(2) A grammar of model expressions to stipulate the models for
latent and output columns, with the semantics of tables and
schemas given as models assembled compositionally from the
models for individual columns.

(3) Query-by-latent-column: infer latent columns from the con-
crete database, given input columns and fully-observed output
columns.

(4) Query-by-missing-value: infer missing values in output columns,
given input columns and partially-observed output columns.

1.3 Technical Contributions and Evaluations
We present the detailed syntax and type system of Tabular, and se-
mantics by translation to a core probabilistic calculus, Fun. Theo-
rem 1 (Translation Preserves Typing) asserts that the semantics re-
spects the Tabular type system. Theorem 2 asserts that a certain fac-
tor graph, expressed in Fun, correctly implements query-by-latent-
column.

We describe an implementation of Tabular using Infer.NET,
based on our semantics. To test Tabular in practice, we reimple-
ment a series of factor-graph models for psychometric data first per-
formed using Infer.NET directly (Bachrach et al. 2012), with essen-
tially the same results. Theorem 3 (Query-by-Missing-Value) jus-
tifies a transformation on Tabular schemas that implements query-
by-missing-value in terms of query-by-latent-column.

In the case of machine learning on data held in a database, an
advantage of schema-driven probabilistic programming over proba-
bilistic forms of conventional programming languages is that there
is no need to map between database schemas and programming
language types. Since the inference results in steps (4a) and (4b) of
our recipe above work by reading tables from a relational store and
writing the results of inference back into the relational store, we
are not dependent on any particular language-based representation
of data or data-binding. Hence, a Tabular programmer avoids the
usual impedance mismatch problem between databases and pro-
gramming languages (Maier 1987) and is free to pre-process data
and post-process inference results using whatever data access tech-
nology is appropriate, such as a spreadsheet, or a scripting lan-
guage, or a full programming language.

1.4 Structure of the Paper
Section 2 recalls Fun (Borgström et al. 2013), a typed first-order
fragment of the stochastic lambda-calculus, that serves as our no-
tation for graphical models. We also recall the model-learner pat-
tern (Gordon et al. 2013), a way of structuring Bayesian models
compositionally, and the basis of our semantics for Tabular. Sec-
tion 3 introduces Tabular’s column annotations, grammar of model
expressions, generative process for tables and schemas, and query-
by-latent-column, by example. Section 4 defines a formal seman-
tics for Tabular, based on translation to the model-learner pattern.
Our semantics treats model expressions, tables, and whole schemas

as model combinators. Section 5 describes our implementation,
based on the formal semantics. Section 6 outlines a substantial case
study. Section 7 considers query-by-missing-value, where Tabular
predicts missing values in output columns. We discuss examples
and show how to transform Tabular schemas so as to reduce query-
by-missing-value to query-by-latent-column. Section 8 describes
related work and Section 9 concludes.

An appendix includes additional examples, benchmark results,
and screenshots of our implementation.

2. Fun and the Model-Learner Pattern
2.1 Fun, Probabilistic Programming for Factor Graphs
We use a version of the core calculus Fun (Borgström et al. 2013)
with arrays of deterministic size, but without a conditioning opera-
tion (observe) within expressions. This version of Fun can be seen
as a first-order subset of the stochastic lambda-calculus (Ramsey
and Pfeffer 2002); it is akin also to HANSEI (Kiselyov and Shan
2009). Borgström et al. (2013) show how to translate Fun to the
Infer.NET input format, a probabilistic imperative language, with
much of the work being to eliminate records; in a similar way, we
could translate Fun to BUGS (Gilks et al. 1994; Lunn et al. 2013).
Fun expressions have a semantics in the probability monad, but also
have a direct interpretation using factor graphs.

We have scalar types bool, int, and real, record types (that are
constructed from field typings), and array types. Let string= int[]
and vector = real[] and matrix = vector[]. Let c range over the
field names, s range over constants of base type, and let ty(s) = T
mean that constant s has type T .

Types and Values (Scalars, Records, Arrays): T, V

S ::= bool | int | real scalar type
T,U ::= S | {RT} | T [ ] type
RT ::=∅ | c : T ;RT field typings
V ::= s | {c1 =V1; . . . ;cn =Vn} | [V1, . . . ,Vn]

Expressions of Fun: E

E,F ::= expression
x | s variable, constant
if E then F1 else F2 if-then-else
{R} | E.c record literal, projection
[E1, . . . ,En] | E[F ] array literal, lookup
[for x < E→ F ] for-loop (scope of index x is F)
let x = E in F let (scope of x is F)
g(E1, . . . ,En) primitive g with arity n
D(E1, . . . ,En) distribution D with arity n

R ::=∅ | c = E;R field bindings

We write fv(φ) for the set of variables occurring free in a phrase
of syntax φ , such as an expression E, and identify syntax up to
consistent renaming of bound variables. We sometimes use tuples
(E1, . . . ,En) and tuple types T1 ∗ · · · ∗Tn below: they stand for the
corresponding records and record types with numeric field names
1, 2, . . . , n. We write fst E for E.1 and snd E for E.2. The empty
record {} represents a void or unit value. We write {c1 : T1; . . . ;cn :
Tn} for a concrete record type, and thus {} for the empty record
type; {c1 = E1; . . . ;cn = En}, for a concrete record term; and use
the comprehension syntax {ci : Ti}i∈1..n and {ci =Ei}i∈1..n to index
the components of a record type or term (when ordering matters)
or {c : Tc}c∈C and {c = Ec}c∈C (where C is a set of field names)
when ordering is irrelevant. Field typings and field bindings are
just association lists; we sometimes use RT1;RT2 to denote the con-
catenation of field typings RT1 and RT2, and R1;R2 for the con-
catenation of field bindings. We implicitly identify record types up
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to re-ordering of field typings. We assume a collection of total de-
terministic functions g, including arithmetic and logical operators.
We also assume families D of standard probability distributions,
including, for example, the following.

Distributions: D : (x1 : T1; . . . ;xn : Tn)→ T

Bernoulli : (bias : real)→ bool
Gaussian : (mean : real,precision : real)→ real
Beta : (a : real,b : real)→ real
Gamma : (shape : real,scale : real)→ real
DirichletSymmetric : (length : int,alpha : real)→ vector
Discrete : (probs : vector)→ int
DiscreteUniform : (range : int)→ int
VectorGaussian : (mean : vector,covariance : matrix)→ vector

2.2 Semi-Observed Models
We explain the semantics of Tabular by translating to Bayesian
models encoded using Fun expressions. We consider a Bayesian
model to be a probabilistic function, from some input to some out-
put, that is governed by a parameter, itself generated probabilisti-
cally from a deterministic hyperparameter. Our semantics is com-
positional: the model of a whole schema is assembled from models
of tables, which themselves are composed from models of rows, as-
sembled from models of individual cells. This formulation follows
Gordon et al. (2013), with two refinements. First, when we apply
a model to data, the model output is semi-observed, that is, each
output is a pair consisting of an observed component (like a game
outcome in TrueSkill) plus an unobserved latent component (like
a performance in TrueSkill). Second, the hyperparameter is passed
to the sampling distribution Gen(h,w,x) as well as to the parame-
ter distribution Prior(h) for convenient model building. Passing the
hyperparameter to the sampling distribution is a convenience when
building models, but does not alter the expressivity of the abstrac-
tion; if the hyperparameter is not passed explicitly to the output
distribution we can always pass it implicitly as an extra component
of the parameter.

Notation for Bayesian Models:
Hyper Eh default hyperparameter (Eh deterministic)
Prior(h) Ew distribution over parameter (given h)
Gen(h,w,x) Eyz distribution over output (given h, w, and x)

(Hyperparameters and parameters both determine the distribution
of outputs given an input; the difference is that we specify our
uncertain knowledge of parameters (but not hyperparameters) using
the prior distribution, so that our uncertainty about parameters (but
not hyperparameters) is reduced by conditioning on data.)

For example, here is a model for linear regression, that is, the
task of fitting a straight line to data points. This example illustrates
the informal notation for Fun expressions used in Section 3. For
instance, we write a ∼ Gaussian(h.µA,1) to mean that random
variable a is distributed according to Gaussian(h.µA,1). We write
x := E to indicate that x is the value of deterministic expression E.

Linear Regression: (Illustrative of informal notation for Fun)
Hyper The record {µA = 0; µB = 0}.
Prior(h) The record {A = a;B = b} where

a∼ Gaussian(h.µA,1) and b∼ Gaussian(h.µB,1).
Gen(h,w,x) The pair (y,z) where

z := (w.A)∗ x+w.B and y∼ Gaussian(z,1).

In our formal semantics for Tabular, we use a compact notation
P ::= 〈Eh,(h)Ew,(h,w,x)Eyz〉 for a model. Our regression example

is written in compact notation as follows.

〈{µA = 0; µB = 0},
(h)let a = Gaussian(h.µA,1) in

let b = Gaussian(h.µB,1) in {A = a;B = b},
(h,w,x)let z = (w.A)∗ x+w.B in let y = Gaussian(z,1) in (y,z)〉

We use variable x for the input, y for the observed output, z for
the latent output, w for the parameter, and h for the hyperparameter.
These variables range over Fun values and hence may be scalars,
but may also be compound structures such as whole databases.

2.3 Databases as Fun Values
We view a database as a record {t1 = B1; . . . ; tn = Bn} holding
(relational) tables B1, . . . , Bn named t1, . . . , tn. A table B is an
array [r1, . . . ,rm] of rows, where each row is a record ri = {c1 =
V1; . . . ;cn =Vn}, where c1, . . . , cn are the columns of the table, and
V1, . . . , Vn are the items in the column for that row. (We view a table
as an array so that a primary key is simply an index into the array,
and omit primary keys from rows.)

The column annotations in a Tabular schema partition a whole
database into a pair d =(dx,dy) where dx is the input database, with
the input columns of each table, and dy is the observed database,
with the observed columns of each table. (For each table, the
numbers of rows in the input and observed databases must match.)

The latent database dz is a database with just the latent columns
of the schema, and the database parameter Vw is a record holding
parameters for each table.

The purpose of query-by-latent-column is to predict the database
parameter and latent database from the input and observed databases.

Distributions Induced by a Semi-Observed Model In later sec-
tions, we define the semantics of a Tabular schema as a model P. In
general, a model P defines several probability distributions:

• Prior p(w | h) is w∼ P.Prior(h).
• Full sampling p(y,z | h,w,x) is y,z∼ P.Gen(h,w,x).
• Sampling distribution p(y | h,w,x) is

∫
p(y,z | h,w,x)dz.

• Predictive distribution p(y | x,h) is
∫

p(y | h,w,x)p(w | h)dw.

Training data for a model consists of a pair d = (dx,dy) where
dy is the observed output given input dx. In our case, dx is the input
database and dy is the observed database. Conditioned on such data
d = (dx,dy) we obtain posterior distributions:

• Posterior p(w | d,h) = p(dy|h,w,dx)p(w|h)
p(dy|dx,h)

.

• Posterior latent p(z | d,h) =
∫ p(dy,z|h,w,dx)

p(dy|h,w,dx)
p(w | d,h)dw.

(The term p(dy | dx,h) is known as the evidence for the model, used
later in our comparison of different models on the same dataset).

Given d = (dx,dy), the semantics of query-by-latent-column is
to compute the posterior p(w | d,h) on the database parameter, and
the posterior latent distribution p(z | d,h) on the latent database.

3. Tabular, By Example
3.1 Tabular and the Generative Process for Tables
As usual, a relational schema confers structure on a database. A
schema S is an ordered list of tables, named t1, . . . , tn, each of
which has a table descriptor T, that is itself an ordered list of typed
columns, named c1, . . . , cn. The key concept of Tabular is to place
an annotation A on each column so as to define a probabilistic
model for the relational schema.

We present first a core version of Tabular, where the model
expressions M on columns are simply Fun expressions E.
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Tabular Schemas, Tables and Annotations: S, T, A

S ::=∅ | (t 7→ T)S (database) schema
T ::=∅ | (c 7→ A : T )T table descriptor
A ::= annotation

hyper(E) hyperparameter
param(M) parameter
input input
output(M) output
latent(M) latent

M ::= E (to be completed) model expression

The types T on concrete columns are typically scalars, but our
semantics allows these types to be arbitrary. The Tabular syntax
for types and expressions slightly extends Fun syntax with features
to find the sizes of tables and to dereference foreign keys.

Additional Types and Expressions of Tabular Fun: T, E

T ::= · · · | link(t) type
E ::= · · · | sizeof(t) | (E : link(t)).c expression

The expression sizeof(t) returns the number of rows in table t. The
expression (E : link(t)).c returns the item in column c of the row
in table t keyed by the integer E. In the common case when E is a
column ck annotated with type link(t), we write ck.c as a shorthand
for (ck : link(t)).c. Values of type link(t) are integers serving as
foreign keys to the table t. For simplicity, our type system treats
each type link(t) as a synonym for int.

Generative Process for Tables A table descriptor T is a function
from the concrete table holding the input and output columns, to
the predictive table, which additionally holds the latent columns.
The descriptor defines a generative process to produce (1) the
hyperparameters and parameters of the table, and (2) the output and
latent columns of the table, by a loop over the rows of the table.

In step (1), outside the loop over the data, we process the
annotations in turn to define the hyperparameters and parameters,
ignoring the input, output, and latent annotations.

• c 7→ hyper(E) defines c as the deterministic expression E.
• c 7→ param(E) samples c from probabilistic expression E.

In step (2), a loop over each row of the concrete table, we
process the annotations in turn to sample independently each row
of the predictive table, with items for each of the input, output, and
latent columns.

• c 7→ input copies c from the input row.
• c 7→ output(E) samples c from probabilistic expression E.
• c 7→ latent(E) samples c from probabilistic expression E.

In step (2), inside the data loop, we ignore the hyperparameter
and parameter annotations, although expressions may depend on
the variables defined in step (1) outside the loop.

