
A Voted Regularized Dual Averaging Method for Large-Scale

Discriminative Training in Natural Language Processing

Jianfeng Gao

Microsoft Research, Redmond

Washington 98052, USA
jfgao@microsoft.com

Tianbing Xu

University of California, Irvine

California 92697, USA
tbing.xu@gmail.com

Lin Xiao

Microsoft Research, Redmond

Washington 98052, USA
Lin.Xiao@microsoft.com

Xiaodong He

Microsoft Research, Redmond

Washington 98052, USA
xiaohe@microsoft.com

Abstract

We propose a new algorithm based on the

dual averaging method for large-scale dis-

criminative training in natural language pro-

cessing (NLP), as an alternative to the per-

ceptron algorithms or stochastic gradient de-

scent (SGD). The new algorithm estimates

parameters of linear models by minimizing

𝐿1 regularized objectives and are effective in

obtaining sparse solutions, which is particu-

larly desirable for large scale NLP tasks. We

then give the mistake bound of the algorithm,

and show how the bound is affected by the

additional 𝐿1 regularization term. Evalua-

tions on the tasks of parse reranking and sta-

tistical machine translation attest the success

of the new algorithm.

1 Introduction

The perceptron algorithm and its variants have

proved to be effective for discriminative training in

many natural language processing (NLP) problems,

such as language modeling (Roark et al. 2007), pars-

ing (Collins 2002b), and statistical machine transla-

tion (SMT) (Shen et al. 2004; Liang et al. 2006).

The popularity of perceptron is mainly due to its

competitive performance, simplicity in implementa-

tion and low computational cost in training, com-

pared to the batch training methods such as maxi-

mum entropy estimation (Collins 2002a; Gao et al.

2007). However, recent results on applying percep-

tron to large-scale discriminative training for SMT

motivate researchers to revisit its limitations by

seeking improvements or alternative methods. For

example, Gimpel and Smith (2012) proposed an al-

ternative algorithm that can optimize a particular

family of ramp loss functions tailored to SMT. To

obtain better generalization performance, Simianer

et al. (2012) introduced an explicit feature selection

step using 𝐿1 regularization to obtain sparse solu-

tions. Along the same line of research, Martins et al.

(2011a; 2011b) and Tsuruoka et al. (2009) proposed

to use the methods similar to the truncated gradient

method (Langford et al. 2009) where an 𝐿1 regular-

ization term is added explicitly to the loss function

of a learning problem.

In this paper we propose a new parameter esti-

mation algorithm that is a natural alternative to sto-

chastic gradient descent (SGD) and the perceptron

algorithms. The new algorithm, called voted regu-

larized dual averaging (or VRDA), is based on the

dual averaging method (Nesterov 2009), and its reg-

ularized version, the regularized dual averaging

(RDA) method (Xiao 2010). The VRDA algorithm

shares a similar structure as the voted perceptron al-

gorithm (Freund and Schapire 1999). However,

VRDA induces sparsity into the solutions by mini-

mizing loss functions with 𝐿1 regularization, and

thus generates significantly sparser models than

perceptron. Sparse solution is particularly desirable

for large-scale NLP tasks not only for better gener-

alization performance but also for easy deployment

of the model.

 The key difference between VRDA and the orig-

inal dual averaging methods is that VRDA only up-

dates its parameter vector when there is a prediction

error. In addition to numerous advantages in terms

of computational learning theory (Floyd and

Warmuth 1995), it can significantly reduce the com-

putational cost involved in updating the predictor.

Moreover, the scheme of update-only-on-errors al-

lows us to derive an error bound that matches that

of the voted perceptron algorithm (up to a small

constant), and in addition show how the additional

𝐿1 regularization term affects the error bound and

generalization performance.

We evaluate the performance of VRDA on two

large-scale NLP tasks, parse reranking and discrim-

inative training of phrase translation models. The re-

sults show that VRDA gives better and sparser so-

lutions compared to the perceptron algorithms or

SGD and that VRDA can generate much sparser

models than the truncated gradient method which is

the state-of-the-art method of sparse learning for

linear models.

2 Notation and Background

The two tasks studied in this paper are based on

(log-)linear models (Collins 2000) which require

learning a mapping between inputs 𝑥 ∈ 𝑋 to outputs

𝑦 ∈ 𝑌. We are given

 Training samples (𝑥𝑖, 𝑦𝑖) for 𝑖 = 1 … 𝑚, each

𝑥𝑖 is labeled by a reference output 𝑦𝑖;

 A procedure GEN, which generates a set of N-

best candidates GEN(𝑥𝑖) for an input 𝑥𝑖;

 A feature mapping 𝜙: 𝑋 × 𝑌 → ℝ𝑑 , which

maps each (𝑥𝑖 , 𝑦), where 𝑦 ∈ GEN(𝑥𝑖), to a

vector of feature values; and

 A parameter vector (or predictor) 𝑤 ∈ ℝ𝑑 ,

which assigns a real-valued weight to each

feature.

The components of GEN, 𝜙 and 𝑤 define a linear

model that maps 𝑥𝑖 to an output 𝐹(𝑥𝑖) as follows

𝐹(𝑥𝑖) = �̂� = argmax
𝑦∈GEN(𝑥𝑖)

𝑤𝑇𝜙(𝑥𝑖, 𝑦) (1)

In the parse reranking task, training samples are

sentence and gold-standard parse pairs. In SMT, the

training samples are source sentence and reference

translation pairs. In complex NLP tasks such as

parsing and translation, the reference output 𝑦𝑖 is

often not guaranteed to be included in the N-best list

GEN(𝑥𝑖) even with a very large value of N. There-

fore, it is a common practice to replace 𝑦𝑖 with its

oracle candidate 𝑦∗ for model training (Liang et al.

2006). 𝑦∗ is defined as the candidate with the lowest

cost compared to its reference 𝑦𝑖:

𝑦∗ = argmin
𝑦∈GEN(𝑥𝑖)

cost(𝑦𝑖, 𝑦) , (2)

where cost(.) is an application-specific cost func-

tion. For example, cost(.) in SMT is typically de-

fined as the negative sentence-level BLEU score of

𝑦 compared to the reference translation 𝑦𝑖.

SMT involves hidden-variable models such that

a hidden variable ℎ is assumed to be constructed

during the process of generating 𝑦. In phrase-based

SMT, ℎ consists of a segmentation of the source and

target sentences into phrases and an alignment be-

tween source and target phrases. Thus, the linear

model (1) can be rewritten, for SMT, as

𝐹(𝑥𝑖) = (�̂�, ℎ̂) = argmax
(𝑦,ℎ)∈GEN(𝑥𝑖)

𝑤𝑇𝜙(𝑥𝑖 , 𝑦, ℎ) (3)

which states that given 𝜙 and 𝑤 , argmax returns

the highest scoring translation 𝑦, maximizing over

correspondences ℎ (Och and Ney 2004). Following

Liang et al. (2006), we assume that in our experi-

ments every translation candidate is always coupled

with a corresponding ℎ, generated by (3). Thus, the

following discussion on model training using SGD

also applies to models with hidden variables if we

define 𝜙 as in (3).

