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Abstract

We develop a fully discriminative learning approach for supervised Latent Dirich-
let Allocation (LDA) model, which maximizes the posterior probability of the pre-
diction variable given the input document. Different from traditional variational
learning or Gibbs sampling approaches, the proposed learning method applies
(i) the mirror descent algorithm for exact maximum a posterior inference and (ii)
back propagation with stochastic gradient descent for model parameter estimation,
leading to scalable learning of the model in an end-to-end discriminative manner.
As a byproduct, we also apply this technique to develop a new learning method for
the traditional unsupervised LDA model. Experimental results on two real-world
regression and classification tasks show that the proposed methods significantly
outperform the previous supervised/unsupervised LDA learning methods.

1 Introduction

Latent Dirichlet Allocation (LDA) [4], among various forms of topic models, is an important prob-
abilistic generative model for analyzing large collections of text corpora. In LDA, each document is
modeled as a collection of words, where each word is assumed to be generated from a certain topic
drawn from a topic distribution. The topic distribution can be viewed as a latent representation of
the document, which can be used as a feature for prediction purpose (e.g., sentiment analysis). In
particular, the inferred topic distribution is fed into a separate classifier or regression model (e.g.,
logistic regression or linear regression) to perform prediction. Such a separate learning structure
usually significantly restricts the performance of the algorithm. For this purpose, various supervised
topic models have been proposed to model the documents jointly with the label information. In [3],
variational methods was applied to learn a supervised LDA (sLDA) model by maximizing the lower
bound of the joint probability of the input data and the labels. The DiscLDA method developed
in [11] learns the transformation matrix from the latent topic representation to the output in a dis-
criminative manner, while learning the topic to word distribution in a generative manner similar to
the standard LDA. In [21, 22], max margin supervised topic models are developed for classifica-
tion and regression, which are trained by optimizing the sum of the variational bound for the log
marginal likelihood and an additional term that characterizes the prediction margin. These methods
successfully incorporate the information from both the input data and the labels, and showed better
performance in prediction compared to the vanilla LDA model.

One challenge in LDA is that the exact inference is intractable, i.e., the posterior distribution of the
topics given the input document cannot be evaluated explicitly. For this reason, various approximate
inference methods are proposed, such as variational learning [3,4,21,22] and Gibbs sampling [7,23],
for computing the approximate posterior distribution of the topics. In this paper, we will show that,
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Figure 1: Graphical representation of the supervised LDA model. Shaded nodes are observables.

although the full posterior probability of the topic distribution is difficult, its maximum a posteriori
(MAP) inference, as a simplified problem, is a convex optimization problem when the Dirichlet pa-
rameter satisfies certain conditions, which can be solved efficiently by the mirror descent algorithm
(MDA) [1,15,18]. Indeed, Sontag and Roy [16] pointed out that the MAP inference problem of LDA
in this situation is polynomial-time and can be solved by an exponentiated gradient method, which
shares a same form as our mirror-descent algorithm with constant step-size. Nevertheless, different
from [16], which studied the inference problem alone, our focus in this paper is to integrate back
propagation with mirror-descent algorithm to perform fully discriminative training of supervised
topic models, as we proceed to explain below.

Among the aforementioned methods, one training objective of the supervised LDA model is to max-
imize the joint likelihood of the input and the output variables [3]. Another variant is to maximize
the sum of the log likelihood (or its variable bound) and a prediction margin [21–23]. Moreover, the
DiscLDA optimizes part of the model parameters by maximizing the marginal likelihood of the input
variables, and optimizes the other part of the model parameters by maximizing the conditional like-
lihood. For this reason, DiscLDA is not a fully discriminative training of all the model parameters.
In this paper, we propose a fully discriminative training of all the model parameters by maximizing
the posterior probability of the output given the input document. We will show that the discrimina-
tive training can be performed in a principled manner by naturally integrating the back-propagation
with the MDA-based exact MAP inference. Discriminative training of generative model is widely
used and usually outperforms standard generative training in prediction tasks [2, 6, 9, 10, 12, 20]. As
pointed out in [2,12], discriminative training increases the robustness against the mismatch between
the generative model and the real data. To our best knowledge, this paper is the first work to perform
a fully end-to-end discriminative training of LDA. Experimental results on two real-world tasks also
show the superior performance of discriminative training of LDA models on text analysis.

In addition to the aforementioned related studies on unsupervised and supervised LDA models [3,11,
21–23], there have been another stream of work that applied empirical risk minimization to graphical
models such as Markov Random Field (MRF) and nonnegative matrix factorization (NMF) [8, 17].
Specifically, in [17], an approximate inference algorithm, belief propagation, is used to compute the
belief of the output variables, which is further fed into a decoder to produce the prediction. The
approximate inference and the decoder are treated as an entire black-box decision rule, which is
tuned jointly via back propagation. Our work is different from the above studies in that we use an
exact MAP inference based on convex optimization theory motivate the discriminative training from
a principled probabilistic framework.

2 Smoothed Supervised LDA Model

We consider the smoothed supervised LDA model in Figure 1. Let K be the number of topics,
N be the number of words in each document, V be the vocabulary size, and D be the number of
documents in the corpus. The generative process of the model in Figure 1 can be described as:

1. For each document d, choose the topic proportions according to a Dirichlet distribution:
θd ∼ p(θd|α) = Dir(α), where α is a K× 1 vector consisting of nonnegative components.

2. Draw each column φk of a V ×K matrix Φ independently from an exchangeable Dirichlet
distribution: φk ∼ Dir(β) (i.e., Φ ∼ p(Φ|β)), where β > 0 is the smoothing parameter.

3. To generate each word wd,n:
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(a) Choose a topic zd,n ∼ p(zd,n|θd) = Multinomial(θd). 1

(b) Choose a word wd,n ∼ p(wd,n|zd,n,Φ) = Multinomial(φzd,n).

4. Choose the C × 1 response vector: yd ∼ p(yd|θ, U, γ).
(a) In regression, p(yd|θd, U, γ) = N(Uθd, γ

−1), where U is a C ×K matrix consisting
of regression coefficients.

(b) In multi-class classification, p(yd|θd, U, γ) = Multinomial
(
σ(γUθd)

)
, where σ :

RC → RC is a softmax function defined as σ(x)c = exc∑C
c′=1

exc′
, c = 1, . . . , C.

Therefore, the entire model can be described by the following joint probability

p(Φ|β)

D∏
d=1

[
p(yd|θd, U, γ) · p(θd|α) · p(wd,1:N |zd,1:N ,Φ) · p(zd,1:N |θd)︸ ︷︷ ︸

,p(yd,θd,wd,1:N ,zd,1:N |Φ,U,α,γ)

]
(1)

where wd,1:N and zd,1:N denotes all the words and the associated topics, respectively, in the d-th
document. Note that the model in Figure 1 is slightly different from the one proposed in [3], where,
in addition to the Dirichlet smoothing part on φk, the response variable yd in Figure 1 is coupled
with θd instead of zd,1:N as in [3]. Blei and Mcauliffe also pointed out this choice as an alternative
in [3]. We will show that this modification will enable us to develop an end-to-end discriminative
training with superior prediction performance.