A schema S describes a generative process to produce (1) the
hyperparameters and parameters of each table, and (2) the predic-
tive table for each concrete table. Tables and columns are lexically
scoped in sequence, although the variables bound in step (1) cannot
refer to variables bound later in step (2).

Later on, we formalize the generative processes for tables and
schemas using our model notation; step (1) corresponds to the
Hyper and Prior parts, while step (2) corresponds to the Gen part.

Example: Conjugate Bernoulli This standard model is used to
generate random bits with a probability distribution that is itself
random; it is a key ingredient of mixture models.

CoinFlips
alpha int hyper 1
beta int hyper 1
Bias real param Beta(alpha,beta)
Coin bool output Bernoulli(Bias)

In step (1) of the generative process, we define both alpha and
beta as 1, and sample Bias from the distribution Beta(1,1), the uni-
form distribution on the unit interval. In step (2), we generate each
row of the table by sampling the Coin variable from the distribution
Bernoulli(Bias) on bool, which returns true with probability Bias.
Overall, we sample the shared parameter Bias, whereas we sample
each output Coin independently for each row.

A concrete database for this schema is simply one table with a
single column Coin containing Booleans. Inference computes the
distribution of the Bias parameter.

3.2 Distributions with Conjugate Priors
In Bayesian theory, the Beta distribution over the parameter of the
Bernoulli distribution is a particular case of a conjugate prior. It is
convenient for efficient inference to choose a prior that is conjugate
to a sampling distribution. Hence, we define primitive models for
various standard sampling distributions and conjugate priors.

Library of Primitive Models: P

P ::= 〈Eh,(h)Ew,(h,w,x)Ey〉 primitive model

CBernoulli , 〈{α = 1.0;β = 1.0},
(h)Beta(h.α,h.β ),
(h,w,x)Bernoulli(w)〉

CGaussian , 〈{µ = 0.0;τ = 1.0;κ = 1.0;θ = 2.0},
(h){µ = Gaussian(h.µ,h.τ);

τ = Gamma(h.κ,h.θ))},
(h,w,x)Gaussian(w.µ,w.τ)〉

CDiscrete , 〈{N = 2;α = 1.0},
(h)DirichletSymmetric(h.N,h.α),
(h,w,x)Discrete(w)〉

These models are defined as primitives built from closed Fun ex-
pressions. The model CBernoulli is exactly equivalent to our pre-
vious example. The concentration α of a CDiscrete determines
whether the parameter—a probability vector of length N drawn
from the symmetric Dirichlet distribution—is uniformly distributed
(α = 1.0), biased towards sparse vectors (α < 1.0) or dense vectors
(α > 1.0). Notice that Gaussian is a distribution D that can occur
within an expression E, while CGaussian is a primitive model that
may occur as a model expression M in the full syntax of Tabular.

Completing Tabular We add primitive and indexed model ex-
pressions to enable the succinct expression of complex models.

Completing the Syntax of Model Expressions: M

M ::= model expression
E simple
P(c1 = E1, . . . ,cn = En) primitive, with hyperparameters
M[Eindex < Esize] indexed

The semantics of a model expression M for a column c is a
model P whose output explains how to generate the entry for
c in each row of a table. The model P has a restricted form
P = 〈{},(h)Ew,(h,w,x)Ey〉, with no hyperparameters, and where
h /∈ fv(Ew,Ey) and x /∈ fv(Ey). Hence, in our notations below, we
omit the bound variables h and x.

A simple model E produces its output by running E.

Model for Simple Model Expression E:
Hyper The empty record {}.
Prior() The empty record {}.
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Gen(w) y where y∼ E.

A primitive model P(c = Ec
c∈C′) acts like the library model P,

except that when P.Hyper = {c = Fc
c∈C} and C′ ⊆ C, hyper-

parameter c is set to Ec if c ∈C′, and otherwise to the default Fc.

Model for P(c = Ec
c∈C′):

Hyper The empty record {}.
Prior() P.Prior({c = Ec

c∈C′ ;c = Fc
c∈C\C′}).

Gen(w) P.Gen({c = Ec
c∈C′ ;c = Fc

c∈C\C′},w,{}).

An indexed model M[Eindex < Esize] creates its parameter to be an
array of Esize instances of the parameter of M, and produces its
output like M but using the parameter instance indexed by Eindex.

Model for M[Eindex < Esize] where P is the model for M:
Hyper The empty record {}.
Prior() [w1, . . . ,wEsize ] where wi ∼ P.Prior() for i≤ Esize.
Gen(w) y∼ P.Gen(wi) where i := Eindex.

Generative Process for Tables in Full Tabular In the full lan-
guage, the model expression for a column c has both a parameter
and an output; we use the variable c$ for the parameter, and the
variable c for the output.

In step (1) the generative process, we process the annotations in
turn to define the hyperparameters and parameters.

• c 7→ hyper(E) defines c as the deterministic expression E.
• c 7→ param(M) samples c$ from P.Prior() and samples c from

P.Gen(c$) where P models M.
• c 7→ input is ignored.
• c 7→ output(M) samples c$ from P.Prior() where P models M.
• c 7→ latent(M) samples c$ from P.Prior() where P models M.

In step (2), a loop over each row of the input table, we process
the annotations in turn to define each row of the predictive table.

• c 7→ hyper(E) is ignored.
• c 7→ param(M) is ignored.
• c 7→ input copies c from the input row.
• c 7→ output(M) samples c from P.Gen(c$) where P models M.
• c 7→ latent(M) samples c from P.Gen(c$) where P models M.

The generative process for the core language is a special case,
where the $ suffixed variables are empty records. As before, the
variables defined in step (1) are static variables defined once per
table, whereas the variables defined in step (2) are defined for each
row of the table. The $ suffixed variables help define the semantics
of Tabular, but are not directly available to Tabular programs.

3.3 Examples of Models and Queries
A mixture model is a probabilistic choice between two or more
other models. We begin with several varieties of mixture model.

Mixture of Two Gaussians Our first mixture model makes use of
the library models CBernoulli and CGaussian.

MoG1
z bool latent CBernoulli()
g1 real latent CGaussian()
g2 real latent CGaussian()
y real output if z then g1 else g2

In step (1) of the generative process, we sample parameters z$
(containing the bias) from the prior of CBernoulli(), and parameters

g1$, g2$ (each containing a mean µ and precision τ) from the prior
of CGaussian(). The empty hyperparameter lists in CBernoulli()
and CGaussian() indicate that we use the default hyperparameters
built into the models, that is, {α = 1.0;β = 1.0} and {µ = 0.0;τ =
1.0;κ = 1.0;θ = 2.0}.

In step (2), we generate each row of the table by sampling z from
the distribution Bernoulli(z$), g1 and g2 from the distributions
Gaussian(g1$.µ,g1$.τ) and Gaussian(g2$.µ,g2$.τ) and finally
defining the output y to be g1 or g2, depending on z.

Given a concrete database for this schema (a column y of ran-
dom numbers that is expected to be grouped into two clusters
around the means of the two Gaussians) inference learns the poste-
rior distributions of the parameters z$, g1$, and g2$, and also fills
in the latent columns. The inferred distribution of each z indicates
how likely each y is to have been drawn from each of the clusters.

Mixture of an Array of Gaussians To generalize to a many-way
mixture, we first decide on a number n of mixture components
(clusters); in this case we set n=5. To randomly select a cluster
we use the CDiscrete library model, which has an integer hyper-
parameter N and outputs natural numbers less than N. The default
value of N is 2; to define a mixture model with n components we
override the default as CDiscrete(N=n). A model CDiscrete(N=2)
is akin to a CBernoulli that outputs 0 or 1.

MoG2
n int hyper 5
z int latent CDiscrete(N=n)
y real output CGaussian()[z < n]

The indexed model CGaussian()[z < n] denotes a model whose
parameter is an array of n parameter records (containing mean
µ and precision τ fields) for the underlying CGaussian model.
The output of the indexed model is obtained by first picking the
parameter record at index z, and then getting an output from the
CGaussian model with those parameters.

The parameter of column z is a probability vector of length N,
an array of non-negative real numbers that sum to 1, indicating the
chance of each output value. The parameter for the y column is an
array of n parameter records for the underlying CGaussian model.

The observed output of each row is determined by first sampling
the cluster z from the discrete distribution, and then sampling from
CGaussian[z < n]. With n=2 we recover our previous mixture of
two Gaussians.

User/Movie/Rating Schema Our final mixture model is a Tabular
version of the factor graph in Figure 1 of Singh and Graepel (2012),
where it was automatically generated from a relational schema.

User
z int latent CDiscrete(N=4)
Name string input
IsMale bool output CBernoulli()[z]
Age int output CDiscrete(N=100)[z]

Movie
z int latent CDiscrete(N=4)
Title string input
Genre int output CDiscrete(N=7)[z]
Year int output CDiscrete(N=100)[z]

Rating
u link(User) input
m link(Movie) input
Score int output CDiscrete(N=5)[u.z,m.z]

The model for the Score column illustrates a couple of notations
regarding indexed models. First, a doubly-indexed model M[E1 <
F1,E2 < F2] is short for (M[E1 < F1])[E2 < F2]. Second, we write
M[E] as short for M[E < n] when we know that E is output by
CDiscrete(N=n).

Each row in the User table belongs to one of four clusters,
indexed by the latent variable z which has a CDiscrete model.
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For each cluster, there is a corresponding distribution over gender
(IsMale) and Age. Similarly, each row in the Movie table is mod-
elled by a four-way mixture, indexed by z, with Genre and Year
attributes. Finally, each row in the Rating table has links to a user
u and to a movie m, and also a Score attribute that is modelled by
a discrete distribution indexed by the clusters of the user and the
movie, corresponding to a stochastic block model (Nowicki and
Snijders 2001).

Bayes Point Machine The Bayes Point Machine (BPM) (Minka
2001) is a Bayesian classification model which takes a vector of
floats as input and returns a binary classification. It can be con-
sidered the Bayesian equivalent of a linear support vector machine
with the added benefits of returning a class probability rather than
just a binary decision, and explicitly representing the remaining
parameter uncertainty in terms of the posterior distribution over
weight vectors. In the Tabular implementation of the BPM the
weight vector is endowed with a multivariate Gaussian prior. The
inputs X0, X1, and X2 are combined into a feature vector V and the
output Y is given by the truth value of a Gaussian distributed score
being positive, whose mean is the inner product between the weight
vector W and the feature vector V. Inference will provide a Gaus-
sian posterior over the weight vector W which can be used to obtain
predictions for test inputs X in the form of Bernoulli distributions
over outputs Y.

BPM
X0 real input
X1 real input
X2 real input
Zero vector hyper [for i<3→0.0]
Unit matrix hyper [for i<3→ [for j<3→ if i = j then 1.0 else 0.0]]
W vector param VectorGaussian(Zero,Unit)
V vector latent [X0,X1,X2]
Y bool output Gaussian(W∗V,1.0)> 0.0

Latent Dirichlet Allocation Latent Dirichlet Allocation (LDA)
(Blei et al. 2003) is a powerful yet simple topic model for text,
which is widely used to organize text collections and understand
the underlying topic structure. Given the building block of a con-
jugate Discrete model CDiscrete, LDA can be formulated very
succinctly within Tabular. The concrete schema has three tables,
one for words, one for documents and one for word occurrences.
The occurrence table contains input fields Doc and Position which
specify a slot for a word. A latent column Topic holds the topic
from which the word is being drawn modelled with CDiscrete.
Given the topic, the observed column Word is sampled from an-
other conjugate discrete model indexed by Topic. Inference in this
model yields distributions over words characterizing each topic as
well as distributions over topics for each word occurrence.

Words
Word string input

Docs
Filename string input

Occs
Doc link(Docs) input
Position int input
NTopics int hyper 10
Topic int latent CDiscrete(N=NTopics,

alpha=15.0)[Doc]
Word link(Words) output CDiscrete(N=sizeof(Words),

alpha=0.1)[Topic]

Query-by-Latent-Column and TrueSkill We illustrate direct use
of query-by-latent-column with reference to TrueSkill, and also a
programming style where we introduce new query tables purely for
the purpose of formulating queries.

First, as illustrated in Section 1, given tables of players and
matches, inference computes distributions for the latent Skill col-

umn; these skills can be used to do matchmaking or to display in
leaderboards. It also infers distributions for the Perf1 and Perf2
columns, which may indicate whether a player was on form or not
on the occasion of a particular match.

Second, suppose we wish to bet on the outcomes of upcoming
matches between members p and q of the Players table. We add a
fresh query table Bets, which has the same schema as Matches
except that Win1 is latent instead of being an observed output.
We place one row in this new table, with p for Player1 and q for
Player2, and inference computes distributions for the three latent
columns, including a Bernoulli for Win1 indicating the odds of a
win. By placing multiple rows in the Bets table we can predict the
outcomes of multiple upcoming matches.

Bets
Player1 link(Players) input
Player2 link(Players) input
Perf1 real latent Gaussian(Player1.Skill,1.0)
Perf2 real latent Gaussian(Player2.Skill,1.0)
Win1 bool latent Perf1 > Perf2

Third, consider an online situation where there is a large table
of players, and a relatively small number of players qi queuing to
begin fresh online games. We may wish to select one of the qi to
play against a new player p. To do so, we add the Sim query table
below, and fill it with rows (p,qi) for each i. The latent column
Similar holds true if the two players are close in skill (less than 0.1
units apart). Inference fills this column with Bernoulli distributions
which can be used to select a partner close in skill to p. Both
the means and variances of the skills of players enter into the
marginal probability of being Similar, thus making use of the full
probabilistic formulation.
Sim
Player1 link(Players) input
Player2 link(Players) input
Similar bool latent abs(Player1.Skill−Player2.Skill)<0.1

4. Formal Semantics of Tabular
4.1 Semantics of Fun (Review)
We here recall the semantics of Fun without zero-probability obser-
vations (Bhat et al. 2013). We write Γ ` E : T to mean that in type
environment Γ = x1 : T1, . . . ,xn : Tn (xi distinct) expression E has
type T . Let Det(E) mean that E contains no occurrence of D(. . .).
The typing rules for Fun are standard for a first-order functional
language; some examples follow below.