SGD has been widely used for discriminative

training in NLP. The algorithm starts with an initial

predictor 𝑤, and updates it for each training sample:

𝑤𝑘+1 = 𝑤𝑘 − 𝜂 ∙ 𝑔(𝑤𝑘) (4)

where 𝑔 is the subgradient with respect to a loss

function 𝑔(𝑤) ∈ 𝜕loss(𝑤), and 𝜂 the learning rate.

The loss functions that are commonly used in the

N-best list based reranking tasks can be grouped

into two categories. The first, including the hinge

loss and logistic loss, takes into account only two

candidates among GEN(𝑥𝑖): the oracle candidate 𝑦∗

in (2), and the highest scored incorrect candidate 𝑦′,
defined as

𝑦′ = argmax
𝑦∈GEN(𝑥𝑖)\{𝑦∗}

𝑤𝑇𝜙(𝑥𝑖, 𝑦).

Thus, under the reranking framework, the hinge loss

is defined as

loss𝑖(𝑤) = max{0,1 − 𝑤𝑇(𝜙(𝑥𝑖 , 𝑦∗) − 𝜙(𝑥𝑖 , 𝑦′))}

= max{0, 1 − 𝑤𝑇𝑧𝑖}. (5)

If we define loss𝑖(𝑤) = 0 when the predicted 𝑦 ac-

cording to 𝑤, as in (1), is correct, then it is easy to

verify that to train a predictor using the hinge loss

of (5), the update rule of (4) can be rewritten as

𝑤𝑘+1 = {
𝑤𝑘 , if �̂� = 𝑦∗

𝑤𝑘 + 𝜂𝑧, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Following Shalev-Shwartz (2012), by setting 𝜂 = 1,

we reach the well-known perceptron algorithm.

Similarly, the logistic loss is defined as

loss𝑖(𝑤) = log(1 + exp(−𝑤𝑇𝑧𝑖)).
The second category of loss functions takes into

account the distribution over all candidates in an N-

best list. Among them, log loss is widely used when

a probabilistic interpretation of the trained model is

desired, as in conditional random fields (Lafferty et

al. 2001). Given a training sample, log loss is de-

fined as −log 𝑃𝑤(𝑦∗|𝑥) , where 𝑃𝑤(𝑦∗|𝑥) is com-

puted as

𝑃𝑤(𝑦∗|𝑥𝑖) =
exp 𝑤𝑇𝜙(𝑥𝑖,𝑦∗)

∑ exp 𝑤𝑇𝜙(𝑥𝑖,𝑦)𝑦∈GEN(𝑥𝑖)

. (6)

One might also use a probability distribution of (6)

and an application-specific cost function, as in (2),

to define a loss which is more tightly coupled with

the evaluation metric of the application. Such a loss

function is sometimes called Bayes risk (Gimpel

and Smith 2012), and is of the form

lossB_risk = ∑ 𝑃𝑤(𝑦|𝑥𝑖)cost(𝑦𝑖, 𝑦)𝑦∈GEN(𝑥𝑖) . (7)

Unlike the other loss functions aforementioned,

Bayes risk is non-convex, so there is no theoretical

guarantee (e.g., convergence). However, recent em-

pirical studies show its effectiveness in discrimina-

tive training for various tasks including speech

recognition and SMT (Kaiser et al. 2000; Povey and

Woodland 2002; Smith and Eisner 2006; Zens et al.

2007; Li and Eisner 2009; He and Deng 2012).

3 The Voted Regularized Dual Averaging

Method

This section describes the VRDA algorithm, com-

pares it with related work, and gives some formal

properties of the algorithm.

3.1 The Algorithm

Consider a linear model 𝑤, in which predictions are

made according (1) or (3). The goal of model train-

ing is to learn 𝑤 with small expected loss on unseen

data. To achieve this goal, VRDA trains the linear

model by solving a problem of the form

𝑤∗ = argmin
𝑤

(Ψ(𝑤) +
1

𝑚
∑ loss𝑖(𝑤)𝑚

𝑖=1), (8)

where Ψ(𝑤) is a convex regularization function.

More specifically, the VRDA algorithm is de-

scribed in Figures 1 and 2, for training and testing

respectively. The training module (Figure 1) takes

𝑇 passes (epochs) over the training set, and only up-

dates the parameter vector 𝑤𝑘 when it makes a mis-

take, i.e., the highest scored candidate under 𝑤𝑘 is

not the oracle one. Each 𝑤𝑘 is associated with a

counter 𝑐𝑘, which counts the number of samples it

processed correctly. These counts are then used in

the testing module (Figure 2) as the voting weights

to generate a prediction on a test sample.

Inputs: training samples {(𝑥1, 𝑦1
∗), … , (𝑥𝑚 , 𝑦𝑚

∗)}, num-

ber of epochs 𝑇, 𝜂 > 0, and 𝜆 ≥ 0.

Initialization: 𝑘 = 1, 𝑤1 = 0, 𝑐1 = 0, �̅�0 = 0

Algorithm:

repeat

for 𝑖 = 1, … , 𝑚 do
�̂� = argmax𝑦∈GEN(𝑥𝑖)𝑤𝑘

𝑇𝜙(𝑥𝑖, 𝑦)

if �̂� = 𝑦𝑖
∗ then

𝑐𝑘 = 𝑐𝑘 + 1

else

compute subgradient 𝑔𝑘 ∈ 𝜕loss(𝑤𝑘)

�̅�𝑘 = ((𝑘 − 1)�̅�𝑘−1 + 𝑔𝑘)/𝑘

update 𝑤 according to (9)

𝑐𝑘 = 1

𝑘 = 𝑘 + 1

end if

end for

until 𝑇 times

Output: total number of mistakes 𝑀 = 𝑘, and

{(𝑤1, 𝑐1) … (𝑤𝑀 , 𝑐𝑀)}

Figure 1. The VRDA algorithm (training).

Given: a list of parameter vectors {(𝑤1, 𝑐1) … (𝑤𝑀 , 𝑐𝑀)}

Input: 𝑥 and its candidate set GEN(𝑥) = (𝑦1 … 𝑦𝐽)

Initialization: Set 𝑣[𝑗] = 0 for 𝑗 = 1. . . 𝐽 (𝑣[𝑗] stores

the number of votes for 𝑦𝑗)

Algorithm:

for 𝑘 = 1. . . 𝑀 do

𝑦𝑗 = argmax𝑦𝑗∈GEN(𝑥)𝑤𝑘
𝑇𝜙(𝑥, 𝑦𝑗)

𝑣[𝑗]+= 𝑐𝑘

end for

Output: 𝐹(𝑥) = 𝑦𝑗 where 𝑗 = argmax𝑗𝑣[𝑗]

Figure 2. The VRDA algorithm (testing).