To develop a fully discriminative training method for the model parameters Φ and U , we follow the
argument in [2,12], which states that the discriminative training is also equivalent to maximizing the
joint likelihood of a new model family with an additional set of parameters:

arg max
Φ,U,Φ̃

p(Φ|β)p(Φ̃|β)

D∏
d=1

p(yd|wd,1:N ,Φ, U, α, γ)

D∏
d=1

p(wd,1:N |Φ̃, α) (2)

where p(wd,1:N |Φ̃, α) is obtained by marginalizing p(yd, θd, wd,1:N , zd,1:N |Φ, U, α, γ) in (1) and
replace Φ with Φ̃. The above problem (2) decouples into

arg max
Φ,U

[
ln p(Φ|β) +

D∑
d=1

ln p(yd|wd,1:N ,Φ, U, α, γ)
]

(3)

arg max
Φ̃

[
ln p(Φ̃|β) +

D∑
d=1

ln p(wd,1:N |Φ̃, α)
]

(4)

which are the discriminative learning problem of supervised LDA (Eq. (3)), and the unsupervised
learning problem of LDA (Eq. (4)), respectively. It was pointed out in [2] that the discriminative
training (3) improves performance by compensating for model mismatch, i.e., the differences be-
tween the true distribution of the data and the distribution specified by the model. We will show that
both problems can be solved in a unified manner using a new MAP inference and back propagation.

3 Exact MAP Inference

We first consider the inference problem in the smoothed LDA model. For the supervised case, the
main objective is to infer yd given the words wd,1:N in each document d, i.e., computing

p(yd|wd,1:N ,Φ, U, α, γ) =

∫
θd

p(yd|θd, U, γ)p(θd|wd,1:N ,Φ, α)dθd (5)

where the probability p(yd|θd, U, γ) is known (e.g., multinomial or Gaussian for classification and
regression problems — see Section 2). The main challenge is to evaluate p(θd|wd,1:N ,Φ, α), i.e.,
infer the topic proportion given each document, which is also the important inference problem in

1We will represent all the multinomial variables by a one-hot vector that has a single component equal
to one and all other components being zero, where the position of the one is determined by the value of the
multinomial variable.
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the unsupervised LDA model. However, it is well known that the exact evaluation of the posterior
probability p(θd|wd,1:N ,Φ, α) is intractable [3,4,7,11,21–23]. For this reason, various approximate
inference methods, such as variational inference [3, 4, 11, 21, 22] and Gibbs sampling [7, 23], have
been proposed to compute the approximate posterior probability. In this paper, we take an alternative
approach for inference; given each document d, we only seek a point (maximum a posterior) estimate
of θd, instead of its full (approximate) posterior probability. The major motivation is that, although
the full posterior probability of θd is difficult, its MAP inference, as a simplified problem, is a convex
optimization problem (Section 3.1) and is thus tractable. Furthermore, having the MAP estimate of
θd, we can efficiently infer the prediction variable yd according to the following approximation of
p(yd|wd,1:N ,Φ, U, α, γ) from (5):

p(yd|wd,1:N ,Φ, U, α, γ) = Eθd|wd,1:N
[p(yd|θd, U, γ)] ≈ p(yd|θ̂d|wd,1:N

, U, γ) (6)

where Eθd|wd,1:N
[·] denotes the conditional expectation with respect to θd given wd,1:N , and the

expectation is sampled by the MAP estimate, θ̂d|wd,1:N
, of θd given wd,1:N , defined as

θ̂d|wd,1:N
= arg max

θd
p(θd|wd,1:N ,Φ, α, β) (7)

The approximation gets more precise when p(θd|wd,1:N ,Φ, α, β) becomes more concentrated
around θ̂d|wd,1;N

. Experimental results on several real datasets (Section 5) show that the approx-
imation (6) provides excellent prediction performance.

3.1 MAP Inference as a Convex Optimization Problem

Using the Bayesian rule p(θd|wd,1:N ,Φ, α) = p(θd|α)p(wd,1:N |θd,Φ)/p(wd,1:N |Φ, α) and the fact
that p(wd,1:N |Φ, α) is independent of θd, we obtain the equivalent form of (7) as

θ̂d|wd,1:N
= arg max

θd∈PK

[
ln p(θd|α) + ln p(wd,1:N |θd,Φ)

]
(8)

where PK = {θ ∈ RK : θj ≥ 0,
∑K
j=1 θj = 1} denotes the (K − 1)-dimensional probability

simplex vector, p(θd|α) is the Dirichlet distribution described earlier, and p(wd,1:N |θd,Φ) can be
computed by integrating p(wd,1:N , zd,1:N |θd,Φ) =

∏N
n=1 p(wd,n|zd,n,Φ)p(zd,n|θd) over zd,1:N ,

which leads to (derived in Appendix A)

p(wd,1:N |θd,Φ) =

V∏
v=1

( K∑
j=1

θd,jΦvj

)xd,v

= p(xd|θd,Φ) (9)

where xd,v denotes the term frequency of the v-th word (in vocabulary) inside the d-th document,
and xd denotes the V -dimensional bag-of-words (BoW) vector of the d-th document. Note that
p(wd,1:N |θd,Φ) depends on wd,1:N only via the BoW vector xd, which is the sufficient statistics.
Therefore, we use p(xd|θd,Φ) and p(wd,1:N |θd,Φ) interchangeably from now on. Substituting the
expression of Dirichlet distribution and (9) into (8), we get

θ̂d|wd,1:N
= arg max

θd∈PK

[
xTd ln(Φθd) + (α− 1)T ln θd

]
= arg min

θd∈PK

[
− xTd ln(Φθd)− (α− 1)T ln θd

]
(10)

where we dropped the terms independent of θd, and 1 denotes an all-one vector. Note that when
each element of α is greater than or equal to one, the objective function in (10) is convex and the
problem is convex. When α is strictly greater than one, the objective function is strictly convex and
has a unique solution. In this paper, we will only focus on the regime of α being greater than one.

3.2 Mirror Descent Algorithm for MAP Inference

An efficient approach to solving the constrained optimization problem (10) is the mirror descent
algorithm (MDA) with Bregman divergence chosen to be generalized Kullback-Leibler divergence
[1, 15, 18]. Specifically, let f(θd) denote the cost function in (10), then the MDA updates the MAP
estimate of θd iteratively according to:

θd,` = arg min
θd∈PK

[
f(θd,`−1) + [∇θdf(θd,`−1)]T (θd − θd,`−1) +

1

Td,`
Ψ(θd, θd,`−1)

]
(11)
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Figure 2: Layered architecture for computing p(yd|wd,1:N ,Φ, U, α, γ), where ()/() denotes
element-wise division, � denotes Hadamard product, and exp() denotes element-wise exponential.