Selected Typing Rules of Fun Expressions: Γ ` E : T

(FUN RANDOM)
D : (x1 : T1 ∗ · · · ∗ xn : Tn)→U
Γ ` Ei : Ti for i ∈ 1..n
Γ ` D(E1, . . . ,En) : U

(FUN ACONST)
Γ ` Ei : T for i ∈ 1..n
Γ ` [E1, . . . ,En] : T [ ]

(FUN ITER)
Γ,x : int ` F : T Γ ` E : int Det(E)
Γ ` [for x < E→ F ] : T [ ]

(FUN INDEX)
Γ ` E : T [ ]
Γ ` F : int
Γ ` E[F ] : T

The interpretation of a type T is the Borel-measurable set VT of
closed values of type T (real numbers, integers, records, and so on)
using the standard topology. A function f : T →U is measurable
if f−1(A) ⊆ VT is measurable for all measurable A ⊆ VU ; all
continuous functions are measurable.

A finite measure µ over T is a function from (Borel-measurable)
subsets of VT to the non-negative real numbers, that is countably
additive, that is, µ(∪iAi) = Σiµ(Ai) if A1,A2, . . . are pair-wise
disjoint. The finite measure µ is called a probability measure if
µ(VT ) = 1.0. If µ is a probability measure on T and f : T → U
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is measurable, we let f−1µ(A) , µ( f−1(A)). In this context f is
called a random variable.

The semantics of a closed Fun expression E is a probability
measure PE over its return type. It is defined via a semantics of
open Fun expressions (Ramsey and Pfeffer 2002) in the probabil-
ity monad (Giry 1982). We write PE for the probability measure
corresponding to a closed expression E; if ∅ ` E : T then PE is a
probability measure on VT . If ` E : T1 ∗· · ·∗Tn, and for i = 1..m we
have ` Vi : Ui and Fi det and x1 : T1, . . . ,xn : Tn ` Fi : Ui, we write
PE [x1, . . . ,xn | F1 =V1∧·· ·∧Fm =Vm] for (a version of) the con-
ditional probability distribution of PE given f = (V1, . . . ,Vm) where
f (x1, . . . ,xn) = (F1, . . . ,Fm).

4.2 Semantics of Semi-Observed Models
A model is associated with four types: a hyperparameter type H, a
parameter type W , an input type X , and an output type Y .

Model Types and Typing of Models: Q, ` P : Q

Q ::= 〈H,W,X ,Y 〉 quadruple type of model

(TYPE MODEL)
∅ ` Eh : H Det(Eh) h : H ` Ew : W h : H,w : W,x : X ` Ey : Y

` 〈Eh,(h)Ew,(h,w,x)Ey〉 : 〈H,W,X ,Y 〉

In a semi-observed model, Y is a pair type, where the second
component holds the latent variables of the model. Given a semi-
observed model, the standard distributions are obtained as follows.

Proposition 1. Given a model P = 〈Eh,(h)Ew,(h,w,x)Eyz〉 such
that ` P : 〈H,W,X ,Y ∗Z〉 the following Fun expressions denote the
standard distributions:

• Prior: let h = Eh in Ew.
• Full sampling (where h =Vh, w =Vw, x =Vx):
let h =Vh in let w =Vw in let x =Vx in Eyz.

• Sampling (where h =Vh, w =Vw, x =Vx):
let h =Vh in let w =Vw in let x =Vx in fst Eyz.

• Joint posterior (where x = VX , y = Vy): PE
[
w,yz | fst yz =Vy

]
where E = let h = Eh in let w = Ew in let x =Vx in w,Eyz.

• Posterior: fst−1P where P is the joint posterior; and
• Posterior latent (snd◦ snd)−1P where P is the joint posterior.

4.3 Typing and Translation of Tabular
One of the purposes of typing Tabular is to catch binding time
errors, where identifiers are accidentally defined in terms of other
identifiers that are bound later in the computation. Here are some
examples of binding time and other errors.

Table1
c1 int hyper 3
Bad0 int hyper 3+c1
c2 bool latent Bernoulli(0.8)
Bad1 bool param c2
x1 real input
Bad2 real param x1
x2 int output c1
Ok3 int latent x2

Bad0 is bad because the default hyperparameter is not closed.
Bad1 is bad because it uses a latent variable (defined in step (2))
to define a parameter (defined in step (1)). Bad2 is bad becauses it
uses an input variable (defined in step (2)) to define a parameter.
Ok3 is ok because it uses an output (defined in step (2)) to create a
latent variable (also defined in step (2)).

When typing schemas, we use binding times to track the avail-
ability of variables. Let B be the set {h,w,xyz} of binding times
ordered such that ⊥ = h < w < xyz = >. Here h stands for

the (deterministic) hyperparameter phase, w stands for the (non-
deterministic) parameter phase, and xyz stands for the generative
phase of the computation. We use metavariables ` and pc to range
over B. Informally, variables declared at one time may only be
used in expressions typed at or above that time (the current time
pc is maintained as an additional index of the Tabular typing judg-
ments). Binding times are also used to prevent the mention of non-
deterministic parameters in expressions used as (necessarily deter-
ministic) hyperparameters, and generative data in the construction
of either hyperparameters or parameters. When translating to Fun,
binding times ensure that the target program is well-scoped, and
deterministic where needed. (We considered using a triple of con-
texts (Γh,Γw,Γxyz) instead of annotating each variable binding
with a level; overall, it seems syntactically lighter to use binding-
time annotations as we have done.)

Tabular Levels and Typing Environments: `, Γ

`, pc ::= h | w | xyz binding time
Γ ::= environment

∅ empty
Γ,x :` T variable typing
Γ, t : 〈{RT}〉 predictive row type for t

Environments declare variables with their binding time and
type, and tables with their predictive row types.

Judgments of the Tabular Type System:
Γ ` � environment Γ is well-formed
Γ ` T in Γ, type T is well-formed
Γ `pc E : T in Γ at binding time pc, expr. E has type T
Γ `pc M : W,T in Γ at pc, model M has params W , returns T
Γ ` T : Q in Γ, table T has type Q
Γ ` S : Q in Γ, schema S has type Q

Formation Rules for Environments: Γ ` �
(ENV EMPTY)

∅ ` �

(ENV VAR)
Γ ` T x /∈ dom(Γ)

Γ,x :` T ` �

(ENV TABLE)
Γ ` {RT} t /∈ dom(Γ)

Γ, t : 〈{RT}〉 ` �

Formation Rules for Types: Γ ` T

(TYPE SCALAR)
Γ ` �
Γ ` S

(TYPE ARRAY)
Γ ` T

Γ ` T [ ]

(TYPE RECORD)
Γ ` � ∀c ∈C. Γ ` Tc

Γ ` {c : Tc}c∈C

The translation of a Tabular schema to a model is performed by four
judgments. Though defined relationally, the relations are partial
functions on raw terms and total functions on well-typed Tabular
terms.

Judgments of the Translation:
E ⇓ F Tabular expression E translates to Fun expr. F
M ⇓ 〈Ew,(w)E〉 model M translates to 〈Ew,(w)E〉
T ⇓ P marked up table T translates to prim. model P
S ⇓ P marked up schema S translates to P

Lemma 2 (Determinacy). If S ⇓ P and S ⇓ P′ then P = P′.

Theorem 1 (Translation Preserves Typing).
If ∅ ` S : Q then there exists P such that S ⇓ P and ` P : Q.
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4.4 Expressions
The main subtlety when translating schemas is to support foreign
keys. We use the notation (E : link(t)).c within Fun expressions to
stand for the column c of the row in table t indexed by key E.

In particular, when constructing the model for a table t j, we
may dereference a foreign key of type link(ti) to a previous ta-
ble ti with i < j. For instance, in the TrueSkill schema, there is
a reference from t2 = Matches to t1 = Players. To translate such
foreign keys, we arrange that for each table ti there is a global
variable named ti that holds the predictive table for ti, that is, the
join of the input sub-table xi, the output sub-table yi, and the la-
tent sub-table zi, for each i. Hence, an expression (E : link(ti)).c
means ti[E].c; for example, (Player1 : link(Players)).Skill com-
piles to Players[Player1].Skill.

Typing Rules for Tabular Expressions: Γ `pc E : T

(TABULAR VAR)
Γ ` � Γ = Γ1,x :` T,Γ2 `≤ pc

Γ `pc x : T

(TABULAR CONST)
Γ ` �
Γ `pc s : ty(s)

(TABULAR PRIM)
Γ ` � g : (x1 : T1, . . . ,xn : Tn)→ T Γ `pc Ei : Ti ∀i ∈ 1..n
Γ `pc g(E1, . . . ,En) : T

(TABULAR RANDOM)
Γ ` � D : (x1 : T1, . . . ,xn : Tn)→ T Γ `pc Ei : Ti ∀i ∈ 1..n
Γ `pc D(E1, . . . ,En) : T

(TABULAR IF)
Γ `pc E1 : bool Γ `pc E2 : T Γ `pc E3 : T

Γ `pc if E1 then E2 else E3 : T

(TABULAR ARRAY)
Γ ` � Γ `pc Ei : T ∀i ∈ 1..n
Γ `pc [E1, . . . ,En] : T [ ]

(TABULAR ITER)
Γ `pc E : int
Γ,x :pc int `pc F : T

Γ `pc [for x < E→ F ] : T [ ]

(TABULAR INDEX)
Γ `pc E : T [ ]
Γ `pc F : int
Γ `pc E[F ] : T

(TABULAR LET)
Γ `pc E1 : T1 Γ,x :pc T1 `pc E2 : T2

Γ `pc let x = E1 in E2 : T2

(TABULAR SIZEOF)
Γ `pc #t : int t ∈ dom(Γ)

Γ `pc sizeof(t) : int

(TABULAR DEREF)
Γ `pc E : int xyz≤ pc Γ = Γ′, t : 〈{d : Td}d∈C〉,Γ′′ c ∈C

Γ `pc (E : link(t)).c : Tc

Rule (TABULAR VAR) allows a reference to x only if x is declared
with a binding time l ≤ pc, where pc is the current binding time.

Translation Rules for Tabular Expressions: E ⇓ F

(TRANS VAR)

x ⇓ x

(TRANS CONST)

s ⇓ s

(TRANS PRIM)
Ei ⇓ Fi ∀i ∈ 1..n
g(E1, . . . ,En) ⇓ g(F1, . . . ,Fn)

(TRANS RANDOM)
Ei ⇓ Fi ∀i ∈ 1..n
D(E1, . . . ,En) ⇓ D(F1, . . . ,Fn)

(TRANS IF)
Ei ⇓ Fi ∀i ∈ 1..3
if E1 then E2 else E3 ⇓ if F1 then F2 else F3

(TRANS ARRAY)
Ei ⇓ Fi ∀i ∈ 1..n
[E1, . . . ,En] ⇓ [F1, . . . ,Fn]

(TRANS ITER)
Ei ⇓ Fi ∀i ∈ 1..2
[for x < E1→ E2] ⇓ [for x < F1→ F2]

(TRANS INDEX)
Ei ⇓ Fi ∀i ∈ 1..2
E1[E2] ⇓ F1[F2]

(TRANS LET)
Ei ⇓ Fi ∀i ∈ 1..2
let x = E1 in E2 ⇓ let x = F1 in F2

(TRANS SIZEOF)

sizeof(t) ⇓ #t

(TRANS DEREF)
E ⇓ F

(E : link(t)).c ⇓ t[F ].c

4.5 Model Expressions
Typing Rules for Model Expressions: Γ `pc M : W,T

(MODEL SIMPLE)
Γ `pc E : T

Γ `pc E : {},T

(MODEL PRIM)
Γ ` � P = 〈{R},(h)Ew,(h,w,x)Ey〉
` P : 〈{c : Hc}c∈C,W,{},Y 〉
∀c ∈C′ ⊆C. Γ `h Ec : Hc ∧ Det(Ec)

Γ `pc P(c = Ec
c∈C′) : W,Y

(MODEL INDEXED)
Γ `pc M : W,T Γ `pc Eindex : int Γ `h Esize : int Det(Esize)

Γ `pc M[Eindex < Esize] : W [],T

Primitive models must have void input; we allow to only replace
a part C′ of their hyperparameters C. The upper bound Esize of an
indexed model has binding time h, since it must be deterministic
and the same for all rows of the table.

Translation Rules for Model Expressions: M ⇓ P

(TRANS SIMPLE) (w 6∈ fv(F))
E ⇓ F

E ⇓ 〈{},(w)F〉
(TRANS MODEL PRIM) (w 6∈ fv(Eh))
P = 〈{c = Fc}c∈C,(h)Ew,(h,w,x)Ey〉 Ec ⇓ E ′c (c ∈C′)
Êc = if c ∈ C′ then E ′c else Fc Eh = {c = Êc}c∈C

P(c = Ec
c∈C′) ⇓

〈let h = Eh in Ew,(w)let h = Eh in let x = {} in Ey〉
(TRANS INDEXED) (w 6∈ fv(Findex))
Eindex ⇓ Findex Esize ⇓ Fsize M ⇓ 〈Ew,(w)Ey〉
M[Eindex < Esize] ⇓
〈[for < Fsize→ Ew],(w)let w = w[Findex] in Ey〉

A simple model has no prior. The prior of an indexed model is an
array of Fsize independent samples of the prior of the underlying
model. In the output, we use the prior value at index Findex.

4.6 Tables
The typing and translation rules for tables are defined inductively
and determine the semantics for the shared hyperparameter, shared
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parameter, and a pair of output and latent columns for a single row
of the table.