The update rule used in Figure 1 takes the same

form as the RDA method (Xiao 2010)

𝑤𝑘+1 = argmin
𝑤

{�̅�𝑘
𝑇𝑤 + Ψ(𝑤) +

𝜂

√𝑘
Ω(𝑤)} , (9)

where Ω(𝑤) is an auxiliary strongly convex func-

tion (as known as the proximal function), 𝜂 > 0 is

a parameter that controls the learning rate, and �̅�𝑘 is

the average of subgradients 𝑔 over 𝑘 samples with

prediction mistakes

�̅�𝑘 =
1

𝑘
∑ 𝑔𝑚

𝑘
𝑚=1 .

For 𝐿1 regularization used in this study, we define

Ψ(𝑤) = 𝜆‖𝑤‖1 and Ω(𝑤) =
1

2
‖𝑤‖2

2.

Thus, the update rule (9) has a closed-form solution

that employs the shrinkage (soft-thresholding) oper-

ator:

𝑤𝑘+1 = −
√𝑘

𝜂
shrink(�̅�𝑘 , 𝜆). (10)

For a given 𝑔 and a given truncation threshold 𝜆 ≥
0 that controls the sparsity of 𝑤, the shrinkage op-

erator is defined coordinate-wise as

(shrink(𝑔, 𝜆))
(𝑖)

= {

𝑔(𝑖) − 𝜆 , if 𝑔(𝑖) > 𝜆,

0, if |𝑔(𝑖)| ≤ 𝜆,

𝑔(𝑖) + 𝜆, if 𝑔(𝑖) < 𝜆,

for 𝑖 = 1 … 𝑑.

The update rule (9) is a variant of the dual aver-

aging (DA) method (Nesterov 2009) for effectively

handling problems with simple regularization func-

tions. Conceptually, the DA method in the batch

mode is related to cutting-plane methods, where

gradients from all previous iterations are used to

construct a polyhedral lower bound model for the

objective function, i.e., each gradient contributes a

supporting hyperplane. However, such a model is

very expensive to store and manipulate. The DA

method effectively reduces the model to a single hy-

perplane lower bound (no longer supporting) by us-

ing the average gradient (�̅�𝑘), with an additional

quadratic term for regularization (Ω(𝑤)). The algo-

rithm name dual averaging comes from the fact that

the gradients live in the dual space of {𝑤}.

3.2 Comparisons with Related Work

This section elaborates the differences between the

RDA update rule (9) and several related work. We

note that the algorithms used in Martins et al.

(2011a; 2011b) and Tsuruoka et al. (2009) are sim-

ilar to the truncated stochastic gradient methods of

Langford et al. (2009) and Duchi and Singer (2009).

These algorithms can be considered as variants of

the basic form

𝑤𝑘+1 = argmin
𝑤

{𝑔𝑘
𝑇𝑤 + Ψ(𝑤) +

‖𝑤 − 𝑤𝑘‖2
2

2𝛼𝑘
} . (11)

Compared with this form, the RDA method (9) uses

the average subgradient �̅�𝑘 instead of the current

subgradient 𝑔𝑘; it uses a global proximal function

say Ω(𝑤) = (1/2)‖𝑤‖2
2, instead of its local Breg-

man divergence (1/2)‖𝑤 − 𝑤𝑘‖2
2 ; moreover, the

coefficient for the proximal function is 𝜂/√𝑘 in-

stead of 1/𝛼𝑘 = √𝑘/𝜂′ for some constant 𝜂′, where

𝛼𝑘 = 𝜂′/√𝑘 is the step size. Although these two

types of methods have the same order of iteration

complexity, the three differences listed above con-

tribute to quite different properties of their solu-

tions. More specifically, the solution to (11) takes a

form similar to (10):

𝑤𝑘+1 = shrink(𝑤𝑘 − 𝛼𝑘𝑔𝑘, 𝛼𝑘𝜆). (12)

It is clear that when 𝑘 is large, the truncation thresh-

old 𝛼𝑘𝜆 is much smaller than 𝜆, which is used in the

RDA update. This causes the solution (12) much

less sparse than the RDA update (10). We note that

the lazy update or cumulative penalty scheme sug-

gested by Langford et al. (2009) and Tsuruoka et al.

(2009) aims to increase the truncation threshold in

(12), but is still less effective than the RDA update,

as we will demonstrate empirically in our experi-

ments described in Sections 5 and 6 of this paper.

To better understand the connection and differ-

ence between the VRDA method and the truncated

gradient method, we consider the special case 𝑤0 =
0 and Ψ(𝑤) = 0 for all 𝑤. In this case, the RDA

update becomes

𝑤𝑘+1 =
1

𝜂√𝑘
∑ 𝑔𝑚

𝑘
𝑚=1 , (13)

and the update of the truncated gradient method be-

comes

𝑤𝑘+1 = ∑
𝜂′

√𝑚
𝑔𝑚

𝑘
𝑚=1 . (14)

We note that (14) is just the traditional SGD method

with diminishing step size, i.e., new gradients enter

the update with decreasing weights. In (13), how-

ever, all gradients have the same weight, which is

scaled down at each iteration.

3.3 Formal Properties

This section gives some formal properties of the

VRDA algorithm, using the well-studied voted per-

ceptron algorithm (Freund and Schapire 1999; Col-

lins 2002a) as a reference for comparison. We con-

sider the following three questions:

(1) Does VRDA training (Figure 1) without reg-

ularization achieve the same mistake bound

on training data as voted perceptron?

(2) How does the additional 𝐿1 regularization

term affect the mistake bound?

(3) How well does VRDA generalize to unseen

test samples (Figure 2)?

We answer these questions by presenting two

important theorems. We start with some definitions.

Let 𝑀 be the number of mistakes made by VRDA

training (Figure 1) after processing 𝑚 training sam-

ples. Recall that VRDA updates 𝑤 only when it

makes a mistake. We thus use 𝑖(𝑘) to denote the in-

dex of the sample on which the k-th mistake was

made by 𝑤𝑘.

Let 𝑢 be an (unknown) optimal predictor. We

define the total loss of 𝑢 over the subsequence

{𝑖(𝑘)}𝑘=1
𝑀 , denoted by 𝐿(𝑢), as

𝐿(𝑢) = ∑ loss𝑖(𝑘)(𝑢)𝑀
𝑘=1 . (15)

We also define the relative strength of regulariza-

tion of a sequence of learned vectors 𝑤𝑘 with re-

spect to 𝑢, denoted by Δ(𝑢), as

Δ(𝑢) = Ψ(𝑢) −
1

𝑀
∑ Ψ(𝑤𝑘)𝑀

𝑘=1 . (16)

We then have Theorem 1 (see Appendix for the

proof):

Theorem 1 Let (𝑥𝑖, 𝑦𝑖) for 𝑖 = 1 … 𝑚 be a se-

quence of labeled training data such that ∀𝑖, ∀𝑦 ∈
GEN(𝑥𝑖)\{𝑦∗}, ‖ 𝜙(𝑥𝑖 , 𝑦∗) − 𝜙(𝑥𝑖 , 𝑦)‖2 ≤ 𝑅 ,

where 𝑦∗ is defined in (2). For any vector 𝑢 , let

 𝐿(𝑢) and Δ(𝑢) be defined in (15) and (16), respec-

tively. For the first pass over the training data of the

VRDA algorithm in Figure 1 with 𝜆Δ(𝑢) < 1, the

number of mistakes 𝑀 is bounded by

𝑀 ≤ inf
𝑢:1−𝜆Δ(𝑢)>0

(√
𝐿(𝑢)