θd,` denotes the estimate of θd,` at the `-th iteration, Td,` denotes the step-size of MDA, and Ψ(x, y)
is the Bregman divergence chosen to be Ψ(x, y) = xT ln(x/y) − 1Tx + 1T y. The argmin in (11)
can be solved in closed-form (see Appendix B) as

θd,` =
1

Cθ
· θd,`−1 � exp

(
Td,`

[
ΦT

xd
Φθd,`−1

+
α− 1
θd,`−1

])
, ` = 1, . . . , L, θd,0 =

1

K
1 (12)

where Cθ is a normalization factor such that θd,` adds up to one, � denotes Hadamard product, L is
the number of MDA iterations, and the divisions in (12) are element-wise operations. Note that the
recursion (12) naturally enforces each θd,` to be on the probability simplex. The MDA step-size Td,`
can be either constant, i.e., Td,` = T , or adaptive over iterations and samples, determined by line
search (see Appendix C). The computation complexity in (12) is low since most computations are
sparse matrix operations. For example, although by itself Φθd,`−1 in (12) is a dense matrix multipli-
cation, we only need to evaluate the elements of Φθd,`−1 at the positions where the corresponding
elements of xd are nonzero, because all other elements of xd/Φθd,`−1 is known to be zero. Overall,
the computation complexity in each iteration of (12) is O(nTok ·K), where nTok denotes the num-
ber of unique tokens in the document. In practice, we only use a small number of iterations, L, in
(12) and use θd,L to approximate θ̂d|wd,1:N

so that (6) becomes

p(yd|wd,1:N ,Φ, U, α, γ) ≈ p(yd|θd,L, U, γ) (13)

In summary, the inference of θd and yd can be implemented by the layered architecture in Figure 2,
where the top layer infers yd using (13) and the MDA layers infer θd iteratively using (12). Figure 2
also implies that the the MDA layers act as a feature extractor by generating the MAP estimate θd,L
for the output layer. Our end-to-end learning strategy developed in the next section jointly learns the
model parameter U at the output layer and the model parameter Φ at the feature extractor layers to
maximize the posterior of the prediction variable given the input document.

4 Learning by Mirror-Descent Back Propagation

We now consider the supervised learning problem (3) and the unsupervised learning problem (4),
respectively, using the developed MDA-based MAP inference. We first consider the supervised
learning problem. With (13), the discriminative learning problem (3) can be approximated by

arg min
Φ,U

[
− ln p(Φ|β)−

D∑
d=1

ln p(yd|θd,L, U, γ)

]
(14)

which can be solved by stochastic gradient descent (SGD). Note that the cost function in (14) de-
pends on U explicitly through p(yd|θd,L, U, γ), which can be computed directly from its definition
in Sec. 2. On the other hand, the cost function in (14) depends on Φ implicitly through θd,L. From
Figure 2, we observe that θd,L not only depends on Φ explicitly (as indicated in the MDA block
on the right-hand side of Figure 2) but also depends on Φ implicitly via θd,L−1, which in turn de-
pends on Φ both explicitly and implicitly (through θd,L−2) and so on. That is, the dependency of
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the cost function on Φ is in a layered manner. Therefore, we devise a back propagation procedure
to efficiently compute its gradient with respect to Φ according to the mirror-descent graph in Figure
2, which back propagate the error signal through the MDA blocks at different layers. The gradient
formula and the implementation details of the learning algorithm can be found in Appendices C–D.

For the unsupervised learning problem (4), the gradient of ln p(Φ̃|β) with respect to Φ̃ assumes the
same form as that of ln p(Φ|β). Moreover, it can be shown that the gradient of ln p(wd,1:N |Φ̃, α, γ)

with respect Φ̃ can be expressed as (see Appendix E):

∂ ln p(wd,1:N |Φ̃, α)

∂Φ̃
= Eθd|xd

{
∂

∂Φ̃

[
ln p(xd|θd, Φ̃) + ln p(θd|α)

]}
(15)

where p(xd|θd, Φ̃) assumes the same form as (9) except Φ is replaced by Φ̃. The conditional expec-
tation is evaluated with respect to the posterior probability p(θd|wd,1:N , Φ̃, α), which can be sampled
by the MAP estimate of θd:

∂ ln p(wd,1:N |Φ̃, α)

∂Φ̃
≈ ∂

∂Φ̃

[
ln p(xd|θd,L, Φ̃) + ln p(θd,L|α)

]
(16)

where θd,L is an approximation of θ̂d|wd,1:N
computed via (12) and Figure 2.

5 Experiments

5.1 Description of Datasets and Baselines

We evaluated our proposed supervised learning (denoted as BP-sLDA) and unsupervised learning
(denoted as BP-LDA) methods on two real-world datasets. The first dataset we use is a large-scale
dataset built on Amazon movie reviews (AMR) [13]. The data set consists of 7.9 million movie
reviews (1.48 billion words) from Amazon, written by 889,176 users, on a total of 253,059 movies.
For text preprocessing we removed punctuations and lowercasing capital letters. A vocabulary of
size 5,000 is built by selecting the most frequent words. Same as [19], we shifted the review scores
so that they have zero mean. The task is formulated as a regression problem, where we seek to
predict the rating score using the text of the review.

Second, we demonstrate the effectiveness of our algorithm on a multi-domain sentiment (MultiSent)
classification task. Sentiment classification system has gained popularity due to their application to
multiple text genres, including financial news and product reviews. We use the dataset provided by
[5], which contains a total 342,104 product reviews consisting of 25 types of product reviews, such
as apparel, electronics, kitchen and housewares. The task is formulated as a binary classification
problem to predict the polarity (positive or negative) of each review. Similar to AMR task, we
preprocessed the text by removing punctuations and lowercasing capital letters. A vocabulary of
size 1,000 is built from the most frequent words.

We examined our proposed methods (BP-sLDA and BP-LDA) as well as baselines on both tasks. For
BP-sLDA, p(yd|θd, U, γ) is chosen to be Gaussion on the AMR regression task and multinormial
on the MultiSent classification task (see Sec. 2). For BP-LDA, we first train the models in an
unsupervised manner, and then generate per-document topic proportion θd as their features in the
inference steps, on top of which we train a linear regression model in AMR regression task and
train a logistic regression model in the MultiSent classification task, respectively. The baseline
algorithms are implemented either in C++ or Java and our proposed algorithms are implemented
in C#.2 We compared our methods to the unsupervised LDA learned by Gibbs sampling (Gibbs-
LDA) [14], logistic/linear regression using raw bag-of-words (BoW), supervised-LDA (sLDA) [3],
and MedLDA [21, 22]. Similar to BP-LDA, a separate linear/logistic regression is trained on the
features generated by Gibbs-LDA. All the experiments are conducted with 5-fold cross validation.

5.2 Prediction Performance

We first evaluate the prediction performance of different models on the AMR regression task. We
use the predictive R2 to measure the prediction performance, defined as: pR2 = 1 − (

∑
d(y

o
d −

2The code will be released soon.
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Figure 3: Prediction performance on AMR regression task (measured in pR2) and MultiSent classi-
fication task (measured in AUC). Higher score is better for both, with perfect value being one.

Table 1: pR2 on full AMR data (7.9M documents and 5K vocabulary size).