Typing Rules for Tables: Γ ` T : Q

(TABLE EMPTY)
Γ ` �
Γ `∅ : 〈{},{},{},{}∗{}〉
(TABLE HYPER) (A = hyper(E))
∅ `h E : H Det(E) Γ,c :h H ` T : 〈{RH},W,X ,Y ∗Z〉
Γ ` (c 7→ A : H)T : 〈{c : H;RH},W,X ,Y ∗Z〉
(TABLE PARAM) (A = param(M))
Γ `w M : W$,W
Γ,c :w W ` T : 〈H,{RW},X ,Y ∗Z〉 c$ 6∈ dom(Γ)∪dom(T)
Γ ` (c 7→ A : W )T : 〈H,{c$ : W$;c : W ;RW},X ,Y ∗Z〉
(TABLE INPUT) (A = input)
Γ,c :xyz X ` T : 〈H,W,{RX},Y ∗Z〉
Γ ` (c 7→ A : X)T : 〈H,W,{c : X ;RX},Y ∗Z〉
(TABLE OUTPUT) (A = output(M))
Γ `xyz M : W,Y Γ,c :xyz Y ` T : 〈H,{RW},X ,{RY}∗Z〉
Γ ` (c 7→ A : Y )T : 〈H,{c$ : W ;RW},X ,{c : Y ;RY}∗Z〉
(TABLE LATENT) (A = latent(M))
Γ `xyz M : W,Z Γ,c :xyz Z ` T : 〈H,{RW},X ,Y ∗{RZ}〉
Γ ` (c 7→ A : Z)T : 〈H,{c$ : W ;RW},X ,Y ∗{c : Z;RZ}〉

Rule (TABLE HYPER) ensures that E is deterministic and closed
and declares c at binding time h so it can be referenced at all
binding times. Rule (TABLE PARAM) ensures that M is checked
at level w (not pc) so that its generative expression has no data
dependencies and is safe to use at the parameter level. Rule (TABLE
INPUT) extends the context with c declared at xyz. Rule (TABLE
OUTPUT) extends the context with c declared at xyz and records
the types of parameter c$ and output c by extending the parameter
and output record types of the table. Rule (TABLE LATENT) is
symmetric to (TABLE OUTPUT), but instead extends the latent
record type.

The translation rules for tables make use of auxiliary let-
contexts, ranged over by L . These denote a spine of (Fun) let-
bindings ending in a hole [], and are defined inductively as follows.

(Core Fun) Let contexts: L

L ::= let context
[] hole
let x = E in L let binding

The operation L [E] plugs the hole of a L with a body E, produc-
ing a (Fun) expression.

[][E] = E
(let x = E ′ in L )[E] = let x = E ′ in (L [E])

Translation Rules for Tables: T ⇓ P

(TRANS EMPTY TABLE)

∅ ⇓ 〈{},(h){},(h,w,x)({},{})〉
(TRANS HYPER) (c 6∈ {h,w,x})
E ⇓ Eh T ⇓ 〈{Rh},(h)Ew,(h,w,x)E〉
(c 7→ hyper E : Tc)T ⇓
〈{c = Eh,Rh},(h)let c = h.c in Ew,(h,w,x)let c = h.c in E〉

(TRANS PARAM) (h 6∈ fv(Ew,Ec,c$,c) c 6∈ {h,w,x})
M ⇓ 〈Ew,(wc)Ec〉 T ⇓ 〈Eh,(h)Lw[{Rw}],(h,w,x)E〉
(c 7→ param M : Tc)T ⇓
〈Eh, (h)let c$ = Ew in let c = Ec in Lw[{c$ = c$;c = c;Rw}],
(h,w,x)let c = w.c in E〉

(TRANS INPUT)
T ⇓ 〈Eh,(h)Ew,(h,w,x)E〉 c 6∈ {h,w,x}
(c 7→ input : Tc)T ⇓ 〈Eh,(h)Ew,(h,w,x)let c = x.c in E〉
(TRANS OUTPUT) (h 6∈ fv(Ew) h,w,x 6∈ fv(Ec,c)))
M ⇓ 〈Ew,(wc)Ec〉 T ⇓ 〈Eh,(h)Lw[{Rw}],(h,w,x)Lo[({Ry},Ez)]〉
(c 7→ output M : Tc)T ⇓
〈Eh, (h)let c = Ew in Lw[{c$ = c,Rw}],
(h,w,x)let c = (let wc = w.c$ in Ec) in Lo[({c = c;Ry},Ez)]〉

(TRANS LATENT) (h 6∈ fv(Ew) h,w,x 6∈ fv(Ec,c))
M ⇓ 〈Ew,(wc)Ec〉 T ⇓ 〈Eh,(h)Lw[{Rw}],(h,w,x)Lo[(Ey,{Rz})]〉
(c 7→ latent M : Tc)T ⇓
〈Eh, (h)let c = Ew in Lw[{c$ = c,Rw}],
(h,w,x)let c = (let wc = w.c$ in Ec) in Lo[(Ey,{c = c;Rz})]〉

Rule (TRANS HYPER) merely extends the hyperparameter record
of the remaining table and rebinds c as the projection h.t in the
prior and gen of the model. Rule (TRANS PARAM) extends table
T’s prior with two fields for the prior and gen of M, and rebinds
parameter c as the projection w.c in the gen of the row. Rule
(TRANS INPUT) just binds c as the projection x.c of input row x in
the gen of the table (but does not export c since it is neither output
nor latent). Rule (TRANS OUTPUT) just defines c as the gen of its
model, whose parameter wc is obtained from w.c$; c is exported in
the output record of the row. Rule (TRANS LATENT) is symmetric
to (TRANS OUTPUT), but instead extends the latent record.

For example, here is a single-table schema for linear regression.

LinearRegression
muA real hyper 0
muB real hyper 0
A real param Gaussian(muA,1)
B real param Gaussian(muB,1)
X real input
Z real latent A∗X + B
Y real output Gaussian(Z,1)

The row semantics of this table is as follows. For readability, we
inline some variable definitions. Since this table only uses simple
model expressions, the $ suffixed fields for the parameters of model
expressions all contain the empty record. Modulo these redundant
fields, we recover the model from Section 2.

Model for a Row of the LinearRegression Table:
Hyper {muA = 0;muB = 0}
Prior(h) {A$ = {};A = Gaussian(h.muA,1);

A$ = {};B = Gaussian(h.muB,1);
Z$ = {};Y$ = {}}

Gen(h,w,x) let Z = w.A* x.X + w.B in
let Y = Gaussian(Z,1)} in
({Y=Y},{Z=Z})

4.7 Schemas
The typing and translation rules are defined inductively.

Typing Rules for Schemas: Γ ` S : Q

(SCHEMA EMPTY)
Γ ` �
Γ `∅ : 〈{},{},{},{}∗{}〉
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(SCHEMA TABLE)
Γ ` T : 〈H,W,{RXt},{RYt}∗{RZt}〉
Γ,#t :h int, t : 〈{RXt ;RYt ;RZt}〉 `

S : 〈{RH},{RW},{RX},{RY}∗{RZ}〉
H ′ = {#t : int;RH} W ′ = {t : W ;RW} X ′ = {t : {RXt}[];RX}
Y ′ = {t : {RYt}[];RY} Z′ = {t : {RZt}[];RZ}
Γ ` (t 7→ T)S : 〈H ′,W ′,X ′,Y ′ ∗Z′〉

Rule (SCHEMA TABLE) uses the model type of the table to extend
the context with a declaration of the table’s size, #t at level h, ((#t
is used in the translation of sizeof(t)) as well as the predictive row
type of t: this is the union of its input, output, and latent fields.
The table’s default hyperparameters (of type H) are applied in the
translation of t and do not appear in the type of the schema. The rule
extends the components of the schema’s model type with additional
fields for the table size; the parameters of the table (as a nested
record); the inputs of the table (a nested array of records); and the
pair of output and latent table records extended with fields for the
output and latent arrays of records for t.

Translation Rules for Schemas: S ⇓ P

(TRANS EMPTY SCHEMA)

∅ ⇓ ({},(h){},(h,w,x){})
(TRANS TABLE)
T ⇓ 〈Eh,(ht)Ew,(ht ,wt ,xi)Lt [{Ry},{Rz}]〉
Rx = {c = xi.c | c ∈ inputs(T)}
S ⇓ ({Rh},(h)Lw[{Rw}],(h,w,x)Lyz[{Sy},{Sz}]
Et = let ht = Eh in let wt = w.t in

[for i < #t→ let xi = x.t[i] in Lt [{Rx;Ry;Rz}]]
Ey = [for i < #t→{c = t[i].c}c∈dom(Ry)]

Ez = [for i < #t→{c = t[i].c}c∈dom(Rz)]
h 6∈ fv(let ht = Eh in Ew, t,#t) h,w,x 6∈ fv(Et , t,#t)

(t 7→ T)S ⇓
〈{#t = 1,Rh},
(h)let t = let ht = Eh in Ew in let #t = h.#t in Lw[{t = t;Rw}],
(h,w,x)let #t = h.#t in let t = Et in

Lyz[({t = Ey;Sy},{t = Ez;Sz})]〉

Rule (TRANS TABLE) takes the model for the parameters and a
single row of t and constructs a model that draws once from the
prior of t then replicates t’s output distribution across an array of
size #t. The intermediate array, Et , contains the predictive table
for t, merging the input, output and latent sub-records of t as
single records. Expressions Ey and Ez are used to reshuffle the
array of merged records into separate arrays of output and latent
sub-records. The rule extends S’s hyperparameter record with a
default binding for #t (with arbitrary value 1); table sizes must be
consistently overriden before inference.

4.8 Translation examples
To illustrate our schema translation and our treatment of foreign
keys, here is the translation of TrueSkill, rewritten a little for read-
ability: first, the two row models for the two tables, followed by the
model of the whole schema.

Model for a Row of Table Players: P1

Hyper {}
Prior(h) {Skill$ = {}}
Gen(h,w,x) let Skill =Gaussian(25,0.01) in

({},{Skill = Skill})

Model for a Row of Table Matches: P2

Hyper {}
Prior(h) {Perf1$ = {};Perf2$ = {};Win1$ = {}}
Gen(h,w,x) let Perf1=Gaussian(Players[x.Player1].Skill,1) in

let Perf2=Gaussian(Players[x.Player2].Skill,1) in
let Win1= Perf1 > Perf2 in
({Win1 = Win1},{Perf1 = Perf1;Perf2 = Perf2})

Model for the TrueSkill Schema:
Hyper {#Players = 1,#Matches = 1}
Prior(h) {Players = P1.Prior(P1.Hyper),

Matches = P2.Prior(P2.Hyper)}
Gen(h,w,x)
let Players = [for i <h.#Players→

let Skill = Gaussian(25,0.01) in
{Skill = Skill}]

let Matches = [for i <h.#Matches→
let Player1 = x.Matches[i].Player1 in
let Player2 = x.Matches[i].Player2 in
let Perf1=Gaussian(Players[Player1].Skill,1) in
let Perf2=Gaussian(Players[Player2].Skill,1) in
let Win1= Perf1 > Perf2 in
({Player1 = Player1;Player2 = Player2;

Win1 = Win1;Perf1 = Perf1;Perf2 = Perf2}) ]
({ Players = [for i < h.#Players→ {}];

Matches = [for i < h.#Matches→
{Win1 = Matches[i].Win1}]},

{ Players = [for i < h.#Players→ {Skill = Players[i].Skill}];
Matches = [for i < h.#Matches→
{Perf1 = Matches[i].Perf1;Perf2 = Matches[i].Perf2}}])

4.9 A Reference Learner for Query-by-Latent-Column
We conclude with a learner API, a programming interface for
query-by-latent-column: the API allows a user to accumulate a
dataset split into input and observed databases. To perform queries,
we bundle a database and a schema into a learner L = (d | S) where
d = (dx,dy) and dx is the input database and dy is the observed
database. (We assume the types of d and S match, as discussed in
the next section.) To pick out the sizes of tables in a database, we
let #({t1 = B1; . . . ; tn = Bn}) , {#t1 = |B1|; . . . ;#tn = |Bn|}). We
support the following functional API.

• Let L0(S) be the empty learner, that is, S plus a pair of databases
with the right table names but no table rows.

• Let train(L,(d′x,d
′
y)) be L′ = ((dx +d′x,dy +d′y) | S) where + is

concatenation of arrays in records, and L = ((dx,dy) | S).
• Let params(L) be the posterior distribution p(w | d,h) induced

by P, where L = (d | S), P models S, and h = #(dx).
• Let latents(L) be the posterior latent distribution p(z | d,h)

induced by P, where L = (d | S), P models S, and h = #(dx).

Compared to the reference learner of Gordon et al. (2013), this
new API can learn latent outputs since it works on semi-observed
models. Our current implementation uses Infer.NET Fun to com-
pute approximate marginal forms of the posterior distributions on
the database parameter and latent database, and persists them to
the relational store. The API allows an incremental implementa-
tion, where the abstract state L is represented by a distribution
over the parameters and latent variables, computed after each call
to train. Our current implementation does not support this opti-
mization, maintains the whole dataset d, and does inference from
scratch when necessary. The incremental formulation of our learner
is consistent with the Algebraic Classifier formulation of Izbicki
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(2013), which promises reductions in computational complexity for
cross-validation and enable efficient online and parallel training al-
gorithms based on the monoidal or group structure of such learners.

Now that we have schema typing and a semantics of schemas
as models, we can perform inference as follows. Let a learner
L = (dx,dy | S) be queryable if ` S : 〈H,W,X ,Y ∗Z〉 and ∅ ` dx : X
and ∅ ` dy : Y , and for all tables ti ∈ dom(S) we have |dx.ti| =
|dy.ti| ≥ 1. In particular, the empty learner is not queryable, since
it contains empty tables. We can now implement a latent column
query.