1−𝜆Δ(𝑢)
+

√2𝑅‖𝑢‖2

1−𝜆Δ(𝑢)
)

2

. (17)

To answer the first question, we set 𝜆 = 0 (the

case without regularization) and rewrite (17) as

𝑀 ≤ inf
𝑢

(√𝐿(𝑢) +
√2𝑅

𝛾
)

2

, 𝛾 =
1

‖𝑢‖2
 (18)

which bears a strong resemblance to the mistake

bound of the voted perceptron algorithm (i.e., The-

orem 2 in Collins (2002a)). The inequality (18) im-

plies that if there exists some 𝑢 such that 𝐿(𝑢) is

relatively small, then the algorithm will make a

small number of mistakes. Thus, Theorem 1 also

shows that the VRDA algorithm can be robust to

some training samples where the oracle candidate

cannot be distinguished easily, if not impossible,

from the rest of the candidates in GEN(𝑥), which are

very common in NLP tasks.

Now, consider a special case where hinge loss

(5) is used for VRDA and the training data is sepa-

rable as stated in Assumption 1.

Assumption 1 A training sequence (𝑥𝑖 , 𝑦𝑖) for 𝑖 =
1 … 𝑚 is said to be separable with margin 𝛾 , if

there exists a vector 𝑢 with ‖𝑢‖2 = 1/𝛾 such that

∀𝑖, ∀𝑦 ∈ GEN(𝑥𝑖)\{𝑦∗}, 𝑢𝑇(𝜙(𝑥𝑖 , 𝑦∗) − 𝜙(𝑥𝑖 , 𝑦)) ≥ 1

where 𝑦∗ is the oracle candidate defined in (2).

This assumption implies that 𝐿(𝑢) in (18) has a zero

value for separable data. (18) becomes

𝑀 ≤ 2 (
𝑅

𝛾
)

2
, (19)

which matches the mistake bound on separable data

for the voted perceptron algorithm (i.e., Theorem 1

in Collins (2002a)), with an extra factor of two. (19)

implies that if there exists a parameter vector that

can make zero error on the training set, then after a

finite number of iterations the training algorithm

will have converged to a parameter vector with zero

training error. We also notice that the mistake bound

is independent of the dimension 𝑑 (i.e., the number

of features) and the number of candidates for each

sample (i.e., the size of GEN(𝑥𝑖) for each input 𝑥𝑖).

This is an important property because in many NLP

tasks, such as parsing and SMT, the number of fea-

tures could amount to tens of millions and GEN(𝑥𝑖)

can be exponential in the size of the inputs.

Now, we give the answer to the second question.

In the case of regularization i.e., 𝜆 > 0 in (17), the

mistake bound also depends on the relative strength

of regularization Δ(𝑢), defined in (16), which is the

difference between Ψ(𝑢) and the average of the

predictors generated by VRDA, Ψ(𝑤1) … Ψ(𝑤𝑀).

Note that Ψ(𝑤1) … Ψ(𝑤𝑀) tend to be small for

large values of 𝜆 (more regularization), and tend to

be large for small values of 𝜆 (less regularization).

We discuss three scenarios:

The optimal regularization case: Δ(𝑢) = 0 .

This happens if the optimal value of 𝜆 is chosen. In

this case, we reach the same mistake bound as the

case without regularization, as shown in (18).

The under-regularization case: Δ(𝑢) < 0 .

This happens if the value of 𝜆 is chosen too small,

and the generated vectors 𝑤1 … 𝑤𝑀 on average has

a larger Ψ value than Ψ(𝑢). In this case, we have a

smaller mistake bound than the case of optimal reg-

ularization (when Δ(𝑢) = 0). This effect may be re-

lated to over-fitting on the training set.

The over-regularization case: Δ(𝑢) > 0 and

𝜆|Δ(𝑢)| < 1. This happens if the value of 𝜆 is cho-

sen too large, and the generated vectors 𝑤1 … 𝑤𝑀 on

average has a smaller value of Ψ than Ψ(𝑢). In this

case, the mistake bound can be much larger than the

case of optimal regularization (when Δ(𝑢) = 0). If

𝜆Δ(𝑢) ≥ 1, (17) does not give any meaningful mis-

take bound (see Appendix for the proof).

To answer the third question, i.e., how well does

VRDA generalize to unseen test samples, we give

Theorem 2. Following Collins (2002a), we assume

that there is some unknown distribution 𝑃(𝑥, 𝑦)

over the set 𝑋 × 𝑌, and that both training and test

samples are drawn i.i.d. from this distribution. Our

result (Theorem 2) is a direct corollary of Theorem

3 of Freund and Schapire (1999), which is a result

of the theory developed in Helmbold and Warmuth

(1995).

Theorem 2 Assume all samples are generated i.i.d.

at random. Suppose that we run the training algo-

rithm in Figure 1 on a sequence of samples

{(𝑥1, 𝑦1) … (𝑥𝑚+1, 𝑦𝑚+1)} and 𝑀 mistakes occur

on samples with indices 𝑖(1) … 𝑖(𝑀). Let 𝐿(𝑢) and

𝛥(𝑢) be defined in (15) and (16), respectively.

Now suppose we run the training algorithm in

Figure 1 on m samples {(𝑥1, 𝑦1) … (𝑥𝑚, 𝑦𝑚)} for a

single pass. Then the probability that the testing al-

gorithm in Figure 2 does not predict 𝑦𝑚+1 on the

test instance 𝑥𝑚+1 is at most

2

𝑚+1
𝐸 [inf

𝑢:1−𝜆Δ(𝑢)>0
(√

𝐿(𝑢)

1−𝜆Δ(𝑢)
+

√2𝑅‖𝑢‖2

1−𝜆Δ(𝑢)
)

2

].

(The above expectation 𝐸(.) is over the choice of all

𝑚 + 1 random samples.)

Theorem 2 implies that if the VRDA algorithm

makes a relatively small number of mistakes on

training samples then it is likely to generalize well

to unseen test samples.

4 Parse Reranking

We follow the experimental paradigm outlined in

Charniak and Johnson (2005). We used the same

generative baseline model for generating candidate

parses, and the nearly the same feature set, which

includes the log probability of a parse according to

the baseline model and 1,219,272 additional fea-

tures. We trained the predictor on Sections 2-19 of

the Penn Treebank, used Section 20-21 to optimize

training parameters, such as the regularization pa-

rameters, the learning rate 𝜂 and the number of iter-

ations, and then evaluated the predictors on Section

22. The training set contains 36K sentences, while

Algorithm F-score Prec. Recall NNZ

1. Baseline 0.8986 0.8983 0.8990 n/a

2. Perceptron 0.9164
α
 0.9191 0.9143 950K

3. TG (hinge) 0.9172
α
 0.9198 0.9127 775K

4. TG (logistic) 0.9165
α
 0.9190 0.9139 485K

5. VRDA (hinge) 0.9176
α
 0.9200 0.9191 542K

6. VRDA(logistic) 0.9179
α
 0.9205 0.9153 902K

Table 1. Performance (on the test set) of different algo-

rithms. NNZ stands for the number of non-zero weights

in the model. The superscript 𝛼 indicates statistically

significant difference p < 0.05 from Baseline.

