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Abstract — We study the problem of finding the
optimal overcomplete (frame) expansion and bit allo-
cation for multiple description quantization of a Gaus-
sian signal at high rates over a lossy channel.

I. INTRODUCTION .

The setup is shown in Figure 1. In multiple description
quantization using overcomplete (frame) expansions {1, 2], an
input signal ¢ € R¥ is represented by a vector y = Fx € RV,
N > K. F is a N x K matrix, called the frame operator. It
is assumed any K rows of F span R¥. The coefficients of y
are scalar quantized to obtain §, and are then independently
entropy coded using on average a total of R bits allocated
among the N coefficients. In channel state s, the decoder
receives Ny, < N coefficients after potential erasures, and
reconstructs the signal & from the received coefficients. The

number of channel states is 2" since each coeficient can be -

either received or lost. For a given distribution over channel
states, we wish to find the frame operator F and the bit alloca-
tion for the transform coefficients that minimizes the expected
squared error D = E[jj& — |?] subject to a constraint on the
average rate R, for asymptotically large R and Gaussian z.

II. ANALYSIS

Without loss of generality, assume that x is distributed
with zero mean and diagonal covariance matrix Ree =
diag(o3,...,0%_,) (else can use KLT). Let ¢ = ¢ — § be the
quantization error and let e = £ — & be the reconstruction
error. At high rate, assume q is distributed with zero mean
and diagonal covariance matrix with E[||g:(|*] = coZ, 2727,
where ¢ = 7e/6 if entropy coded uniform scalar quantization
is used. The distortion can be written as D =}, p,D,, where
D, = E[|le]|*|S = s}, and p, is the probability of the channel
being in state s. Let Yrs denote the N; , dimensional vector of
received coefficients. Let F'; , be a Ny, X K matrix consisting
of rows of F corresponding to the received coefficients.

To obtain an expression for D,, there are two cases to con-
sider: Ny, > K and N;,, < K. When N;, > K, the decoder
has enough information to localize the input vector to a finite
cell. Although the actual reconstruction will use a consistent
reconstruction [1, 3], for analysis purposes, we use the optimal
linear reconstruction as & = F,§, ,, where F* is the pseudo-
inverse of F. Since z = F},y, ,, the conditional distortion
can be written as D, = E[|le]’|S = s] = E{|F},q,,I%]
When N;, < K, then there is not enough information to
localize & to a finite cell. In particular « is bounded in
N,,; dimensions and unbounded in K — N,, dimensions.
Thus, * = F,y,, + (Fr,)TyL,, where the rows of F;,
form an orthonormal basis for the subspace orthogonal to
the span of the rows of F., and y,J_‘, is a K — N, di-
mensional vector. Now the optimal linear reconstruction is
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Fig. 1: System setup.
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Fig. 2: Results for optimal 3 x 2 expansion: (a) 8; (b) ¢, for loss
probabilities of 0.2 (top) and 0.95 (bottom). .

& =Fii,, +(FL, )TE['y,',l-y,.,, = f,] which gives a dis-
tortion of D, = E[||F7,q,,,ll ]+E[|I1/rl, I*|y,,, = ). Since
the source is Gaussian, E[Ily,._, 1 |y, ,] can be easily computed.

Using the equations for D, and the fact that E[gq”] is
diagonal, the portion of distortion that can be minimized
by bit allocation can be written as Dy = 3! ao2, 2728,

‘where «; is'a function of the transform F, the channel state

probabilities p,, and the quantization constant c. Let Dy
be the remaining portion of the distortion D. Minimizing
D, is a classic bit allocation problem with solution given by
R; = R/N + log2(a.av,/(]'[._° ajoy,)'/N)/2. This gives an
optimal Dy, of Dy = N([T), a,cr;‘;’.)l/NZ'm/N. To find the
optimal transform, we have to minimize Dj + Dqns. Since it
is hard theoretically, we use numerical gradient descent tech-
niques by varying one coefficient at a time.

Results show that at high loss rates Dy is the dominat-
ing term which is minimized by repeating the coefficient with
highest variance. At low loss rates, Dj is the dominating term
which is minimized by the optimal source coder. Results are
shown for 3 x 2 expansion in Figure 2, where the values for
9; = tan~!(Fi1/Fi), i = 0,1,2 are plotted with rate con-
straint R = 6 bits and variances o2 = 4 and o} = 1. Also
shown is ¢;, which is the ith row of matrix F..
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