Theorem 2. If L = (dx,dy | S) is queryable, there is a closed Fun
expression E(dx) such that if µ , PE(dx)

[
w,yz | fst yz = dy

]
then

(1) params(L) = fst−1
µ; and

(2) latents(L) = (snd◦ snd)−1µ .

Proof: Assume that S ⇓ 〈Eh,(h)Ew,(h,w,x)Eyz〉, and let expres-
sion E(dx) , let h = #(dx) in let w = Ew in let x = dx in w,Eyz.
By Proposition 1, µ as above yields the sought distributions.

5. Outline of Practical Implementation
Our implementation builds on the model-learner pattern of Gordon
et al. (2013), in which models are represented as records of type-
indexed F# quotations representing typed Fun expressions. Our ini-
tial Tabular implementation generates such strongly-typed models.
This target confers two advantages: the quotation fragments are
compact yet statically checked for type correctness; the resulting
terms are easily JIT-compiled to produce efficient sampling code.
The latter may be used to generate sampled outputs from user-
provided inputs (which may be synthetic or real data) and is a useful
tool for testing models.

For clarity, the semantics in Section 4 splits compilation into
type-checking followed by untyped translation. To create strongly-
typed quotations, we need to convince F#’s type checker that our
dynamically constructed quotations are composed in a statically
safe manner. The most direct way to do so is to re-structure the sep-
arate typing and translation judgments as single elaboration judg-
ments that couple type-checking with translation. The F# rendi-
tion of this idea is a triple of polymorphic functions that repre-
sent the typing contexts as a pair of (nested) tuples. Contexts are
extended as required by using polymorphic recursion in recursive
calls to elaboration. The output of elaboration is a value of existen-
tial type containing both the target type and the target translation of
the source term. Since type variables have accurate run-time repre-
sentations in .NET, we can directly compare the types of generated
sub-expressions as needed, avoiding the need to maintain separate
type representations.

While an interesting implementation technique, it also has some
drawbacks — F# records are nominal, not structural, so difficult to
quote dynamically (in the absence of appropriate record type dec-
larations). Our implementation must normalise Tabular records to
nested pairs, similar to the way we encode contexts. Expressing the
translation using static quotations also precludes the preservation
of schema-specific variable names, which can make the generated
code challenging to decipher when debugging the compiler. Finally,
our use of existential types, which are not directly supported in F#,
requires an awkward encoding via generic classes.

A secondary role of the elaborator is to construct schema de-
rived functions for reading and writing concrete data and distri-
butions to the database using a library. Unfortunately, since the
schema of the database is not statically known, the language in-
tegrated query facilities of F# are of no direct help in implementing
this functionality.

Figure 1 reports example compile and inference times for some
of the models described here. Column S/R indicates the use of syn-
thetic or real data; Table Sizes gives the size of the tables (num-
ber of records per table), T2F is the Tabular to Fun compilation
time, F2IN is the Fun to Infer.NET compilation time and IN is
Infer.NET’s internal compilation time (all in milliseconds). While
translating Tabular to Fun is cheap, compilation times are domi-
nated by the F2IN phase, due to a performance problem with the
Fun compiler.

All performance numbers reported here are based on Infer.NET’s
Expectation Propatation algorithm.

6. Case Study: Intelligence Testing
Tabular has been designed to make the paradigm of model-based
machine learning (Bishop 2013) usable for practitioners who are
not machine learning experts. We describe a case study of data
analysis using Tabular based on a dataset from intelligence testing.

Our case study relies on models first published by Bachrach
et al. (2012) and data provided by the Cambridge Psychometrics
Centre, based on testing material by Pearson Assessment. We use
a dataset of responses to a standard multiple-choice intelligence
test called Raven’s Standard Progressive Matrices (SPM). The test
consists of sixty questions, each comprising a matrix of shapes
with one element missing and eight possible answers, exactly one
of which is correct. The sample consists of 121 subjects who
filled SPM for its standardization in the British market in 2006.
The factor graph for the full Difficulty-Ability-Response (DARE)
model is shown in Figure 2. Responses and true answers may or
may not be observed.

Figure 2 also depicts the full DARE model in Tabular. Each par-
ticipant is characterized by a latent Ability. Each question is char-
acterized by a (true) Answer, a Difficulty and a Discrimination
parameter. Responses depend on ParticipantID and QuestionID.
Under the model, an Advantage variable is calculated as the differ-
ence between ability of participant and difficulty of question. The
Boolean variable Know, which represents whether the participant
knows the answer or not, is modelled as a probit over Advantage
with Discrimination as the dispersion parameter. DB returns its
first argument, and is a pragma to the underlying inference al-
gorithm, to apply a damping factor for better convergence. The
primitive operator Probit(a,b) is equivalent to Gaussian(a,b)>0.0).
Guess represents a random guess from a uniform distribution over
all possible responses. The participant’s Response is taken to be
the question Answer if Know is true and Guess otherwise. The
model relies on two sources of observed data: correct answers to
the questions and responses provided by students. A subset of cor-
rect answers can be provided through the table QuestionsTrain.
A subset of given responses can be provided through the table
ResponsesTrain.

Note that there are simplified versions of the full DARE model
in which a) only the student’s ability is modelled (A model) or b)
the students’ abilities and the questions’ difficulties are modelled
(DA model). The model is run once to answer two types of queries
given a subset of the true answers and a subset of given responses:
i) Infer the missing correct answers to questions and ii) Infer the
missing responses of students.

Figure 3 shows how the Tabular implementation differs from
the Infer.NET implementation on a sample run where 30% of re-
sponses and 30% of true answers are unobserved. The data con-
tained 121 participants, 60 questions, 41 training questions, 7260
responses and 5082 training responses. The inference results of In-
fer.NET and Tabular based implementations are very similar. They
differ slightly because of differences in the way our compiler trans-
lated the Tabular formulation into Infer.NET code from the direct
implementation by an expert. However, the Infer.NET code includ-
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Model S/R Table Sizes T2F(ms) F2IN(ms) IN Inference(ms)
TrueSkill S 100,20000 621 54345 1286 49737
Recommender S 20,200,100 706 11241 3609 637
RecommenderQuery S 20,200,100,20 775 33230 3916 26333
InfernoClassicMM S 100,33,33,33 512 14003 3385 793

Figure 1. Tabular Benchmarks

Participants
Ability real latent Gaussian(0.0,1.0)
Questions
Answer int latent DiscreteUniform(8)
Difficulty real latent Gaussian(0.0,1.0)
Discrimination real latent Gamma(5.0,0.2)
QuestionsTrain
QuestionID link(Questions) input
Answer int output QuestionID.Answer
Responses
ParticipantID link(Participants) input
QuestionID link(Questions) input
Advantage real latent DB(ParticipantID.Ability − QuestionID.Difficulty,0.2)
Know bool latent Probit(Advantage,QuestionID.Discrimination)
Guess int latent DiscreteUniform(8)
Response int latent if Know then QuestionID.Answer else Guess
ResponsesTrain
ResponseID link(Responses) input
Response int output ResponseID.Response

Figure 2. The DARE model in Tabular and factor-graph notation. The model is implemented in annotations to the three main tables
Participants, Questions, and Responses. Tables QuestionsTrain and ResponsesTrain provide a mechanism for missing data.

Model Language LOC LOC LOC LOC Compile Infer Model log Avg. (log) prob. Avg. (log) prob.
Data Model Inference total seconds seconds evidence test responses. test answers.

A Tabular 0 17 0 17 126 10 -7499.74 (-1.432),0.239 (-3.435),0.032
A Tabular II 0.41 1.47 -7499.74 (-1.432),0.239 (-3.424),0.033
A Infer.NET 73 45 20 138 0.32 0.38 -7499.74 (-1.432),0.239 (-3.425),0.033

DA Tabular 0 18 0 18 145 11 -5932.80 (-1.118),0.327 (-0.699),0.497
DA Tabular II 0.40 1.54 -5933.52 (-1.118),0.327 (-0.739),0.478
DA Infer.NET 73 47 21 141 0.34 0.43 -5933.25 (-1.118),0.327 (-0.724),0.485

DARE Tabular 0 19 0 19 163 16 -5823.01 (-1.119),0.327 (-0.551),0.576
DARE Tabular II 0.42 6.46 -5820.40 (-1.119),0.327 (-0.528),0.590
DARE Infer.NET 73 49 22 144 0.37 2.8 -5820.40 (-1.119),0.327 (-0.528),0.590

Figure 3. Comparison of Tabular and direct Infer.NET implementations of different variants of the DARE model for multiple-choice
questionnaires (machine configuration: DELL Precision T3600, Intel(R) Xeon(R) CPU E5-1620 with 16GB RAM, Windows 8 Enterprise
and .NET 4.0). In all cases, the underlying algorithm is Infer.NET’s Expectation Propagation. Tabular II gives the numbers for a direct
translation from Tabular to Infer.NET that shows the performance issues of Fun (in particular the high compilation times) can be avoided.

ing the necessary data transformation code is much longer than the
succinct and readable Tabular code that was added to the exist-
ing data schema to describe the same model. Tabular’s excessively
high compilation times are not due to the Tabular to Fun transla-
tion, which takes less than one second for each model, but to a
flaw in the Fun compiler: Fun inlines all data before compiling,
a convenient but unnecessary measure avoided by Infer.NET. To
demonstrate that the excessive compile times can be reduced, we
prototyped a second compiler, Tabular II, that translates Tabular
programs directly to Infer.NET. On the DARE case study Tabular
II improves compile times by two orders of magnitude, and infer-
ence time by up to one order of magnitude, yielding performance
that is more competitive with handwritten Infer.NET (Figure 3).

7. Query-by-Missing-Value
Inference of latent columns requires that all output columns con-
tain a valid value at each row. However, many real datasets contain
missing values. Query-by-missing-value infers the posterior proba-
bility of missing values in output columns, conditioned on observed
values actually present in the database. In a missing-values query,
each attribute value is either known, or missing; we use ? to denote
missing values.

Query-by-Missing-Value Database: d?

V ? ::= ? |V missing or known value
r? ::= {c1 =V ?

1 , . . . ,cn =V ?
n } query-by-missing-value row

R? ::= [r?
0; . . . ;r?

n] query-by-missing-value table
d? ::= {t1 = R?

1, . . . , tn = R?
n} query-by-missing-value database

15 2013/12/17



Let a missing-values learner (dx,d?
y | S) be a learner where dx is a

normal value and d?
y is a query-by-missing-value database. Such a

learner can be queryable (as defined in Section 4.9), where we let
Γ ` ? : T for any T and Γ.

The result of inference on a queryable missing-values learner is
the joint posterior distribution for all the ? entries in d?

y , in addition
to the latent columns and the parameters of each table. For a formal
definition, we need to compute the observations of d?

y , that is, the
entries in d?

y present in the database and their values.

Observations of a missing-values query: OE(·)
OE(?) , true OE(V ) , E =V

OE({ci =V ?
i }i∈1..n) ,

∧
i∈1..n OE.ci(V

?
i )

OE([r?
i ]

i∈0..n) ,
∧

i∈0..n OE[i](r
?
i )

OE({ti = R?
i }i∈1..n) ,

∧
i∈1..n OE.ci(R

?
i )

Proposition 3. If L(dx,d?
y | S) is a queryable missing-values

learner and
S ⇓ 〈Eh,(h)Ew,(h,w,x)Eyz〉 then the prior distribution of L is given
by PE where E = let h= #(dx) in let w = Ew in let x = dx in w,Eyz,
and the joint posterior is the conditional probability distribution
PE

[
w,yz |Ofst yz(d

?
y)
]
.

7.1 Example of Query-by-Missing-Value
Inferno is an experimental embedding of probabilistic inference in
a spreadsheet (http://research.microsoft.com/inferno/).
Given a probabilistic model for the whole spreadsheet, Inferno can
fill in the missing values of empty cells, and also detect outliers:
cells whose values are far from what is predicted by the model.

An Inferno spreadsheet can be considered as a queryable
learner, where each spreadsheet column is an output but may have
missing values, and there is an additional latent column for each
row. The Tabular schema below corresponds to the Generalized
Gaussian model produced by Inferno on a three-column table. We
here consider only real-valued columns; other data types such as
Booleans and integers can also be encoded as (vectors of) real num-
bers with appropriate (probabilistically invertible) link functions.

GG
V vector latent CVectorGaussian(Ncols=3)
X0 real output V[0]
X1 real output V[1]
X2 real output V[2]

(The library model CVectorGaussian is akin to CGaussian, but
outputs vectors from a multivariate Gaussian distribution with
Gaussian and Wishart priors.)

The query is a table GG containing the spreadsheet data, with
empty cells replaced by ?, such as the following.

GG
ID X0 X1 X2
0 1.0 2.1 2.9
1 2.1 ? 6.3
2 ? 2.7 3.5

Here Oy(GG) = y[0].X0 = 1.0∧ y[0].X1 = 2.1∧ ·· · ∧ y[2].X1 =
2.7∧ y[2].X2 = 3.5.

7.2 Translating Query-by-Missing-Value to
Query-by-Latent-Column

Missing-values queries can be answered by translating them to a
latent column query and performing inference on the latter. The key
idea is that for each output column of the original table we create a
new table that contains just the known values in that column. In the

translation of the orginal table, each output column is simply turned
into a latent column. For example, the Inferno GG model translates
to the following tables.

GG’
V vector latent CVectorGaussian(Ncols=3)
X0 real latent V[0]
X1 real latent V[1]
X2 real latent V[2]

X0
R link(GG’) input
V real output R.X0

X1
R link(GG’) input
V real output R.X1

X2
R link(GG’) input
V real output R.X2

Above, the query tables (X0, X1, and X2) each contain a value
column V and a reference column R, which denotes the row
from which the value came. Since the GG table contains no input
columns, the translated GG’ table contains only latent attributes,
which do not show up in the query.