𝝀 hinge loss logistic loss

F-score NNZ F-score NNZ

0 0.9171 945K 0.9176 936K

1E-5 0.9175 900K 0.9179 902K

2E-5 0.9175 860K 0.9180 857K

5E-5 0.9166 713K 0.9165 713K

1E-4 0.9176 542K 0.9171 542K

2E-4 0.9165 374K 0.9170 373K

5E-4 0.9135
α
 210K 0.9138

α
 209K

Table 2. F-scores (on the test set) vs. the sparsity (meas-

ured by NNZ) of models trained using VRDA with dif-

ferent values of 𝜆. The superscript 𝛼 indicates statisti-

cally significant difference p < 0.05 from the models

trained without regularization.

the development set and the test set have 4K and

1.7K, respectively. Performance of parsing re-rank-

ing is measured with the PARSEVAL metric, i.e.,

F-score over labelled brackets.

Our main results are summarized in Table 1.

Baseline (Row 1) is the parser of Charinak (2000).

Perceptron (Row 2) is our implementation of the

averaged perceptron algorithm (Collins 2002a). TG

(Rows 3 and 4) is the truncated gradient method of

(11) and (12). Our implementation of TG follows

Langford et al. (2009). The truncation (12) is per-

formed every 𝑁 rounds. That is, if 𝑖/𝑁 is not an in-

teger, we set 𝜆 in (12) to zero; otherwise, we let 𝜆 =
𝑁𝜆′ for a fixed gravity parameter 𝜆′ > 0. For TG

and the VRDA algorithm (Rows 5 and 6), we

trained linear models using the hinge loss and the

logistic loss. For each type of loss, we report the re-

sult of the model which was trained using the pa-

rameter setting (including the number of iterations,

the learning rate and the regularization parameters)

optimized for F-score on development data. The re-

sults show that all the discriminatively trained mod-

els (Rows 2 to 6) significantly improve Baseline.

Compared to Perceptron, VRDA and TG achieve

slightly better F-scores with sparser models, meas-

ured in number of nonzero weights (NNZ).

Figures 3 and 4 compare the effectiveness of ob-

taining sparse solutions of VRDA and TG. For a

fair comparison, we built a large number of linear

models for each algorithm using different settings

of training parameters that control the sparsity of the

trained model. In VRDA, the model sparsity is con-

trolled by the value of 𝜆 in (10). In TG, the model

sparsity is controlled by 𝑁, the gravity parameter

𝜆′ and 𝛼𝑘 in (12). The results show that in the cases

where sparse models are desired VRDA is a better

choice than TG since VRDA can produce much

sparser models with less loss in F-score.

Table 2 and Figures 5 and 6 provide additional

results to investigate in more detail the properties of

VRDA. Table 2 presents the models trained with

different values of 𝜆. The results show that com-

pared to the models trained without regularization,

a better or very similar (with no statistically signifi-

cant difference) F-score can be achieved by a much

sparser model. This demonstrates the desired fea-

ture selection effect of VRDA, which helps prevent

over-fitting. Figure 5 examines how NNZ changes

during the course of training. As expected, larger

𝜆’s lead to sparser models whose training converges

more quickly. In Figure 6, we plot the number of

mistakes as a function of the number of training

Figure 3. F-scores (on the test set) vs. NNZ of the mod-

els trained using hinge loss with TG and VRDA.

Figure 4. F-scores (on the test set) vs. NNZ of the mod-

els trained using logistic loss with TG and VRDA.

Figure 5. NNZ during the course of training using Per-

ceptron and VRDA with hinge loss and different 𝜆’s.

Figure 6. Number of mistakes on the training set during

the course of training using Perceptron and VRDA

with hinge loss and different 𝜆’s.

samples received by VRDA. The results provide

empirical justification of the analysis on mistake

bounds presented in Section 3.3. First, we observed

that the number of training errors grows sub-linearly

with the number of training samples. Second, as pre-

dicted by Theorem 1, VRDA without regularization

(𝜆 = 0) makes no more training errors than Percep-

tron, but the number of training error increases

along with more regularization (𝜆 > 0).

5 Discriminative SMT

This section describes the use of VRDA for discrim-

inative training of phrase translation models in SMT.

The phrase translation model, also known as the

phrase table, consists of a list of bilingual phrase

pairs. Each phrase pair is assigned with a translation

score which in traditional phrase translation models

is estimated based on counting the phrases, or their

words, on an automatically word-aligned training

data. In this study we have developed a new phrase

translation model where the translation score for a

phrase pair is learned using discriminative training

methods based on SGD or VRDA. We refer to the

new model as discriminative phrase translation

model (DPTM). Formally, DPTM defines the trans-

lation score of a source-target sentence pair as

score𝑤(𝑥𝑖, 𝑦, ℎ) = ∑ 𝑤(𝑖)𝑑
𝑖=1 𝜙(𝑖)(𝑥, 𝑦, ℎ) (20)

= 𝑤𝑇𝜙(𝑥, 𝑦, ℎ),

where 𝑑 is the total number of phrase pairs in the

phrase table, 𝑤 is the weight vector to be learned,

and 𝜙(𝑖)(𝑥, 𝑦, ℎ) is an indicator function whose

value is 1 if the i-th bilingual phrase is in ℎ, and 0

otherwise. Recall that ℎ is a hidden variable consist-

ing of a segmentation of 𝑥 and 𝑦 into phrases and an

alignment between source and target phrases, as in

(3).

The parameters of the DPTM 𝑤 can be learned

using SGD or VRDA, together with a loss function.

In addition to the classical functions, including

hinge loss, logistic loss and log loss, as described in

Section 2, we also used a Bayes risk function, which

is based on the expected BLEU defined on N-best

lists (e.g., Gao and He 2013). Given the current

model 𝑤, Bayes risk over one training sample (i.e.,

𝑥𝑖 and its labeled N-best list) is defined as

lossB_risk(𝑤) (21)

= − ∑ 𝑃𝑤(𝑦|𝑥𝑖)sBleu(𝑦𝑖, 𝑦)𝑦∈GEN(𝑥𝑖) .