Number of topics 5 10 20 50 100
Linear regression 0.384± 0.001
BP-sLDA (α=1.001) 0.528±0.021 0.562±0.016 0.577±0.009 0.613±0.017 0.641±0.028

yd)
2)/(

∑
d(y

o
d − ȳod)2), where yod denotes the label of the d-th document in the heldout (out-of-

fold) set during the 5-fold cross validation, ȳod is the mean of all yod in the heldout set, and yd is the
predicted value. We first created a subset by randomly sampling 79K documents (reviews) from the
7.9 million reviews. The pR2 scores of different models with varying number of topics are shown
in Figure 3(a). Note that the BP-sLDA model outperforms the other baselines with large margin.
Moreover, the unsupervised BP-LDA model outperforms the unsupervised LDA model trained by
Gibbs sampling (Gibbs-LDA). We further train our BP-sLDA model on the full 7.9M dataset with 5-
fold cross validation and list the pR2 scores in Table 1. We can see that pR2 improves significantly
compared to the best results on the 79K dataset shown in Figure 3(a). Moreover, the results in
Table 1 also significantly outperform the pR2 scores of Gibbs-sLDA [23], Spectral-sLDA [19],
and the Hybrid method (Gibbs-sLDA initialized with Spectral-sLDA) reported in [19], whose pR2

scores are between 0.1 and 0.2 for 5 ∼ 10 topics (and deteriorate when further increasing the topic
number). The results therein are obtained on the same full AMR data with same setting as this paper.
To further demonstrate the superior performance of BP-sLDA on the large vocabulary scenario, we
trained BP-sLDA on the full 7.9M AMR dataset with full vocabulary (701K) and obtain the pR2

scores in Table 2. Note that the results are even significantly better than our results in Table 1.

Next, we evaluate the performance of our algorithms on the binary classification task of multi-
domain sentiment analysis. We use the area-under-the-curve (AUC) of the operating curve of prob-
ability of correct positive versus probability of false positive as our performance metric. In Figure
3(b), we show the AUC of our methods and the baselines, which also shows that BP-sLDA outper-
forms other methods and that BP-LDA outperforms the unsupervised Gibbs-LDA model.

From Figure 3, we note that the BP-sLDA model also consistently outperforms the linear regression
or logistic regression model on the raw bag-of-words features. In Fig.3b (MultiSent), logistic
regression achieves AUC of 90.4%, while BP-sLDA achieves the best AUC of 91.4% with 20 topics,
which is about 10% relative improvement over logistic regression. And BP-sLDA significantly
outperforms prior-art topic models, which have AUCs less than 80%. This means that our proposed
discriminative training method and MDA-based MAP inference together are able to extract useful
features from the raw BoW inputs for prediction purpose.
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Table 2: pR2 on full AMR data (7.9M documents and 701K vocabulary size).

Number of topics 5 10 20 50 100
Linear regression 0.403
BP-sLDA 0.633 0.677 0.672 0.682 0.684
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Figure 4: Sensitivity of hyper parameters: pR2 score for different L, α, and β.

In addition, we also conducted a new binary text classification experiment with highly promising
results on a large-scale proprietary dataset for business-centric applications (1.2M documents and
vocabulary size of 128K). In this new task, BP-sLDA (200 topics) achieves AUC of 92.2% and error
rate of 15.2%, while LR has AUC of 90.5% and error rate of 17.1% (11% relative error rate cut).
The gain is consistent with what was observed in the other two tasks.

5.3 Analysis and Discussion

We now analyze the influence of different hyper parameters on the prediction performance. Note
from Figure 3(a) that, when we increase the number of topics, the pR2 score of BP-sLDA first
improves and then slightly deteriorates after it goes beyond 20 topics. This is most likely to be
caused by overfitting on the small dataset (79K documents), because the BP-sLDA models trained
on the full 7.9M dataset produce much higher pR2 scores (Table 1) than that on the 79K dataset
and keep improving as the model size (number of topics) increases. Another interesting observation
from Figure 3 is that, with limited amount of labeled data, the unsupervised LDA models (BP-LDA
and Gibbs-LDA) are less prone to overfitting. Since unlabeled data are widely available, one future
work is to combine the supervised and unsupervised parts together to have a semi-supervised LDA
models. The framework suggested by [2, 12] could be one potential approach to integrate these two
parts together.

To further understand the influence of the other hyper-parameters, we plot in Figure 4 the pR2 scores
of BP-sLDA on the 79K AMR dataset for different values of L, α, and β. The performance is not
very sensitive to the number of MDA inference steps L. One explanation for this phenomena is that
the mirror-descent back propagation, as an end-to-end training of the prediction output, compensates
the imperfection caused by the limited number of inference steps. And, we observe that, by properly
tuning the Dirichlet parameter α and the smoothing parameter β, we could further improve the
prediction performance of the model. Moreover, although we mainly focus on convex inference
under α > 1, our algorithm could also handle α < 1 case except that, in this case, the inference is
no longer convex and hence no global optimal MAP inference is guaranteed as for the methods prior
to this work. Table 3 shows the corresponding pR2 scores of BP-sLDA on the 7.9M AMR dataset.
Although the results is not as good as the α > 1 case in Table 1, they still significantly outperform
the baselines.

5.4 Efficiency in Computation Time

To compare the efficiency of the algorithms, we show the training time (in hours) of different models
on the AMR dataset (79K and 7.9M) in Figure 5, which shows that our algorithm scales well when
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Table 3: pR2 for α < 1 case on full AMR data (7.9M documents and 5K vocabulary size).

Number of topics 5 10 20 50 100
BP-sLDA (α = 0.5) 0.488 0.548 0.575 0.571 0.574
BP-sLDA (α = 0.1) 0.441 0.558 0.572 0.569 0.570
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Figure 5: Training time of different methods (in hours) on the AMR dataset.

we increase the model size (number of topics). In addition, it also scales well on the large-scale
(7.9M) dataset, which can be completed within reasonable amount of time.

6 Conclusion

We have developed novel learning approaches for both supervised and unsupervised LDA models,
using exact MAP inference with mirror descent algorithm and back propagation. In particular, the
supervised LDA model is trained in an end-to-end fully discriminative manner by maximizing the
posterior probability of the prediction variable given input documents. We evaluate the prediction
performance of the models on two real-world regression and classification tasks. The results show
that the discriminative training approach significantly improves the performance of the supervised
LDA model relative to previous learning methods. Moreover, the newly developed inference and
learning techniques also improve the performance of the unsupervised LDA model by providing
better features for prediction. Future works include (i) exploring other optimization algorithms for
the MAP inference problem, such as accelerated mirror descent, and (ii) developing semi-supervised
learning of LDA based on the framework suggested by [2, 12]. More importantly, note that the
layered architecture in Figure 2 could also be viewed as a deep feedforward neural network with
special structures designed from the topic model in Figure 1. This opens up a new direction of
combining the strength of both (generative) topic models and neural networks to develop new deep
learning models that are scalable, interpretable and having high prediction performance.
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Appendices
A Derivation of p(wd,1:N |θd,Φ)

To derive p(wd,1:N |θd,Φ), we first write p(wd,1:N , zd,1:N |θd,Φ) as

p(wd,1:N , zd,1:N |θd,Φ) =

N∏
n=1

p(wd,n|zd,n,Φ)p(zd,n|θd) (17)