GG’
ID
0
1
2

All the data is in the query tables.

X0 X1 X2
ID R V R V R V

0 0 1.0 0 0 2.1 0 0 2.9
1 1 2.1 1 2 2.7 1 1 6.3

2 2 3.5

7.3 Formal Translation
We fix a queryable missing-values learner L = (dx,d?

y | S) where
S = (t j 7→ Tj)

j∈1..m and each table Tj = (c ji 7→ A ji : Tji)
i∈1..n j .

Let the outputs Oj , (i ∈ 1..n j | A ji = output( )) be an ordered
sequence of the output columns of table j for j ∈ 1..m. We assume
fresh table names t ji for j ∈ 1..m and i ∈ O j.

We turn output annotations into latent column annotations by
letting [[output(M)]] , latent(M), and [[A]] , A otherwise. We
extend [[·]] to tables and schemas as follows.

[[Tj]], (c ji 7→ [[A ji]] : Tji)
i∈1..n j

Tji , (R 7→ input : int)
(V 7→ output(R : link(t j)).c ji : Tji) if i ∈ Oj

[[S]], (t j 7→ [[Tj]],(t ji 7→ Tji)
i∈Oj ) j∈1..m

In the example above, GG’ = [[GG]], and the query tables Xi corre-
spond to instances of Tji.

To translate the database, we first translate the observations in
d?

y .

Rxji , [{R = k} | d?
y .t j[k].c ji 6= ?]k∈0..|d?

y .t j |−1

Ryji , [{V = d?
y .t j[k].ci} | d?

y .t j[k].c ji 6= ?]k∈0..|d?
y .t j |−1.

Here the contents of the query tables Xi above correspond to
Rxji,Ryji.

The translations of the original tables (GG’ above) have no
observed values.

Ryj , [{}]k∈0..|dx.t j |−1

Finally, we can combine these tables into a new database d′x,d
′
y.

Here d′x extends the inputs of dx with the reference columns of the
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query tables tji, while d′y only has data in the query tables.

d′x , {t j 7→ dx.t j;{t ji 7→ Rxji}i∈Oj} j∈1..m

d′y , {t j 7→ Ryj; {t ji 7→ Ryji}i∈Oj} j∈1..m

Lemma 4. If L= (dx,d?
y | S) is a queryable missing-values learner,

then (d′x,d
′
y | [[S]]) as defined above is a queryable learner.

To answer the missing-values query using the results of infer-
ence for the translated learner, we need to go from an inferred dis-
tribution for the translated schema [[S]] to a distribution for the orig-
inal schema S. This is done by the function I defined below.

I(w,( ,z)) = ({t j = w.t j} j∈1..m,

({t j = [{c ji = z.t j[k].c ji}i∈Oj ]k∈0..|d?
y .t j |−1} j∈1..m,

{t j = [{c ji = z.t j[k].c ji}i∈L j ]k∈0..|d?
y .t j |−1} j∈1..m)).

We can now show that the translation is correct: it reduces
query-by-missing-value to query-by-latent-column.

Theorem 3 (Query-by-Missing-Value).
Let L = (dx,d?

y | S) be a queryable missing-values learner, and
L′ = (d′x,d

′
y | [[S]]) as defined above. If µ is (a version of) the se-

mantics of the latent column query on [[L]] as given in Theorem 2
then I−1µ is (a version of) the joint posterior conditional distribu-
tion PE

[
w,yz |Ofst yz(d

?
y)
]

of L as given in Proposition 3.

Proof: See Appendix C. The proof idea is that compilation merely
adds deterministic data and copies of random variables, which are
then ignored by I.

As an optimization, an implementation may translate only those
output columns where some data is actually missing to new tables.
In the example above, there are no missing values in column X2 in
the database, so it can remain observed in GG′, and no new table
needs to be created for its contents.

User/Movie/Rating Recommender Recall the User/Movie/Rat-
ing Schema of Section 3.3. Given existing tables of users, movies,
and ratings, suppose we wish to recommend to user i movies that
they are likely to rate with five stars. To do so, we first modify the
annotation on the movie column of the Rating table, adding a uni-
form per-row prior distribution.

Rating
u link(User) input
m link(Movie) output DiscreteUniform(sizeof(Movie))
Score int output CDiscrete(N=5)[u.z,m.z]

We then add a single row {u = i; m = ?; Score = 5} to the
existing data in the Rating table, denoting that user i has rated an
unknown movie with 5 stars. This missing-values query is then
translated to a corresponding latent column query in the manner
defined above. Inference returns a discrete distribution over movie
IDs for the missing value. Finally, high probability IDs can be
selected for recommendation to the user.

In a variation of this query, we can weight the results by how
many people have seen (that is, rated) each movie. To this end,
we add interdependence between rows (a shared frequency prior)
by instead using the model CDiscrete(N=sizeof(Movie)) for the
movie column, and then proceed as above.

8. Related work
There has been previous work exploring the interface of databases
and probabilistic inference. Specifically, we consider work on prob-
abilistic programming languages, probabilistic databases, and sta-
tistical relational learning.

8.1 Probabilistic Programming Languages
There is by now a number of probabilistic programming languages,
that differ in their target audience, expressive power, performance,
and philosophy. BUGS (Bayesian Inference using Gibbs sampling)
(Gilks et al. 1994) is a simple language for specifying probabilis-
tic models that allows for inference using Gibbs sampling. It is
widely used in the Bayesian community, but so far does not scale
to large datasets. Microsoft Research’s Infer.NET (Minka et al.
2012) achieves better scalabililty through support of deterministic
approximate inference algorithms such as expectation propagation
and variational message passing. Church (Goodman et al. 2008) is a
relatively new probabilistic programming language based on Lisp,
which allows for recursion and enables non-parametric Bayesian
models through memoization. Furthermore, there are languages
like IBAL (Pfeffer 2007) and Figaro (Pfeffer 2009), which incor-
porate decision-theoretic concepts as well. FACTORIE (McCallum
et al. 2009) is an imperative framework for constructing graphical
models in the form of factor graphs, used mostly for information
extraction. All these languages follow the traditional paradigm of
separating the code from the data schema and hence make it neces-
sary to replicate the data schema within the language and to import
the data from a database. On the other hand, Tabular is focused on
learning from relational data, and does not directly address some of
the emerging application areas of probabilistic programming such
as vision as inverse graphics (Mansinghka et al. 2013; Wingate
et al. 2011), or decision making for security (Mardziel et al. 2011).

8.2 Probabilistic Databases
Probabilistic databases represent a line of research in which the
database community is concerned with the question of how to han-
dle uncertain knowledge in relational databases (see, for exam-
ple, Dalvi et al. (2009)). Typically, the assumption is made that
each tuple is only in the database with a given probability, and
that the presence of different tuples are independent events. The
resulting probabilistic database can be interpreted in terms of the
possible worlds semantics. It is further assumed that the proba-
bility values associated with each tuple are provided by the data
collector, for example, from knowledge about measuring errors or
from probabilistic models outside the probabilistic database. The
main technical difficulty is to evaluate queries against probabilistic
databases because despite the simplistic independence assumption
on the presence of tuples, complex queries involving logical and
aggregation operators can lead to difficult inference problems. This
is also the main difference to the Tabular approach: whereas prob-
abilistic databases work with concrete probabilities, Tabular works
with non-probabilistic database schemas containing simple tuples
(possibly with missing values) and allows building probabilistic
models based on that data. In contrast to probabilistic database sys-
tems Tabular is thus compatible with the vast majority of existing
relational datasets.

SimSQL (Cai et al. 2013) is a recent database system based
on specifying, simulating, and querying database-valued Markov
chains. SimSQL supports recursive definitions of stochastic tables,
and can run in a MapReduce environment. It would be interesting
to consider compilation of Tabular models and inference questions
to SimSQL.

8.3 Statistical Relational Learning
Statistical Relational Learning operates in domains that exhibit
both uncertainty and relational structure (see Getoor and Taskar
(2007) for an excellent overview). Several contributions focus on
combining probability and first-order logic, such as Bayesian Logic
(BLOG) (Milch et al. 2005) which allows reasoning about un-
known objects or Bayesstore (Wang et al. 2008), which bridges the
world of probabilistic databases and statistical relational learning.
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Tabular is more closely related to work that makes direct use of
data in a relational database schema such as Getoor et al. (2007),
Heckerman et al. (2007), and Neville and Jensen (2007). Tabu-
lar is based on directed graphical models, distinguishing it from
Markov Logic (Domingos and Richardson 2004); there are several
substantial implementations of Markov Logic including Alchemy
(Kok et al. 2007), and Tuffy (Niu et al. 2011). Tabular was also in-
spired by a concept called PQL (Van Gael 2011) which augments
the SQL query language with statements that construct a factor
graph aligned with a given database schema. In summary, Tabular
can be viewed as a language that enables the construction of sta-
tistical relational models directly from a schema, but goes beyond
prior work in this field in that it allows the introduction of latent
variables and models continuous as well as discrete variables.

Tabular was directly inspired by the question of finding a tex-
tual notation for the factor graphs generated by InfernoDB (Singh
and Graepel 2012) which constructs a hierarchical mixture-based
graphical model in Infer.NET (Minka et al. 2012) from an arbitrary
relational schema. CrossCat (Shafto et al. 2006) is a related model,
which handles single tables with mixed types (real, integer, bool).
With Tabular, these types of model can be implemented in a few
lines of code, and we envisage the automatic synthesis of a Tabular
program that best models a given relational dataset, similar to the
work of Grosse et al. (2012) on matrix decompositions.

9. Conclusions
We propose schema-driven probabilistic programming as a new
principle of programming language design. The idea is to design
a probabilistic modelling language by starting with a database
schema and enriching it with notations for describing random vari-
ables, their probability distributions and interdependencies, how
they relate to data matching the schema, and what is to be inferred.

Our design of Tabular is an instance of this principle, where
the underlying schema is a typed relational model (subject to some
restrictions), and where we confer semantics on Tabular schemas
by using factor graphs as the underlying probabilistic model.
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Structure of the Appendix
• Appendix A recapitulates the formal semantics of Fun.
• Appendix B gives the proof of Theorem 1 (Translation Pre-

serves Typing).
• Appendix C gives the proof of Theorem 3 (Query-by-Missing-

Value).
• Appendix D shows screenshots of our Tabular user interface.
• Appendix E lists additional models and code re the DARE case

study.

A. Formal Semantics of Fun
As usual, for precision concerning probabilities over uncountable
sets, we turn to measure theory. The interpretation of a type T is
the measurable set VT of closed values of type T (real numbers,
integers etc.). We write BT for the Borel-measurable sets of VT ,
defined using the standard (Euclidian) metric, and ranged over by
A,B.

A measure µ over T is a function, from (measurable) subsets
of Vt to the non-negative real numbers extended with ∞, that is
countably additive, that is, µ(∅) = 0.0 and µ(∪iAi) = Σiµ(Ai)
if A1,A2, . . . are pair-wise disjoint. The measure µ is called a
probability measure if µ(VT ) = 1.0. If µ is a probability measure
on T and f : T →U , we let the (pushforward) probability measure
f−1µ(A) , µ( f−1(A)). In this context f is often called a random
variable.

We associate a default or stock measure λT to each type T ,
inductively defined as the counting measure on Z and {()}, the
Lebesgue measure on R, and the product of the measures for
{ f1 : T1; . . . ; fn : Tn} and T [ ] (Array sizes in Fun are deterministic
since arrays arise from array literals or for-comprehensions with a
constant upper bound). If f is a non-negative (measurable) function
T → real, we let

∫
f be the Lebesgue integral of f with respect to

λT , if the integral is defined. This integral coincides with Σx∈VT f (x)
for discrete types T , and with the standard Riemann integral (if it
is defined) on T = real. We also write

∫
f (x) dx for

∫
λx. f (x), and∫

f (x) dµ(x) for Lebesgue integration with respect to the measure
µ on T . The Iverson brackets [p] are 1.0 if predicate p is true, and
0.0 otherwise. We write

∫
A f for

∫
λx.[x ∈ A] · f (x).

The semantics of a closed Fun expression E is a probability
measure PE over its return type. Open Fun expressions have a
straightforward semantics (Ramsey and Pfeffer 2002) in the prob-
ability monad (Giry 1982). Below, σ is a substitution, that gives
values to the free variables of E. When X is a term (possibly with
binders), we write x1, . . . ,xn ] X if none of the xi appear free in X .

Monadic Semantics of Fun with arrays: P[[E]] σ

We assume that z,z1, . . . ,zn ] E,F,F1,E1, . . . ,En,x,σ .

(µ >>= f ) A ,
∫

f (x)(A)dµ(x) Monadic bind
(returnV ) A , 1 if V ∈ A, else 0 Monadic return

P[[x]] σ , return (xσ)
P[[s]] σ , return s
P[[[E1; . . . ;En]]] σ , P[[E1, . . . ,En]]

σ
z [return [z1; . . . ;zn]]

P[[[ f1 = E1; . . . ; fn = En]]] σ ,
P[[E1, . . . ,En]]

σ
z [return { f1 = z1; . . . ; fn = zn]]

P[[E[F ]]] σ , P[[E]] σ >>= λ z.P[[F ]] σ >>= λw.return z[w]
P[[if E then F1 else F2]] σ , P[[E]] σ >>=

λ z.if z then P[[F1]] σ else P[[F2]] σ

P[[let x = E in F ]] σ , P[[E]] σ >>= λ z.P[[F ]] (σ ,x 7→ z)

P[[[for x < E→ F ]]] σ , P[[E]] (σ ,x 7→ 0)>>=
λ z1.P[[E]] (σ ,x 7→ 1)>>= . . . >>= λ zc.return [z1; . . . ;zEσ ]

P[[g(E1, . . . ,En)]] σ , P[[E1, . . . ,En]]
σ
z [return g(z1, . . . ,zn)]

P[[D(E1, . . . ,En)]] σ , P[[E1, . . . ,En]]
σ
z [µD(z1,...,zn)]

P[[E1, . . . ,En]]
σ
z [·], P[[E1]] σ >>= λ z1.P[[E2]] σ >>=

. . . >>= λ zn−1.P[[En]] σ >>= λ zn.[·]

We let the semantics of a closed expression E be PE , P[[E]] ε ,
where ε denotes the empty substitution. We write E ∼ F if
P[[E]] σ = P[[F ]] σ for all well-typed closing substitutions σ .