(21) is a special case of (7) in that the procedure

used to generate the N-best translation candidates

GEN is a baseline phrase-based SMT system, which

in our study is a reimplementation of the Moses sys-

tem (Koehn et al. 2007) that does not use the DPTM,

and the application-specific cost function is defined

as the negative of the sentence-level BLEU score

(He and Deng 2012), denoted by sBleu , which

measures the quality of translation candidate 𝑦 with

respect to its reference translation 𝑦𝑖 . 𝑃𝑤(𝑦|𝑥𝑖) in

(21) is a normalized translation probability from 𝑥𝑖

to 𝑦 computed using softmax as

𝑃(𝑤)(𝑦|𝑥𝑖) =

exp(score𝑤(𝑥𝑖 , 𝑦, ℎ) + b(𝑥𝑖, 𝑦, ℎ))

∑ exp(score𝑤(𝑥𝑖, 𝑦′, ℎ) + b(𝑥𝑖, 𝑦′, ℎ))𝑦′∈GEN(𝑥𝑖)

where score𝑤(.) is defined by the DPTM in (20),

and b(.) is the baseline score produced by the base-

line phrase-based SMT system. Since the DPTM

has to work together with other component models

of the SMT system, including the baseline score in

the loss function forces the learning algorithm to es-

timate the parameters of the DPTM in such a way

that the quality of end-to-end machine translation

results is directly optimized.

The subgradient 𝑔 of this Bayes risk is

𝑔(𝑤) = ∑ U(𝑤, 𝑦)𝑃𝑤(𝑦|𝑥𝑖)𝜙(𝑥𝑖 , 𝑦, ℎ)𝑦∈GEN(𝑥𝑖) ,

where U(𝑤, 𝑦) = lossB_risk(𝑤) − sBleu(𝑦𝑖, 𝑦).

Given the loss function and its subgradient, the pa-

rameters of the DPTM can be optimized using the

SGD algorithm or the VRDA algorithm (Figure 1).

After the DPTM is trained, we incorporated it as an

additional feature into the log-linear model of SMT

(3), where the feature weights are optimized using

MERT (Och 2003) to maximize the BLEU score on

development data.

5.1 Experiments

We conducted our experiments on the German-to-

English (DE-EN) Europarl translation task (Koehn

and Monz 2006). The training set contains 751K

sentence pairs, with 21 words per sentence on aver-

age. The official development set used for the

shared task contains 2000 sentences. In our experi-

ments we used the first 1000 sentences as a devel-

opment set for MERT training and optimizing pa-

rameters for discriminative training, such as learn-

ing rate and the number of iterations. We used the

rest 1000 sentences as the first test set (TEST1). We

used the WMT06 test data as the second test set

(TEST2), which contains 2000 sentences.

The metric used for evaluation is case insensitive

BLEU score (Papineni et al. 2002). We also per-

formed a significance test using the paired t-test.

Differences are considered statistically significant

when the p-value is less than 0.05.

The main results are presented in Table 3. The

baseline phrase-based SMT system is the same that

we used for generating the N-best lists for discrimi-

native training. Results show that the effectiveness

of discriminative training, using either SGD or

VRDA, depends to a large degree upon the choice

of loss functions. The loss functions that take into

account the distribution over all hypotheses in an N-

best list (i.e., Bayes risk and log loss) are more ef-

fective than the ones that do not. Bayes risk, despite

its non-convexity, significantly outperforms the

others because it combines the cost function (i.e.,

sBleu) that is closely coupled with the evaluation

metric under consideration (i.e., BLEU). Overall,

VRDA compares favorably to SGD. In addition,

VRDA shows robust performance for both the con-

vex loss and the non-convex loss (Bayes risk). In the

former case, it outperforms SGD with a statistically

significant margin in some runs. More importantly,

as shown in Table 4, VRDA is effective in obtaining

sparse models due to the use of the 𝐿1 regularization

term. For example, we can have a model that is an

order of magnitude smaller, with negligible perfor-

mance difference to the baseline. This is important

for system deployment in practice.

Figures 7 and 8 compare VRDA to TG. The re-

sults are similar to that of the parse reranking results

in Figures 3 and 4. Compared to TG, VRDA can

produce much sparser models with less BLEU score

loss.

6 Conclusion

Online methods are increasingly attractive for large-

scale machine learning in recent studies (e.g., Zhang

2004; Bottou 2010). However, traditional methods

cannot effectively induce particular structure (such

as sparsity) into solutions. This paper presents the

VRDA algorithm for large-scale discriminative

training in NLP, as an alternative to the perceptron

algorithms or SGD. The new algorithm estimates

 SGD VRDA

TEST1 TEST2 TEST1 TEST2

Baseline 26.0 26.0 26.0 26.0

B_risk 26.8α 26.7α 26.9α 26.7α

hinge loss 26.4 26.2 26.5α 26.4αβ

logistic loss 26.2 26.3 26.6αβ 26.4

log loss 26.6α 26.4 26.6α 26.6αβ

Table 3. BLEU scores using the DPTMs trained with

different algorithms. The superscripts 𝛼 and 𝛽 indicate

statistically significant difference p < 0.05 from Base-

line and SGD with the same loss function, respectively.

𝝀 NNZ TEST1 TEST2

0 2.5M 26.9 26.7

2E-8 357K 26.9 26.6

5E-8 154K 26.7 26.7

1E-7 57K 26.6 26.6

5E-7 5K 26.3α 26.5α

Table 4. BLEU scores vs. the sparsity (NNZ) of the

DPTMs which are trained using VRDA with different

values of 𝜆 for regularization. The superscript 𝛼 indi-

cates statistically significant difference p < 0.05 from

the models trained without regularization.

Figure 7. BLEU scores (on TEST1) vs. NNZ weights

of the models trained using B_risk with VRDA and TG.

Figure 8. BLEU scores (on TEST2) vs. NNZ weights

of the models trained using B_risk with VRDA and TG.

model parameters by minimizing 𝐿1 regularized ob-

jectives and are effective in obtaining sparse solu-

tions. We give the mistake bound of the algorithm,

and show how the bound is affected by the addi-

tional regularization term. Evaluations are per-

formed on two NLP tasks: parse reranking and dis-

criminative phrase translation model training for

SMT, showing that VRDA gives better and sparser

solutions than perceptron or SGD, and that VRDA

generates substantially sparser solutions than the

truncated gradient method, which is a state-of-the-

art method of sparse learning for linear models.

References

Andrew, G., and Gao, J. 2007. Scalable training of

l1-regularized log-linear models. In ICML, 33-47.

Bottou, L. O. 2010. Large-scale machine learning

with stochastic gradient descent. In COMPSTAT,

177-187.

Charniak, E. 2000. A maximum-entropy-inspired

parser. In NAACL, 132-139.

Charniak, E., and Johnson, M. 2005. Coarse-to-fine

n-best parsing and maxent discriminative rerank-

ing. In ACL, 173-180.

Collins, M. 2000. Discriminative re-ranking for nat-

ural language parsing. In ICML, 175-182.

Collins, M. 2002a. Discriminative training methods

for hidden Markov models: theory and experi-

ments with perceptron algorithms. In EMNLP, 1-

8.

Collins, M. 2002b. New ranking algorithms for

parsing and tagging: kernels over discrete struc-

tures and the voted perceptron. In ACL.

Duchi, J. and Singer, Y. 2009. Efficient online and

batch learning using forward backward splitting.

JMLR, 10:2873-2908.

Freund, Y., and Schapire, R. 1999. Large margin

classification using the perceptron algorithm. Ma-

chine Learning, 37(3): 227-296.