The expression p(wt|Φ, θt) can be evaluated in closed-form by marginalizing out {zd,n}Nn=1 in the
above expression:

p(wd,1:N |θd,Φ) =
∑
zd,1

· · ·
∑
zd,N

N∏
n=1

p(zd,n|θd) · p(wd,n|zd,n,Φ)

=

N∏
n=1

∑
zd,n

p(zd,n|θd) · p(wd,n|zd,n,Φ)

=

N∏
n=1

∑
zd,n

 K∏
j=1

θ
zd,n,j

d,j

 V∏
v=1

K∏
j=1

Φ
zd,n,j wd,i,v

vj


=

N∏
n=1

∑
zd,n

 V∏
v=1

K∏
j=1

θ
zd,n,j

d,j Φ
zd,n,j wd,n,v

vj


=

N∏
n=1

 K∑
j=1

θd,jΦvj

wd,n,v

=

V∏
v=1

 K∑
j=1

θd,jΦvj

xd,v

(18)

where wd,n,v denotes the v-th element of the V × 1 one-hot vector wd,n, wd,n denotes the n-th
word (token) inside the d-th document, and xd,v denotes the term frequency of the v-th word (in the
vocabulary) inside the d-th document.

B Derivation of the Recursion for Mirror Descent Algorithm

First, we rewrite the optimization problem (11) as

min
θd

[∇θdf(θd,`−1)]T (θd − θd,`−1) +
1

Td,`
Ψ(θd, θd,`−1) (19)

s.t. 1T θd = 1, θd � 0 (20)

where θd � 0 denotes that each element of the vector θd is greater than or equal to zero. Using
the fact that Ψ(x, y) = xT ln(x/y)− 1Tx + 1T y, the constrained optimization problem (19)–(20)
becomes

min
θd

[∇θdf(θd,`−1)]T (θd − θd,`−1) +
1

Td,`

[
θTd ln

θd
θd,`−1

− 1T θd + 1T θd,`−1

]
(21)

s.t. 1T θd = 1, θd � 0 (22)

Dropping the terms independent of θd, we can write (21)–(22) as

min
θd

[∇θdf(θd,`−1)]T θd +
1

Td,`

[
θTd ln

θd
θd,`−1

− 1T θd
]

(23)

s.t. 1T θd = 1, θd � 0 (24)
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To solve (23)–(24), we write its Lagrangian as

L = [∇θdf(θd,`−1)]T θd +
1

Td,`

[
θTd ln

θd
θd,`−1

− 1T θd
]

+ λ(1T θd − 1) (25)

where we relaxed the nonnegative constraint in the above Lagrange multiplier. However, we will
show that the solution obtained will automatically be nonnegative mainly because of the logarithm
term in the cost function. Taking the derivative of L with respect to θd and λ and setting them to
zero, we have, respectively,

∂L

∂θd
= ∇θdf(θd,`−1) +

1

Td,`

[
ln

θd
θd,`−1

]
+ λ1 = 0

∂L

∂λ
= 1T θd − 1 = 0

which leads to

θd =
1

λ
θd,`−1 � exp (−Td,` · ∇θdf(θd,`−1))

1T θd = 1

Solving the above two equations together, we obtain

θd =
1

Cθ
θd,`−1 � exp (−Td,` · ∇θdf(θd,`−1)) (26)

where Cθ is a normalization factor such that θd,` adds up to one. Note that the above recursion can
always guarantee non-negativity of the entries in the vector θd,` since we will always initialize the
vector in the feasible region. Recall that f(θd) is the cost function on the right-hand side of (10),
which is given by

f(θd) = −xTd ln(Φθd)− (α− 1)T ln θd

Therefore, the gradient of f(θd) can be computed as

∇θdf(θd) = − xd
Φθd

− α− 1
θd

(27)

Substituting the above gradient formula into (26), we obtain the desired result in (12).

C Implementation Details of the BP-sLDA

In this section, we describe the implementation details of the mirror-descent back propagation for
the end-to-end learning of the supervised LDA model. Specifically, we will describe the details of
the inference algorithm, and the model parameter estimation algorithm.

C.1 Inference algorithm: Mirror Descent

Let f(θd) denote the objective function in (12). As we discussed in the paper, we use recursion (12)
to iteratively find the MAP estimate of θd given wd,1:N , which we repeat below:

θd,` =
1

Cθ
· θd,`−1 � exp

(
Td,`

[
ΦT

xd
Φθd,`−1

+
α− 1
θd,`−1

])
, ` = 1, . . . , L, θd,0 =

1

K
1 (28)

The step-size Td,` in mirror descent can be chosen to be either constant, i.e., Td,` = T , or adaptive
over iterations ` and documents d. To adaptively determine the step-size, we can use line search
procedure. A simple line search can be implemented as follows. For each document d:

• Initialization: Td,0 = Td−1,L/η, where 0 < η < 1 (e.g., η = 0.5).

• Repeat:

– Update θd,` by (28) .
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– Break if following condition holds:

f(θd,`) ≤ f(θd,`−1) + [∇θdf(θd,`−1)]T (θd,` − θd,`−1) +
1

2Td,`
Ψ(θd,`, θd,`−1)

(29)

else: Td,` ← η · Td,`
Moreover, Ψ(θd,`, θd,`−1) can also be replaced by the squared vector 1-norm:

f(θd,`) ≤ f(θd,`−1) + [∇θdf(θd,`−1)]T (θd,` − θd,`−1) +
1

2Td,`
‖θd,` − θd,`−1‖21 (30)

The line search approach determines the step-sizes adaptively, automatically stabilizing the algo-
rithm and making inference converge faster.

C.2 Parameter Estimation: Stochastic Gradient Descent with Back Propagation

We first rewrite the training cost (14) as

J(U,Φ) =

D∑
d=1

Qd(U,Φ) (31)

where Qd(·) denotes the loss function at the d-th document, defined as

Qd(U,Φ) , − 1

D
ln p(Φ|β)− ln p(yd|θd,L, U, γ) (32)

Note that, we do not have constraint on the model parameter U . Therefore, to update U , we can
directly use the standard mini-batch stochastic gradient descent algorithm. We randomly sample a
mini-batch of documents, and then perform MAP inference of θd for each document in the mini-
batch. And then, we compute the stochastic gradient of the loss function for each document, and use
the averaged stochastic gradient to update U .