Definition 5 (Probability kernel). A function κ : VT ×BU → [0,1]
is called a probability kernel when

(1) for all B ∈BU , the function κ( · ,B) is measurable;
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(2) for all V ∈ VT , the function κ(V, ·) is a probability measure.

Definition 6 (Conditional distribution). If µ is a probability mea-
sure on T and f : T →U1 and g : T →U2, then a probability kernel
κ : VU1 ×BU2 → [0,1] is called a version of the conditional proba-
bility distribution µ[g | f ] if for all A ∈BU1 and B ∈BU2 ,

µ {ω | f (ω) ∈ A∧g(ω) ∈ B}=
∫

A
κ(x,B)d f−1

µ(x).

Two versions of a conditional distribution may differ on a set of
f−1µ-measure 0. However, two continuous versions must agree on
the support of f−1µ , where the value V ∈ VU1 is in the support
of f−1µ iff for all open sets O ⊆ VU1 containing V we have
f−1µ(0)> 0.

Lemma 7 ((Ackerman et al. 2011), Lemma 16). If κ1,κ2 are ver-
sions of the conditional probability distribution µ[g | f ] as above,
and both maps x 7→ κ1(x, ·) and x 7→ κ2(x, ·) are continuous at V ,
and V is in the support of f−1µ , then κ1(V, ·) = κ2(V, ·).

If ` E : T1 ∗ · · · ∗ Tn, and for i = 1..m we have x1 : T1, . . . ,xn :
Tn ` Fi : Ui where Fi contains no occurrence of D(·) and ` Vi : Ui,
we write PE [x1, . . . ,xn | F1 =V1∧·· ·∧Fm =Vm] for a version κ

of the regular conditional probability distribution PE [id | f ] with
f defined as the random variable (x1, . . . ,xn) 7→ (F1, . . . ,Fm). This
distribution is unique if V = (V1, . . . ,Vm) is a point of continuity of
κ and also in the support of f−1PE .

B. Proof of Theorem 1 (Translation Preserves
Typing)

Our semantics translates Tabular schema, typed in Tabular contexts
(declaring additional binding times and table typings), to Fun mod-
els whose components are typed in ordinary Fun contexts (simply
relating variables to their types). The intuition behind our proof is
to use binding times to extract the corresponding Fun contexts re-
quired to type check each of the three compartments (hyper, prior
and gen) of the target model.

To this end, we define the following translation relation on
contexts. The translation ΓTabular ⇓` ΓFun takes a Tabular context
ΓTabular and binding time ` to produce an appropriately filtered Fun
context ΓFun of variables available at, or before, the binding time
`. In addition, the translation expands table declarations, revealing
their underlying array representation in Fun. A table identifier t is
only accessible at binding time xyz, because t denotes the predic-
tive database. (On the other hand, the identifier #t for the size of a
table t is accessible at all binding times, because #t is introduced as
a Tabular variable at binding time h by the rule (SCHEMA TABLE),
and so if #t :h int occurs in ΓTabular it is translated by (TRANS BIND
LOWER) to #t : int in ΓFun.)

Level-sensitive Translation of Contexts: ΓTabular ⇓` ΓFun

(TRANS EMPTY)

∅ ⇓` ∅
(TRANS BIND LOWER)
Γ ⇓` Γ′ `′ ≤ `

Γ,x :`
′
T ⇓` Γ′,x : T

(TRANS BIND HIGHER)
Γ ⇓` Γ′ `′ > `

Γ,x :`
′
T ⇓` Γ′

(TRANS TABLE LOW)
Γ ⇓` Γ′ `≤ w
Γ, t : 〈{RT}〉 ⇓` Γ′

(TRANS TABLE HIGH)
Γ ⇓xyz Γ′

Γ, t : 〈{RT}〉) ⇓xyz Γ′, t : {RT}[]

Lemma 8 (Totality). If Γ ` �, then for all ` there is some Γ′ such
that Γ ⇓` Γ′ and Γ′ ` �.
Proof: By induction on the derivation of Γ ` �.

Lemma 9 (Determinacy). If Γ ⇓` Γ1 and Γ ⇓` Γ2 then Γ1 = Γ2.

Proof: By induction on the structure of Γ.

Lemma 10 (Domains). If Γ ⇓` Γ′ then dom(Γ′)⊆ dom(Γ).

Proof: By induction on the derivation of Γ ⇓` Γ′ .

Lemma 11 (Variable Levelling). If Γ1,x :` T,Γ2 ` � and ` ≤ `′

then there exist Γ′1,Γ
′
2 such that Γ1,x :` T,Γ2 ⇓`′ Γ′1,x : T,Γ′2 and

Γ′1,x : T,Γ′2 ` �.
Proof: By induction on the structure of Γ2.

Lemma 12 (Table Levelling). If Γ1, t : 〈{RT}〉,Γ2 ` � then there
exist Γ′1,Γ

′
2 such that Γ1, t : 〈{RT}〉,Γ2 ⇓xyz Γ′1, t : {RT}[],Γ′2 and

Γ′1, t : {RT}[],Γ′2 ` �.
Proof: By induction on the structure of Γ2.

Lemma 13 (Kind Preservation). If Γ ` T and Γ ⇓` Γ′ then Γ′ ` T .

Proof: By induction on the structure of Γ.

Lemma 14 (Monotonicity). If Γ `` E : T and `≤ `′ then Γ ``′ E :
T .

Proof: By induction on the derivation of Γ `` E : T .

The translation on schemas and tables produces intermediate
Fun models that contain free variables with restricted binding
times. The intermediate models are composed to produce a final,
closed model. To prove correctness of the translation, we introduce
an auxiliary typing judgment (really just a non-inductive predicate)
that types an open Fun model in the Tabular context of its source
program. The judgment has just one rule, and uses context trans-
lation to type check each compartment of the model in the derived
Fun context available at that compartment’s binding time.

Tabular Typing rules for Models: ΓTabular ` P : Q

(TABULAR MODEL)
Γ ⇓h Γ0 Γ0 ` Eh : H Det(Eh)
Γ ⇓w Γ1 Γ1,h : H ` Ew : W
Γ ⇓xyz Γ2 Γ2,h : H,w : W,x : X ` E : Y

Γ ` 〈Eh,(h)Ew,(h,w,x)E〉 : 〈H,W,X ,Y 〉

We have that the relation ` P : Q on closed models defined in
Section 4.2 coincides with ΓTabular ` P : Q when ΓTabular =∅.

Proposition 15 (Coincidence for closed models).
∅ ` P : Q if and only if ` P : Q.

Proof: By (TRANS EMPTY) the translation of an empty Tab-
ular context at any binding time is just an empty Fun context.
Thus, when Γ = ∅, rule (TABULAR MODEL) collapses to (TYPE
MODEL).
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Lemma 16 (Open Translation Preserves Typing).

(1) If Γ `` E : T then, for some Γ′,E ′

• Γ ⇓` Γ′

• E ⇓ E ′ and
• Γ′ ` E ′ : T .

(2) If Γ `` M : W,T then, for some 〈Ew,(w)E〉
• M ⇓ 〈Ew,(w)E〉; and
• for some Γ1, Γ ⇓w Γ1 and Γ1 ` Ew : W; and
• for some Γ2, Γ ⇓l Γ2 and Γ2,w : W ` E : T ;

(3) If Γ ` T : Q then, for some primitive model P,
• T ⇓ P; and
• Γ ` P : Q.

(4) If Γ ` S : Q then, for some primitive model P,
• S ⇓ P; and
• Γ ` P : Q.

Proof: By induction on the typing judgments.

Restatement of Theorem 1 (Translation Preserves Typing)
If ∅ ` S : Q then there exists P such that S ⇓ P and ` P : Q.

Proof: Assume that ∅ ` S : Q. By Lemma 16 (Open Translation
Preserves Typing) there exists P such that S ⇓ P and ∅ ` P : Q. By
Proposition 15 (Coincidence for closed models) ` P : Q.

C. Proof of Theorem 3 (Query-by-Missing-Value)
We first expand the definitions of inference (Theorem 2 and Propo-
sition 3) in the statement of the theorem.

Restatement of Theorem 3 (Query-by-Missing-Value):
Assume that L = (dx,d?

y | S) is a queryable missing values-learner
such that S ⇓ 〈Eh,(h)Ew,(h,w,x)Eyz〉, and let
E , let h = #(dx) in let w = Ew in let x = dx in w,Eyz.
Assume that L translates to L′ = (d′x,d

′
y | [[S]]) such that

[[S]] ⇓ 〈E ′h,(h)E
′
w,(h,w,x)E

′
yz〉, and let

E ′ , let h = #(d′x) in let w = E ′w in let x = d′x in w,E ′yz.
Then I−1PE ′

[
w,yz | fst yz = d′y

]
is a version of the joint posterior

conditional distribution PE

[
w,yz |Ofst yz(d

?
y)
]
.

Below, we use the various symbols defined in the formal translation
(Section 7.3). We first give helper lemmas relating the compilations
of S and [[S]]. In these lemmas, we perform simple rewrites on
Fun expressions, such as inlining of deterministic let-bindings,
reordering of record fields, and partial evaluation of record field
projection and array indexing (e.g., we rewrite [for k < V → E][i]
to E {i/k} when i <V ).

The compilation of a translated table is the same as that of the
original table, except that all observed attributes Ry are turned into
latent ones and so appear in the second component of the return
value of the sampling distribution instead of the first.

Lemma 17. For j∈ 1..m, if Tj ⇓ 〈Eh,(h)Ew,(h,w,x)L ({Ry},{Rz})〉)
then [[T j]] ⇓ 〈Eh,(h)Ew, (h,w,x)L ({},{Ry;Rz})〉).

Proof: By induction on T j. In the induction case (c 7→ A : T )T, the
interesting case is when the annotation A is output(M). Here we
use rule (TRANS OUTPUT) for A and (TRANS LATENT) for [[A]]:
they only differ in if c is added to Ry or to Rz.

The compilation of an observation table is as follows.

Lemma 18. For all j ∈ 1..m and i ∈ Oj we have:

T ji ⇓ 〈{},
(h)let V = {} in {V$ = V},
(h,w,x)let R = x.R in

let V = (let wv = w.V$ in t j[R].c ji) in
{V = V},{}〉

Proof: By (TRANS INPUT), (TRANS OUTPUT), (TRANS SIMPLE)
and (TRANS DEREF).

For j ∈ 1..m, we let L j , {i ∈ 1..n j | Aji = latent(M)} be the
latent columns of table j. We write 〈Eh,(h)Ew,(h,w,x)Eyz〉 ∼
〈E ′h,(h)E

′
w,(h,w,x)E

′
yz〉 iff Eh ∼ E ′h and Ew ∼ E ′w and Eyz ∼ E ′yz.

In the compilation of the translated schema, inlining the let
bindings corresponding to observation tables yields a simple corre-
spondence to the compilation of the original schema. The universal
quantification over Rw,Ry,Rz is in order to have a strong enough in-
duction hypothesis: we only use this lemma with Rw = Ry = Rz =
∅.

Lemma 19. If

S ⇓ 〈{#t j = 1} j∈1..m,(h)Lw[{t j = t j} j∈1..m],

(h,w,x)Lyz[{t j = Ey j} j∈1..m,{t j = Ez j} j∈1..m]〉

then there are R′w,R
′
y,R
′
z,L

′
w,L

′
yz such that

[[S]] ⇓ 〈{#t j = 1;R′h j}
j∈1..m,(h)L ′

w[{R′w}],
(h,w,x)L ′

yz[{R′y},{R′z}]〉

and for all Rw,Ry,Rz
with {t ji,#t ji | j ∈ 1..m, i ∈ O j} ] Rw,Ry,Rz,Lw,Lyz we have

L ′
w[{Rw;R′w}]∼Lw[{Rw;(t j = t j;R′w j)

j∈1..m}]

L ′
yz[{Ry;R′y},{Rz;R′z}]∼Lyz[{Ry;(t j = E ′y j;R′y j)

j∈1..m},

{Rz;(t j = E ′z j;R′z j)
j∈1..m}]

where

{R′h j}= {#t ji = 1}i∈O j

{R′w j}= {t ji = {V$ = {}}}i∈O j

E ′y j = [for k < h.#t j→{}]

{R′y j}= {t ji = [for k < h.#t ji→{V = t j[x.t ji[k].R].c ji}]}i∈O j

E ′z j = [for k < h.#t j→{ci = t j[k].ci}i∈O j∪L j ]

{R′z j}= {t ji = [for k < h.#t ji→{}]}i∈O j .