Floyd, S. and Warmuth, M. K. 1995. Sample com-

pression, learnability, and vapnik-chervonenkis

dimension. Machine Learning, 21(3):269-304.

Gao, J., Andrew, G., Johnson, M., and Toutanova,

K. 2007. A comparative study of parameter esti-

mation methods for statistical natural language

processing. In ACL, 824-831.

Gao, J., and He, X. 2013. Training MRF-based

translation models using gradient ascent. In

NAACL-HLT, pp. 450-459.

Gimpel, K., and Smith, N. A. 2012. Structured ramp

loss minimization for machine translation. In

NAACL-HLT.

He, X., and Deng, L. 2012. Maximum expected bleu

training of phrase and lexicon translation models.

In ACL, pp. 292-301.

Helmbold, D. P., and Warmuth, M. K. 1995. On

weak learning. Journal of Computer and System

Sciences, 50:551-573, 1995.

Kaiser, J., Horvat, B., and Kacic, Z. 2000. A novel

loss function for the overall risk criterion based

discriminative training of hmm models. In ICSLP.

Koehn, P., and Monz, C. 2006. Manual and auto-

matic evaluation of machine translation between

European languages. In Workshop on Statistical

Machine Translation, pp. 102-121.

Koehn, P., Hoang, H., Birch, A., Callison-Burch,

C., Federico, M., Bertoldi, N., Cowan, B., Shen,

W., Moran, C., Zens, R., Dyer, C., Bojar, O., Con-

stantin, A., and Herbst, E. 2007. Moses: open

source toolkit for statistical machine translation.

In ACL 2007, demonstration session.

Lafferty, J., McCallum, A., and Pereira, F. 2001.

Conditional random fields: probablistic models

for segmenting and labeling sequence data. In

ICML.

Li, Z., and Eisner, J. 2009. First- and second-order

expectation semirings with applications to mini-

mum-risk training on translation forests. In ACL.

Langford, J., Li, L., and Zhang, T. 2009. Sparse

online learning via truncated gradient. JMLR,

10:777-801.

Liang, P., Bouchard-Cote, A. Klein, D., and Taskar,

B. 2006. An end-to-end discriminative approach

to machine translation. In COLING-ACL.

Martins, A. F. T., Figueiredo, M. A. T., Aguiar, P.

M. Q., Smith, N. A., and Xing, E. 2011a. Online

learning of structured predictors with multiple

kernels. In AISTATS.

Martins, A. F. T., Smith, N. A., T., Aguiar, P. M. Q.,

and Figueiredo, M. A. 2011b. Structured sparsity

in structured prediction. In EMNLP.

Nesterov, Y. 2009. Primal-dual subgradient meth-

ods for convex problems. Mathematical Pro-

gramming, 120: 221-259.

Och, F., and Ney, H. 2004. The alignment template

approach to statistical machine translation. Com-

putational Linguistics, 29(1): 19-51.

Och, F. 2003. Minimum error rate training in statis-

tical machine translation. In ACL, pp. 160-167.

Papineni, K., Roukos, S., Ward, T., and Zhu W-J.

2002. BLEU: a method for automatic evaluation

of machine translation. In ACL.

Povey, D. and Woodland, P. C. 2002. Minimum

phone error and i-smoothing for improved dis-

criminative training. In ICASSP.

Roark, R., Saraclar, M., and Collins, M. 2007. Dis-

criminative n-gram language modeling. Com-

puter Speech and Language, 21(2):373-392.

Shalev-Shwartz, Shai. 2012. Online learning and

online convex optimization. Foundations and

Trends in Machine Learning, 4(2):107-194.

Shen, L., Sarkar, A., and Och, F. 2004. Discrimina-

tive reranking for machine translation. In

HLT/NAACL.

Simianer, P., Riezler, S., and Dyer, C. 2012. Joint

feature selection in distributed stochasic learning

for large-scale discriminative training in SMT. In

ACL, pp. 11-21.

Smith, D. A., and Eisner, J. 2006. Minimum risk an-

nealing for training log-linear models. In COL-

ING-ACL.

Tsuruoka, T., Tsujii, J., and Ananiadou, S. 2009.

Stochastic gradient descent training using l1-reg-

ularized log-linear models with cumulative pen-

alty. In ACL.

Xiao, L. 2010. Dual averaging methods for regular-

ized stochastic learning and online optimization.

Journal of Machine Learning, 11:2543-2596,

Oct. 2010.

Zen, R., Hasan, S., and Ney, H. 2007. A systematic

comparsion of training criteria for statistical ma-

chine translation. In EMNLP.

Zhang, T. 2004. Solving large scale linear predic-

tion problems using stochastic gradient descent

algorithms. In ICML, 116-123.

Appendix A. The Proof of Theorem 1

This section gives the proof of Theorem 1 by

providing an analysis of the voted regularized dual

averaging (VRDA) algorithm for the case 𝑇 = 1

(i.e., going through the training set once). The

analysis parallels that for the voted perceptron

algorithm given in Freund and Schapire (1999).

We bound the number of mistakes made by

VRDA through its regret analysis. First, we

recognize that VRDA is equivalent to running RDA

(Xiao 2010) on the subsequence of training samples

where a prediction mistake is made. Let 𝑀 be the

number of mistakes made by the algorithm after

processing 𝑚 training samples, and 𝑖(𝑘) denote the

index of the sample on which the k-th mistake was

made (by 𝑤𝑘). The regret of the algorithm, with

respect to a fixed vector 𝑢, is defined only by the

samples with prediction errors:

𝑅𝑀(𝑢) = ∑ (loss𝑖(𝑘)(𝑤𝑘) + Ψ(𝑤𝑘))𝑘=1…𝑀 (A.1)

− ∑ (loss𝑖(𝑘)(𝑢) + Ψ(𝑢))𝑘=1…𝑀 .

According to Theorem 1 and Corollary 2 of Xiao

(2010), by setting 𝜂 = √2𝐺/‖𝑢‖2 , the RDA

method has the regret bound as

𝑅𝑀(𝑢) ≤ √2𝐺‖𝑢‖2√𝑀 (A.2)

where 𝐺 is an upper bound on the norm of the sub-

gradients, i.e., ‖𝑔𝑘‖2 ≤ 𝐺 for all 𝑘 = 1 … 𝑀. Since

the loss functions are upper bounds for the 0-1 loss

𝑀 ≤ ∑ loss𝑖(𝑘)(𝑤𝑘)𝑘=1…𝑀 ,

we can bound the number of mistakes by combining

the above inequality with (A.1) and (A.2) as

𝑀 ≤ 𝐿(𝑢) + 𝑀𝜆Δ(𝑢) + √2𝐺‖𝑢‖2√𝑀 (A.3)

where 𝐿(𝑢) is the total loss of the vector 𝑢 over the

subsequence {𝑖(𝑘)}𝑘=1
𝑀 , defined as

𝐿(𝑢) = ∑ loss𝑖(𝑘)(𝑢)𝑀
𝑘=1 , (A.4)

and Δ(𝑢) is the relative strength of regularization

of 𝑤𝑘 with respect to 𝑢, defined as

Δ(𝑢) = Ψ(𝑢) −
1

𝑀
∑ Ψ(𝑤𝑘)𝑀

𝑘=1 . (A.5)

A.1 Analysis for separable data

Our analysis for separable data is based on the hinge

loss defined in (5) of the paper, and Assumption 1

described in Section 3.3 of the paper. Assumption 1

is adapted from the standard separability with mar-

gin assumption. Under this assumption, we have

𝐿(𝑢) = 0 in (A.3) and the margin of separability is

defined as 𝛾 = 1/‖𝑢‖2. For convenience, we let

𝑅 = max
𝑖=1…𝑁

‖𝑧𝑖‖2.