On the other hand, each column of the model parameter Φ is constrained to be on a (V − 1)-
dimension probability simplex, i.e, each element of Φ has to be nonnegative and each column sum
up to one (i.e., Φ is a left-stochastic matrix). For this reason, we need to enforce the constraint on
Φ. Recalling the definition of the Dirichlet smoothing p(Φ|β), we have

− 1

D
ln p(Φ|β) = − 1

D
ln

(Γ(V β)

Γ(β)V

)K K∏
j=1

V∏
v=1

Φβ−1
vj


= − 1

D

K∑
j=1

V∑
v=1

(β − 1) ln Φvj + C (33)

Observe that expression (33) provides a natural log barrier for each element of Φ to enforce it to
be nonnegative. Therefore, we can relax the nonnegative constraint on the elements of Φ and focus
on enforcing the left-stochastic constraint. Let φj be the j-th column of Φ, we use the following
algorithm to update the estimate of φj :

• Sample a mini-batch of documents.
• Perform MAP inference of yd and θd using (12) for each document in the mini-batch.
• Compute the gradient ∂Qd/∂φj for each document d in the mini-batch and average them:

∆φj =
1

Db

∑
d∈Db

∂Qd
∂φj

, j = 1, . . . ,K

where ∂Qd/∂φj is the j-th column of ∂Qd/∂Φ, which can be computed according to the
formula in Sec. D of this Appendix, Db denotes the set of the documents in the mini-
batch, and Db is the number of documents in the mini-batch. The gradients are evaluated
at φj,t−1, the previous estimate of φj at time t− 1.
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• Set initial learning rate: µφj
= µ0, j = 1, . . . ,K.

• For each j = 1, . . . ,K, repeat until all the elements of φj,t are nonnegative:
– Update φj :

φj,t = Π{φ:1Tφ=1}
(
φj,t−1 − µφj

·∆φj
)

(34)

where Π{φ:1Tφ=1}(·) is the Euclidean projection operator onto the affine space: {φ :

1Tφ = 1}, which can be evaluated efficiently in closed-form:

Π{φ: 1Tφ=1}(x) =

(
I − 11T

K

)
x+

1

K
1

– Shrink the learning rate: µφj = ηµφj , where 0 < η < 1 (e.g., η = 0.5).

In the above iteration (34), we do not need to recompute the gradient ∆φj but just iteratively shrink
the learning rates until there is no violation of the nonnegativity constraint. This line search is only
used to avoid the stochastic gradient descent from randomly moving φj into the nonnegative regime,
where the log-barrier cannot push φj back to the positive region. Furthermore, we are allowing
different columns of Φ to have different learning rates, which, from our observation in experiments,
makes the training algorithm converge much faster than the uniform learning rate over all columns.

D Gradient Formula of BP-sLDA

In this section, we give the gradient formula for the supervised learning of BP-sLDA. To this end,
we first rewrite the training cost (14) as

J(U,Φ) =

D∑
d=1

Qd(U,Φ) (35)

where Qd(·) denotes the loss function at the d-th document, defined as

Qd(U,Φ) , − 1

D
ln p(Φ|β)− ln p(yd|θd,L, U, γ) (36)

The expressions for the two terms in (36) are given by

− 1

D
ln p(Φ|β) = − 1

D
ln

(Γ(V β)

Γ(β)V

)K K∏
j=1

V∏
v=1

Φβ−1
vj


= − 1

D

K∑
j=1

V∑
v=1

(β − 1) ln Φvj + C (37)

− ln p(yd|θd,L, U, γ) =


−

V∑
j=1

yd,j ln
exp(γ · po,d,j)∑V

m=1 exp(γ · po,d,m)
classification

1

2γ
‖yd − po,d‖22 + C regression

=


−

V∑
j=1

yd,jγ · po,d,j + ln

V∑
m=1

exp(γ · po,d,m) classification

1

2γ
‖yd − po,d‖22 + C regression

(38)

where C in the above expressions denotes a constant term that is independent of U and Φ, and

po,d , Uθd,L (39)

In order to apply stochastic gradient descent to minimize (35), it suffices to evaluate the gradient
of Qd(U,Φ) with respect to U and Φ, which we now proceed to derive. Note that the choice of
p(yd|θd,L, U, γ) is not restricted to the above two options in our framework. Other forms could also
be used and the corresponding gradient formula could also be derived. However, in this paper, we
only list the gradient formula for these two classical choices.
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D.1 Gradient with respect to U

First, we derive the gradient of Qd(·) with respect U . Note that the only term in (36) depending on
U is ln p(yd|θd,L, U, γ). Therefore, we have ∂Qd/∂U = −∂ ln p(yd|θd,L, U, γ)/∂U . Taking the
gradient of (38) with respect to U and after some simple algebra, we get

∂Qd
∂U

=

{
−γ · (yd − ŷd)θTd,L classification

− 1
γ · (yd − ŷd)θTd,L regression

(40)

where ŷd is defined as

ŷd =

{
σ(γ · po,d) classification

po,d regression

where σ(·) is the soft-max function:

σ(x) ,
x∑V

m=1 exp(xm)

D.2 Gradient with respect to Φ

In this subsection, we give the final expression for the gradient of Qd with respect to Φ. The deriva-
tion can be found in Sec. D.3 of this Appendix.

∂Qd
∂Φ

= − 1

D
· β − 1

Φ
+

L∑
`=1

∂Qd
∂Φ`

(41)

where ∂Qd/∂Φ` is defined as

∂Qd
∂Φ`

= Td,` ·
{

xd
Φθd,`−1

(θd,` � ξd,`)T −
[
Φ(θd,` � ξd,`)�

xd
(Φθd,`−1)2

]
θTd,`−1

}
(42)

and ξd,` is an intermediate error vector computed from the following backward recursion:

ξd,`−1 = (I−1θTd,`−1)

{
θd,` � ξd,`
θd,`−1

−Td,` ·
[

ΦTdiag

(
xd

(Φθd,`−1)2

)
Φ+diag

(
α− 1
θ2
d,`−1

)]
(θd,` � ξd,`)

}
(43)

which is initialized at

ξL,t = −(I − 1θTd,L) · UT · γ(yd − ŷd) (44)

In the above back propagation formula, xd and yd are the input bag-of-words vector and the label.
The quantities θd,` and ŷd are obtained from the inference step, the MDA step-size Td,` is either set
to be a constant (as a hyper-parameters) or determined by line-search in the inference step.

Similar to the inference iteration (12), the above gradients can be computed efficiently by exploiting
the sparsity of the vector xd. For example, only the elements at the nonzero positions of xd need to
be computed for Φθd,`−1 and Φ(θd,` � ξd,`) since xd

Φθd,`−1
and xd

(Φθd,`−1)2 are known to be zero at
these positions. Moreover, although (β−1)/Φ is a dense matrix operation, it is the same within one
mini-batch and can therefore be computed only once over each mini-batch, which can significantly
reduce the amount of computation.

D.3 Derivation of the gradient with respect to Φ

In this subsection, we derive the gradient formula for Φ. Note from (36) that, there are two terms
that depend on Φ, and

∂Qd
∂Φ

=
∂

∂Φ

(
− 1

D
ln p(Φ|β)

)
+

∂

∂Φ

(
− ln p(yd|θd,L, U, γ)

)
(45)
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The first term depends on Φ explicitly and its gradient can be evaluated direct as

∂

∂Φ

(
− 1

D
ln p(Φ|β)

)
=

∂

∂Φ

− 1

D

K∑
j=1

V∑
v=1

(β − 1) ln Φvj


= − 1

D
· β − 1

Φ
(46)

The second term, however, depends on Φ implicitly through θd,L. From Figure 2, we observe that
θd,L not only depends on Φ explicitly (as indicated in the MDA block on the right-hand side of
Figure 2) but also depends on Φ implicitly via θd,L−1, which in turn depends on Φ both explicitly
and implicitly (through θd,L−2) and so on. That is, the dependency of the cost function on Φ is in
a layered manner. For this reason, we need to apply chain rule to derive the its full gradient with
respect to Φ, which we describe below.