Proof: By induction on the schema. For the induction case (t 7→
Tm)S, we have that
[[(t 7→ Tm)S]] = (tm 7→ [[Tm]])(tmi 7→ Tmi)

i∈Om [[S]].
We first show by induction on |Om| that

(tmi 7→ Tmi)
i∈Om [[S]] ⇓ 〈{#t j = 1;R′h j}

j∈1..m,(h)L m
w [{Rm

w}],
(h,w,x)L m

yz [{Rm
y },{Rm

z }]〉

such that for all Rw,Ry,Rz
with {t ji,#t ji | j ∈ 1..m, i ∈ O j} ] Rw,Ry,Rz,Lw,Lyz we have

L m
w [{Rw;Rm

w}]∼Lw[{Rw;R′wm(t j = t j;R′w j)
j∈1..m−1}]

L m
yz [{Ry;Rm

y },{Rz;Rm
z }]∼Lyz[{Ry;R′ym(t j = E ′y j;R′y j)

j∈1..m−1},

{Rz;R′zm(t j = E ′z j;R′z j)
j∈1..m−1}]

The base case Om =∅ follows from the induction hypothesis of the
outer induction. In the induction case Om = n,O′m, and we apply
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rule (TRANS TABLE) to (tmn 7→ Tmn),(tmi 7→ Tmi)
i∈O′m [[S]]. The

rule adds $tmn = 1 to the hyperparameter as desired.
Lemma 18 gives Pmn such that Tmn ⇓ Pmn. In the parameter,

let tmn = let ht = {} in let V = {} in {V$ = V} in
let #tmn = h.#tmn in
L m

w [{Rw; tmn = tmn;Rwn}]
∼
Lw[{Rw; tmn = {V$ = {}};Rwn}] by inlining of deterministic lets
since tmn,#tmn are fresh for Lw and Rw and Rwn.

In the gen-part, by inlining of deterministic lets we get Etmn =
let ht = {} in let wt = w.t in
[for k < #tmn→ let xk = x.tmn[k] in
let R = xk.R in let V = let wv = w.V$ in tm[R].cmn in
{R = R;V = V}]
∼
[for k < #tmn → {R = x.tmn[k].R;V = tm[x.tmn[k].R].cmn}] =: Etmn .
Similarly, since tmn,#tmn are fresh for Lyz and Ry,Sy and Rz,Sz we
have
let #tmn = h.#tmn in let tmn = Etmn in
L m

yz [({Ry; tmn = Ey;Sy},{Rz; t = Ez;Sz})]
∼
Lyz[({Ry; tmn = Eyσ ;Sy},{Rz; t = Ezσ ;Sz})]
where σ = {Etmn/tmn}{h.#tmn/#tmn} and Eyσ = [for k < h.#tmn→{}].
Here Ezσ ∼ [for k < h.#tmn→{V = tm[x.tmn[k].R].cmn}] by partial
evaluation of array indexing and record field projection.

The statement of the lemma then follows from Lemma 17 by ap-
plying rule (TRANS TABLE) to (tm 7→ [[Tm]])(tmi 7→ Tmi)

i∈Om [[S]].

We then let Obs ji , (k ∈ 0..(|dx.t j| − 1) | d?
y .t j[k].ci 6= ?) be

the sequence of indexes of rows of table t j that have an observed
value in column ci; we also define n ji , |Obs ji| as the number of
observed entries in column i of table j. We let Rz ji , [{}]k∈1..n ji ;
recall that Ry j = [{}]k∈1..|dx.t j |. To go from a pair of the priors and
a predictive database for L to priors and database for the translated
learner (d′x,d

′
y, [[S]]), we define f (w,(y,z)), (Vw,(Vy,Vz)) where

Vw = {t j = w.t j;(t ji = {V$ = {}})i∈Oj} j∈1..m

Vy = {t j = Ry j;(t ji = [{V = y.t j[k].ci}]k∈Obs ji)i∈Oj} j∈1..m

Vz = {t j = [{ci = Ei jk}i∈Oj∪L j ]k∈0..|dx.t j |−1;(t ji = Rz ji)
i∈Oj} j∈1..m

Ei jk = if i ∈ Oj then y.t j[k].ci else z.t j[k].ci

Since L is queryable, we may assume that ∅`S : 〈H,W,X ,Y ∗Z〉.
The function I is an inverse of f .

Lemma 20. I ◦ f = id on W ∗ (Y ∗Z).

Proof: I merely deletes the void values and copies of random vari-
ables added by f .

The lifting of f to distributions is parallel to the translation of
Section 7.3.

Lemma 21. f−1PE = PE ′ .

Proof: f merely adds the void values and copies of random vari-
ables that differ between the compilations of S and [[S]] according
to Lemma 19 with Rx = Ry = Rz =∅.

To translate from the random variable that we condition on for
L (i.e., a tuple of all observed values in d?) to the conditioning RV
for L′ (i.e., the database d′y) and back, we let l, jk, rk, ik and Vk be
given by the equation Oy(d?

y) =
∧

k∈1..l y.t jk [rk].cik =Vk, and define

Vy , (V1, . . . ,Vl) and g′( ,(y, )), (y.t j1 [r1].ci1 , . . . ,y.t jl [rl ].cil ) and

g(y1, . . . ,yl), {t j = Ry j;
(t ji = [{V = yk1}; . . . ;{V = ykn ji} | 1≤ k1 < · · ·< kn ji ≤ l∧

j = jk1 = · · ·= jkn ji ∧ i = ik1 = · · ·= ikn ji ])
i∈Oj} j∈1..m.

This technical lemma shows how the translations of observa-
tions relate to each other and to f .

Lemma 22.

(1) d′y = g(Vy); and
(2) for all Ti, g′ ◦g = id on T1 ∗ . . .Tl; and
(3) fst◦ snd◦ f = g◦g′ on W ∗ (Y ∗Z).

Proof:

(1,2) Since the u such that d?
y .c j[u].ci 6= ? are precisely those where

there is k ∈ 1..l with u = rk and jk = j and ik = i.

(3) Here

(fst◦ snd◦ f )( ,(y, )) =

{t j = Ry j;(t ji = [{V = y.t j[k].ci}]k∈Obs ji)i∈Oj} j∈1..m =

(g◦g′)( ,(y, )).

Finally, we can complete the proof of Theorem 3 (Query-by-
Missing-Value).
Proof: (of Theorem 3 (Query-by-Missing-Value)) We then have

PE

[
w,yz |Ofst yz(d

?
y)
]
= (By desugaring)

PE
[
id | g′ =Vy

]
= (By Lemma 22(2))

PE
[
id | g′ = (g′ ◦g)(Vy)

]
= (By Lemma 22(3))

PE
[
id | fst◦ snd◦ f = g(Vy)

]
= (By Lemma 22(1))

PE
[
id | fst◦ snd◦ f = d′y

]
= (By Lemma 20)

PE
[
I ◦ f | fst◦ snd◦ f = d′y

]
= (By definition of ·−1µ)

I−1(PE
[

f | fst◦ snd◦ f = d′y
]
) = (By Lemma 21)

I−1(PE ′
[
id | fst◦ snd= d′y

]
) = (By sugaring)

I−1(PE ′
[
w,yz | fst yz = d′y

]
).
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Figure 4. Step 1: user loads DARE database; application infers a
default model from the schema and data.

Figure 5. Step 2: user authors the DARE schema.

D. Application Screenshots
Figures 4-8 illustrate a user using our Tabular application to import
a database, model it, and then examine the fruits of inference that
are saved back to the database.

E. Case Study
Figures 9 and 10 depict the simpler A and DA variants of the DARE
model (c.f. Figure 2) described in Section 6.

Figure 11 depicts the Infer.NET code to construct and run the
DARE model.

Figure 6. Step 3: user triggers inference.

Figure 7. Step 4: user saves results back to database.

Figure 8. Step 5: user examines database with Microsoft Access;
it now contains additional tables for latents and posteriors.
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Participants
Ability real latent Gaussian(0,1)
Questions
Answer int latent Discrete(8)
QuestionsTrain
QuestionID link(Questions) input
Answer int output QuestionID.Answer
Responses
ParticipantID link(Participants) input
QuestionID link(Questions) input
Advantage real latent DB(ParticipantID.Ability,0.2)
Know bool latent Probit(Advantage,1)
Guess int latent Discrete(8)
Response int latent if Know then QuestionID.Answer else Guess
ResponsesTrain
ResponseID link(Responses) input
Response int output ResponseID.Response

Figure 9. The Ability model (A)

Participants
Ability real latent Gaussian(0,1)
Questions
Answer int latent Discrete(8)
Difficulty real latent Gaussian(0,1)
QuestionsTrain
QuestionID link(Questions) input
Answer int output QuestionID.Answer
Responses
ParticipantID link(Participants) input
QuestionID link(Questions) input
Advantage real latent DB(ParticipantID.Ability − QuestionID.Difficulty,0.2)
Know bool latent Probit(Advantage,1)
Guess int latent Discrete(8)
Response int latent if Know then QuestionID.Answer else Guess
ResponsesTrain
ResponseID link(Responses) input
Response int output ResponseID.Response

Figure 10. The Difficulty-Ability model (DA)
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public static void CreateAndRunDAREModel(
Gaussian abilityPrior , Gaussian difficultyPrior , Gamma discriminationPrior,
int nParticipants , int nQuestions, int nChoices,
int[] participantOfResponse, int[] questionOfResponse,
int[] response, int[] trainingResponseIndices,
int[] answer, int[] trainingQuestionIndices)

{ // Model
var Evidence = Variable.Bernoulli(0.5).Named("evidence");
var EvidenceBlock = Variable.If(Evidence);
var NQuestions = Variable.New<int>().Named("nQuestions");
var NParticipants = Variable.New<int>().Named("nParticipants");
var NChoices = Variable.New<int>().Named("nChoices");
var NResponses = Variable.New<int>().Named("nResponses");
var NTrainingResponses = Variable.New<int>().Named("nTrainingResponses");
var NTrainingQuestions = Variable.New<int>().Named("nTrainingQuestions");
var p = new Range(NParticipants).Named("p");
var q = new Range(NQuestions).Named("q");
var c = new Range(NChoices).Named("c");
var n = new Range(NResponses).Named("n");
var tr = new Range(NTrainingResponses).Named("tr");
var tq = new Range(NTrainingQuestions).Named("tq");
var AnswerOfQuestion = Variable.Array<int>(q).Named("answer");
AnswerOfQuestion[q] = Variable.DiscreteUniform(c).ForEach(q);
var QuestionOfResponse = Variable.Array<int>(n).Named("questionOfResponse");
var ParticipantOfResponse = Variable.Array<int>(n).Named("participantOfResponse");
var AnswerOfResponse = Variable.Array<int>(n).Named("response");
QuestionOfResponse.SetValueRange(q);
ParticipantOfResponse.SetValueRange(p);
AnswerOfResponse.SetValueRange(c);
var Know = Variable.Array<bool>(n).Named("know");
var Ability = Variable.Array<double>(p).Named("ability");
Ability [p] = Variable.Random(abilityPrior).ForEach(p);
var Difficulty = Variable.Array<double>(q).Named("difficulty");
Difficulty [q] = Variable.Random(difficultyPrior ).ForEach(q);
var Discrimination = Variable.Array<double>(q).Named("discrimination");
Discrimination [q] = Variable.Random(discriminationPrior).ForEach(q);
using (Variable.ForEach(n))
{

var advantage = (Ability[ParticipantOfResponse[n]] - Difficulty [QuestionOfResponse[n]]).Named("advantage");
var advantageDamped = Variable<double>.Factor<double, double>(Damp.Backward, advantage, 0.2).Named("advantageDamped");
var advantageNoisy = Variable.Gaussian(advantageDamped, Discrimination[QuestionOfResponse[n]]).Named("advantageNoisy");

Know[n] = (advantageNoisy > 0);
using (Variable.If (Know[n]))

AnswerOfResponse[n] = AnswerOfQuestion[QuestionOfResponse[n]];
using (Variable.IfNot(Know[n]))

AnswerOfResponse[n] = Variable.DiscreteUniform(c);
}
var TrainingResponseIndices = Variable.Array<int>(tr).Named("trainingResponseIndices");
TrainingResponseIndices .SetValueRange(n);
var ObservedResponseAnswer = Variable.Array<int>(tr).Named("observedResponseAnswer");
ObservedResponseAnswer[tr] = AnswerOfResponse[TrainingResponseIndices[tr]];
var TrainingQuestionIndices = Variable.Array<int>(tq).Named("trainingQuestionIndices");
TrainingQuestionIndices .SetValueRange(q);
var ObservedQuestionAnswer = Variable.Array<int>(tq).Named("observedQuestionAnswer");
ObservedQuestionAnswer[tq] = AnswerOfQuestion[TrainingQuestionIndices[tq]];
EvidenceBlock.CloseBlock();
// Hook up the data and run inference
var nResponse = response.Length;
NQuestions.ObservedValue = nQuestions;
NParticipants .ObservedValue = nParticipants;
NChoices.ObservedValue = nChoices;
NResponses.ObservedValue = nResponse;
var nTrainingResponses = trainingResponseIndices.Length;
NTrainingResponses.ObservedValue = nTrainingResponses;
var nTrainingQuestions = trainingQuestionIndices .Length;
NTrainingQuestions.ObservedValue = nTrainingQuestions;
ParticipantOfResponse.ObservedValue = participantOfResponse;
QuestionOfResponse.ObservedValue = questionOfResponse;
TrainingResponseIndices .ObservedValue = trainingResponseIndices;
ObservedResponseAnswer.ObservedValue = Util.ArrayInit(nTrainingResponses, i ⇒ response[trainingResponseIndices[i]]);
TrainingQuestionIndices .ObservedValue = trainingQuestionIndices;
ObservedQuestionAnswer.ObservedValue = Util.ArrayInit(nTrainingQuestions, i ⇒answer[trainingQuestionIndices[i]]);
var Engine = new InferenceEngine() { ShowTimings = true, ShowWarnings = false, ShowProgress = false, NumberOfIterations = 10 };
var AnswerOfResponsePosterior = Engine.Infer<Discrete[]>(AnswerOfResponse);
var AnswerOfQuestionPosterior = Engine.Infer<Discrete[]>(AnswerOfQuestion);
var LogEvidence = Engine.Infer<Bernoulli>(Evidence).LogOdds;
var AbilityPosterior = Engine.Infer<Gaussian[]>(Ability);
var DifficultyPosterior = Engine.Infer<Gaussian[]>(Difficulty );
var DiscriminationPosterior = Engine.Infer<Gamma[]>(Discrimination);

}

Figure 11. Infer.NET DARE model, including model construction and inference code (compare to Figure 2).
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