Then we can set 𝐺 = 𝑅 since for hinge loss of (5),

– 𝑧𝑖 is the subgradient of loss𝑖(𝑢) , and we have
‖−𝑧𝑖‖2 = ‖𝑧𝑖‖2 ≤ 𝑅 for 𝑖 = 1 … 𝑚 . We have the

following results under Assumption 1:

 if 𝜆 = 0 (the case without regularization), then

𝑀 ≤ √2𝐺‖𝑢‖2√𝑀, which implies

𝑀 ≤ 2𝐺2‖𝑢‖2
2 = 2 (

𝑅

𝛾
)

2
.

which is very similar to the mistake bound for

the voted perceptron algorithm (Freund and

Schapire 1999), with an extra factor of two. Note

that this bound is independent of the dimension

𝑑 and the number of samples 𝑚. It also holds for

𝑇 > 1 (multiple passes over the data).

 if 𝜆 > 0 , the mistake bound also depends on

Δ(𝑢), which is the difference between Ψ(𝑢) and

the average of Ψ(𝑤1) … Ψ(𝑤𝑀). More specifi-

cally,

𝑀 ≤ 𝑀𝜆Δ(𝑢) + √2𝑅‖𝑢‖2√𝑀.

Note that Ψ(𝑤1) … Ψ(𝑤𝑀) tend to be small for

large values of 𝜆 (more regularization), and tend

to be large for small values of 𝜆 (less

regularization). We discuss two scenarios:

The under-regularization case: Δ(𝑢) < 0. This

happens if the value of 𝜆 is chosen too small, and

the generated vectors 𝑤1 … 𝑤𝑀 on average has a

larger Ψ value than Ψ(𝑢). In this case, we have

𝑀 ≤ 2 (
1

1+𝜆|Δ(𝑢)|
)

2
(

𝑅

𝛾
)

2
.

So we have a smaller mistake bound than the

case of perfect regularization (when Δ(𝑢) = 0).

This effect may be related to over-fitting on the

training set.

The over-regularization case: Δ(𝑢) > 0 . This

appens if the value of 𝜆 is chosen too large, and

the generated vectors 𝑤1 … 𝑤𝑀 on average has a

smaller value in Ψ than Ψ(𝑢) . If in addition

𝜆|Δ(𝑢)| < 1, then we have

𝑀 ≤ 2 (
1

1−𝜆|Δ(𝑢)|
)

2
(

𝑅

𝛾
)

2
.

which can be much larger than the case of perfect

regularization (when Δ(𝑢) = 0). If 𝜆Δ(𝑢) ≥ 1,

then the inequality of (A.3) holds trivially and

does not give any meaningful mistake bound.

A.2 Analysis for inseparable data

Our analysis is similar to the error analysis for the

perceptron in Shalev-Shwartz (2012), which relies

on applying the following lemma to (A.3)

Lemma 1 Given 𝑎, 𝑏, 𝑐 > 0 , the inequality 𝑥 −

𝑏√𝑥 − 𝑐 ≤ 0 implies

𝑥 ≤
𝑐

𝑎
+ (

𝑏

𝑎
)

2
+

𝑎

𝑏
√

𝑐

𝑎
≤ (√

𝑐

𝑎
+

𝑏

𝑎
)

2

.

Here are the case-by-case analysis:

 if 𝜆 = 0, we have

𝑀 ≤ 𝐿(𝑢) + √2𝑅‖𝑢‖2√𝑀.

which results in (using Lemma 1 with 𝑎 = 1)

𝑀 ≤ (√𝐿(𝑢) + √2𝑅‖𝑢‖2)
2
.

Note that this bound only makes sense if the total

loss 𝐿(𝑢) is not too large.

 if 𝜆 > 0, the mistake bound depends on Δ(𝑢),

the relative strength of regularization.

The under-regularization case: Δ(𝑢) < 0. Using

Lemma 1 with 𝑎 = 1 + 𝜆|Δ(𝑢)|, we have

𝑀 ≤ (√
𝐿(𝑢)

1+𝜆|Δ(𝑢)|
+

√2𝑅‖𝑢‖2

1+𝜆|Δ(𝑢)|
)

2

.

The over-regularization case: Δ(𝑢) > 0 . If

𝜆|Δ(𝑢)| < 1, then using Lemma 1 with 𝑎 = 1 −
𝜆|Δ(𝑢)|, we have

𝑀 ≤ (√
𝐿(𝑢)

1−𝜆|Δ(𝑢)|
+

√2𝑅‖𝑢‖2

1−𝜆|Δ(𝑢)|
)

2

.

Again, if 𝜆Δ(𝑢) ≥ 1, the inequality (A.3) holds

trivially and does not lead to any meaningful

bound.

In summary, we have proved the following theorem.

Theorem 1 Let (𝑥𝑖, 𝑦𝑖) for 𝑖 = 1 … 𝑚 be a se-

quence of labeled training data such that ∀𝑖, ∀𝑦 ∈
GEN(𝑥𝑖)\{𝑦∗}, ‖ 𝜙(𝑥𝑖 , 𝑦∗) − 𝜙(𝑥𝑖 , 𝑦)‖2 ≤ 𝑅. For

any vector 𝑢, let 𝐿(𝑢) be the total loss defined in

(A.4), and Δ(𝑢) be the relative strength of regulari-

zation defined in (A.5). For the first pass over the

training data of the VRDA algorithm in Figure 1

with 𝜆Δ(𝑢) < 1 , the number of mistakes 𝑀 is

bounded by

𝑀 ≤ (√
𝐿(𝑢)

1−𝜆Δ(𝑢)
+

√2𝑅‖𝑢‖2

1−𝜆Δ(𝑢)
)

2

.

In particular, if the training set satisfies Assumption

1, then we have

𝑀 ≤ 2 (
1

1−𝜆Δ(𝑢)
)

2
(

𝑅

𝛾
)

2
,

where 𝛾 = 1/‖𝑢‖2 is the separation margin.

The above theorem is stated in the context of

using the hing loss. However, the analysis for

inseparable data holds for other convex surrogate

functions as well, including the logistic loss and the

log loss. We only need to replace 𝑅 with a constant

𝐺, which satisfies 𝐺 ≥ ‖𝑔𝑘‖2 for all 𝑘 = 1 … 𝑀.