First, as we discussed above, each MDA block in Figure 2 contains Φ, and Qd(U,Φ) depends on
the Φ appeared at different layers through θd,L, . . . , θd,1. If we denote these Φ at different layers
as ΦL, . . . ,Φ1, and introduce an auxiliary function Qd(U,Φ1, . . . ,ΦL) to represent an artificial
function, − ln p(yd|θd,L, U, γ), with this “untied” Φ across layers in Figure 2, then the original
− ln p(yd|θd,L, U, γ) with “tied” Φ across layers can be written in the form of Qd(U,Φ1, . . . ,ΦL)
as

− ln p(yd|θd,L, U, γ) = Qd(U,Φ, . . . ,Φ) (47)

For this reason, we can express the gradient of − ln p(yd|θd,L, U, γ) with respect to Φ as

∂

∂Φ

(
− ln p(yd|θd,L, U, γ)

)
=

L∑
`=1

∂Qd
∂Φ`

(48)

where ∂Qd/∂Φ` denotes the gradient of Q(U,Φ1, . . . ,ΦL) with respect to Φ` evaluated at Φ1 =
Φ2 = · · · = ΦL = Φ. Therefore, we only need to compute the gradient ∂Qd/∂Φ`.

For simplicity of notation, we drop the subscript of d in θd,` and define the following intermediate
quantities:

z` = Td,` ·
[
ΦT

xd
Φθ`−1

+
α− 1
θ`−1

]
p` = θ`−1 � exp(z`)

Then the MDA inference recursion (12) can be written in the following equivalent form:

z` = Td,` ·
[
ΦT

xd
Φθ`−1

+
α− 1
θ`−1

]
(49)

p` = θ`−1 � exp(z`) (50)

θ` =
p`

1T p`
(51)

To derive the gradient ∂Qd/∂Φ`, it suffices to derive ∂Q
∂Φ`,ji

. Note that

∂Qd
∂Φ`,ji

=
∂pT`
∂Φ`,ji

· ∂Qd
∂p`

=
∂pT`
∂Φ`,ji

· δ` (52)

where

δ` ,
∂Qd
∂p`

(53)

is an intermediate quantities which follows a backward recursion to be derived later. To proceed, we
need to derive ∂pT` /∂Φ`,ji:

∂pT`
∂Φ`,ji

= θT`−1 �
∂ exp(zT` )

∂Φ`,ji
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= θT`−1 �
[
∂zT`
∂Φ`,ji

· diag
(

exp(z`)
)]

= θT`−1 �
[
∂zT`
∂Φ`,ji

� 1 exp(zT` )

]
= θT`−1 � exp(zT` )� ∂zT`

∂Φ`,ji

= pT` �
∂zT`
∂Φ`,ji

(54)

Then, we need to derive the expression for ∂zTl
∂Φ`,ji

:

∂zT`
∂Φ`,ji

= Td,` ·
{

∂

∂Φ`,ji

(
xTd

θT`−1ΦT`

)
· Φ` +

xTd
θT`−1ΦT`

· Φ`
Φ`,ji

}

= Td,` ·
{

∂

∂Φ`,ji

(
xTd

θT`−1ΦT`

)
· Φ` +

xTd
θT`−1ΦT`

· Eji
}

= Td,` ·
{
−∂θ

T
`−1ΦT`
∂Φ`,ji

· diag

(
xd

(Φ`θ`−1)2

)
· Φ` +

xTd
θT`−1ΦTl

· Eji
}

= Td,` ·
{
−θT`−1Eij · diag

(
xd

(Φ`θ`−1)2

)
· Φ` +

xTd
θT`−1ΦT`

· Eji
}

= Td,` ·
{
−[θ`−1]i

[
xd

(Φ`θ`−1)2

]
j

eTj Φ` +

[
xd

Φ`θ`−1

]
j

eTi

}
(55)

where ei denotes a one-hot vector with the i-th element being one and all other element equal to zero,
and Eji denotes a matrix whose (j, i)-th element is one and all other elements are zero. Substituting
the above expression into (54), we obtain

∂pT`
∂Φ`,ji

= pT` �
∂zT`
∂Φ`,ji

= Td,` · pT` �
{
−[θ`−1]i

[
xd

(Φ`θ`−1)2

]
j

eTj Φ` +

[
xd

Φ`θ`−1

]
j

eTi

}
(56)

Therefore,

∂Qd
∂Φ`,ji

=
∂pT`
∂Φ`,ji

· δ`

= Td,` · p` �
{
−[θ`−1]i

[
xd

(Φ`θ`−1)2

]
j

eTj Φ` +

[
xd

Φ`θ`−1

]
j

eTi

}
δ`

= Td,` ·
{
−[θ`−1]i

[
xd

(Φ`θ`−1)2

]
j

(
p` � eTj Φ`

)
δ` +

[
xd

Φ`θ`−1

]
j

(p` � eTi )δ`

}

= Td,` ·
{
−[θ`−1]i

[
xd

(Φ`θ`−1)2

]
j

(
p` � eTj Φ`

)
δ` +

[
xd

Φ`θ`−1

]
j

[p`]i · [δ`]i
}

= Td,` ·
{
−[θ`−1]i

[
xd

(Φ`θ`−1)2

]
j

(
eTj Φ`diag(p`)

)
δ` +

[
xd

Φ`θ`−1

]
j

[p`]i · [δ`]i
}

= Td,` ·
{
−[θl]i

[
xd

(Φ`θ`−1)2

]
j

eTj Φ`(pl−1 � δ`) +

[
xd

Φ`θ`−1

]
j

[p`]i · [δ`]i
}

= Td,` ·
{
−[θ`−1]i

[
xd

(Φ`θ`−1)2

]
j

[Φ`(p` � δ`)]j +

[
xd

Φ`θ`−1

]
j

[p`]i · [δ`]i
}

(57)
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Writing the above expressions into matrix form (derivative with respect Φ`), we obtain:

∂Qd
∂Φ`

= Td,` ·
{

xd
Φ`θ`−1

(p` � δ`)T −
[
Φ`(p` � δ`)�

xd
(Φ`θ`−1)2

]
θT`−1

}
(58)

Now we need to derive the recursion for computing δ`. By the definition of δ` in (53), we have

δ`−1 ,
∂Qd
∂p`−1

=
∂θT`−1

∂p`−1
· ∂p

T
`

∂θ`−1
· ∂Qd
∂p`

=
∂θT`−1

∂p`−1
· ∂p

T
`

∂θ`−1
· δ` (59)

To continue, we have to evaluate ∂θT`−1

∂p`−1
and ∂pT`

∂θ`−1
. By (49)–(51), we have

∂pT`
∂θ`−1

=
∂θT`−1

∂θ`−1
� 1 exp(zT` ) + 1θT`−1 �

∂ exp(zT` )

∂θ`−1

= I � [1 exp(zT` )] + 1θT`−1 �
[
∂zT`
∂θ`−1

· ∂e
T
`

∂z`

]
= diag

(
exp(z`)

)
+ 1θT`−1 �

[
∂zT`
∂θ`−1

· diag
(

exp(z`)
)]

= diag
(

exp(z`)
)

+ 1θT`−1 �
[
∂zT`
∂θ`−1

� 1 exp(zT` )

]
= diag

(
exp(z`)

)
+ 1

[
θT`−1 � exp(zT` )

]
� ∂zT`
∂θ`−1

= diag
(

exp(z`)
)

+ 1pT` �
∂zT`
∂θ`−1

(60)

To proceed, we need to derive the expression for ∂zT`
∂θ`−1

:

∂zT`
∂θ`−1

= Td,` ·
{

∂

∂θ`−1

(
xTd

θT`−1ΦT`

)
Φ` +

∂

∂θ`−1

(
α− 1
θ`−1

)T}

= Td,` ·
{
−∂θ

T
`−1ΦT`
∂θ`−1

· diag

(
xd

(ΦT` θ`−1)2

)
Φ` − diag

(
α− 1
θ2
`−1

)}

= Td,` ·
{
−ΦT` diag

(
xd

(ΦT` θ`−1)2

)
Φ` − diag

(
α− 1
θ2
`−1

)}
= −Td,` ·

{
ΦT` diag

(
xd

(ΦT` θ`−1)2

)
Φ` + diag

(
α− 1
θ2
`−1

)}
(61)

Substituting the above expression into (60), we get the expression for ∂pT`
∂θ`−1

:

∂pT`
∂θ`−1

= diag

{
exp

(
Td,`

[
ΦT`

xd
Φ`θ`−1

+
α− 1
θ`−1

])}
− Td,` · (1pT` )�

[
ΦT` diag

(
xd

(Φ`θ`−1)2

)
Φ` + diag

(
α− 1
θ2
`−1

)]
= diag

(
p`
θ`−1

)
− Td,` · (1pT` )�

[
ΦT` diag

(
xd

(Φ`θ`−1)2

)
Φ` + diag

(
α− 1
θ2
`−1

)]
=

{
diag

(
1

θ`−1

)
− Td,` ·

[
ΦT` diag

(
xd

(Φ`θ`−1)2

)
Φ` + diag

(
α− 1
θ2
`−1

)]}
diag(p`)

(62)
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To complete the derivation of the recursion (59), we need to derive ∂θT`−1

∂p`−1,t
, which is given by

∂θT`−1

∂p`−1
=
∂pT`−1

∂p`−1
· 1

1T p`−1
+

∂

∂p`−1

(
1

1T p`−1

)
pT`−1 =

I − 1θT`−1

1T p`−1
(63)

Expressions (59), (62) and (63) provide the complete backward recursion for δ`, which starts from
` = L and ends at ` = 2. Finally, to initialize this backward recursion, we need to derive the
expression for δL. By its definition, we have

δL ,
∂Qd
∂pL

=
∂θTL
∂pL

·
∂pTo,d
∂θL

· ∂Qd
∂po,d

=
∂θTL
∂pL

· UT · ∂Qd
∂po,d

=
1

1T pL
(I − 1θTL) · UT · ∂Qd

∂po,d
(64)

where in the last step we substituted (63). By (47) and(38), we have

∂Qd
∂po,d

=
∂

∂po,d

(
− ln p(yd|θd,L, U, γ)

)
=

{
−γ · (yd − ŷd) classification

− 1
γ · (yd − ŷd) regression

(65)

Therefore,

δL =


− 1

1T pL
(I − 1θTL) · UT · γ · (yd − ŷd) classification

− 1

1T pL
(I − 1θTL) · UT · 1

γ
· (yd − ŷd) regression

(66)

As a final remark, we found in practical implementation that p` could be very large while δ` could
be small, which leads to potential numerical instability. To address this issue, we introduce the
following new variable:

ξd,` , 1T p` · δ` (67)

Then, the quantities p` and δ` can be replaced with one variable ξd,`, and the backward recursion of
δ` can also be replaced with the backward recursion of ξd,`. With some simple algebra, we obtain
the final gradient expression for Φ in Appendix D.2.

E Gradient Formula of BP-LDA

The unsupervised learning problem (4) can be rewritten, equivalently, as minimizing the following
cost function:

J(Φ̃) =

D∑
d=1

Qd(Φ̃) (68)

where Qd(Φ̃) is the loss function defined as

Qd(Φ̃) = − 1

D
ln p(Φ̃|β)− ln p(wd,1:N |Φ̃, α) (69)

Taking the gradient of both sides of (69), we obtain

∂Qd

∂Φ̃
=

∂

∂Φ̃

(
− 1

D
ln p(Φ̃|β)

)
+

∂

∂Φ̃

(
− ln p(wd,1:N |Φ̃, α)

)
(70)
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The first term in (70) has already been derived in (46):

∂

∂Φ̃
ln p(Φ̃|β) =

β − 1

Φ̃
(71)

where β−1

Φ̃
denotes elementwise division of the scalar β − 1 by the matrix Φ̃. We now proceed to

derive the second term in (70).

∂

∂Φ̃
ln p(wd,1:N |Φ̃, α) =

1

p(wd,1:N |Φ̃, α)
· ∂
∂Φ̃

p(wd,1:N |Φ̃, α)

=
1

p(wd,1:N |Φ̃, α)
·
∫
θd

[
∂

∂Φ̃
p(wd,1:N , θd|Φ̃, α)

]
dθd

=
1

p(wd,1:N |Φ̃, α)
·
∫
θd

[
∂

∂Φ̃
ln p(wd,1:N , θd|Φ̃, α)

]
· p(wd,1:N , θd|Φ̃, α)dθd

=

∫
θd

[
∂

∂Φ̃
ln p(wd,1:N , θd|Φ̃, α)

]
· p(wd,1:N , θd|Φ̃, α)

p(wd,1:N |Φ̃, α)
dθd

=

∫
θd

[
∂

∂Φ̃
ln p(wd,1:N , θd|Φ̃, α)

]
· p(θd|wd,1:N , Φ̃, α)dθd

= Eθd|wd,1:N

[
∂

∂Φ̃
ln p(wd,1:N , θd|Φ̃, α)

]
(72)

To continue, we now derive the expression for the gradient inside the expectation term in (72). By
(9) and the definition of Dirichlet distribution p(θd|α), we can write ln p(wd,1:N , θd|Φ̃, α) as

ln p(wd,1:N , θd|Φ̃, α) = ln p(wd,1:N , θd|Φ̃, α)

= ln p(wd,1:N |θd, Φ̃) + ln p(θd|α)

=

K∑
j=1

(αj − 1) ln θd,j + ln Γ
( K∑
j=1

αj

)
−

K∑
j=1

ln Γ(αj)

+

V∑
v=1

xd,v ln
( K∑
j=1

θd,jΦ̃vj

)
= xTd ln(Φ̃θd) + (α− 1)T ln θd + ln(1Tα)− 1T ln Γ(α) (73)

Taking the gradient of the above expression with respect to Φ̃, we obtain the gradient formula.
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