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Abstract
Addressee detection for dialog systems aims to detect which ut-
terances are directed at the system, as opposed to someone else.
An important means for classification is the lexical content of
the utterance, and N-gram models have been shown to be effec-
tive for this task. In this paper we investigate whether neural
networks can enhance lexical addressee detection, using data
from a human-human-computer dialog system. Even though
we find no improvement from simply replacing the standard N-
gram LM with a neural-network LM as class likelihood estima-
tors, improved classification accuracy can be obtained from a
modified neural net model that learns distributed word represen-
tations in a first training phase, and is trained on the utterance
classification task in a second phase. We obtain additional gains
by combining the class likelihood estimation and classification
training criteria in the second phase, and by combining multi-
ple model architectures at the score level. Overall, we achieve
over 2% absolute reduction in equal error rate over the N-gram
model baseline of 27%.
Index Terms: addressee detection, neural net language model,
distributed word representations, multitask training.

1. Introduction
Addressee detection is a serious problem for dialog systems
that operate in the presence of multiple humans, regardless of
whether those humans are all interacting with the system or not,
or even speaking at all. Users in the company of other humans
tend to talk to others about what they are doing, to solicit input,
or to have side-conversations (self-talk can also occur). The sys-
tem therefore has to classify incoming speech to detect whether
the utterances is meant for itself. In past work we have studied
addressee detection leveraging several speech-based knowledge
sources, such as what was said (lexical content) and how it was
said (speaking style) [1]. Other researchers have also brought
multi-modal cues to bear on this task [2, 3, 4, 5].

In this work we focus on speech-based addressee detection,
and specifically on the modeling of lexical utterance content,
for which statistical language models have proven to be an ef-
fective tool. Recent progress in language modeling based on
neural-net-induced distributed word representations [6] raises
the question whether such models can also improve addressee
detection. In the remainder of this paper we try to answer this
question, starting from a simple drop-in replacement of neural
net languguage models (NNLMs) for the standard N-gram LMs,
and then progressing to modified architectures that are tailored
to the task at hand, and that combine word prediction with ut-
terance classification. A key insight is that the training of word
embeddings can be decoupled from the training of the utterance
classifier. This also allows out-of-domain data, which is typi-
cally plentiful compared to data from the target domain, to be

leveraged for training better NNLM models.

2. Method
2.1. Data

Data come from interactions between two acquaintances and a
“Conversational Browser” (CB) dialog system using only spo-
ken input. Subjects were brought into a room and seated about 5
feet away from a large TV screen and roughly 3 feet away from
each other. They were told about the basic capabilities of the
CB system and the domains it could handle, and were given a
small set of short commands, such as to start a new interaction,
pause, stop listening, or wake up the system. Other than that,
subjects were told to use unrestricted natural language. The sys-
tem detects starts and ends of utterances automatically. In this
collection users did not use other modalities to indicate speech
activity. More information about the dialog system itself and its
spoken language understanding approach can be found in [7].

The resulting corpus comprises 6.3 hours of recordings over
38 sessions with 2 speakers each from a set of 36 unique speak-
ers. Session durations ranged from 5 to 40 minutes, as deter-
mined by users. Speech was captured by a Kinect microphone-
array; endpointing and recognition used an off-the-shelf recog-
nizer. Although the full interaction was recorded, we used only
the speech segments detected and recognized by the system; we
simply call these “utterances.”

A total of 6,920 segments from 38 sessions were hand-
transcribed at the word level for evaluation and labeling pur-
poses. The segments were then annotated for addressee by an
experienced experimenter who had run subjects in the data col-
lection. The experimenter had access to the audio and video
recordings and reported that annotation was generally straight-
forward. After eliminating utterances containing no intelligi-
ble foreground speech the dataset consisted of 5,488 utterances,
totaling 5.33 hours. Computer-addressed segments were also
labeled by the annotator as either command or noncommand.
Segments containing both human- and computer-addressed
speech (in any sequence) were marked as mixed; since these
were also processed by the system they were grouped with the
computer-addressed class for detection purposes. The 38 avail-
able sessions varied greatly in length; the 22 shortest sessions
were placed in the test set to maximize speaker and session vari-
ation. Table 1 gives the distribution of utterance types, and ex-
amples for each type.

For experiments with out-of-domain training data we used
three additional corpora: Fisher [8], the ICSI Meeting corpus
[9], and a 2.8-hour corpus of CB single-user sessions.

Note that training and testing on the CB multi-user corpus
is always based on automatic speech recognizer output, with
a word error rate of about 20%. The out-of-domain corpora,



Table 1: Sizes, distribution, and examples of in-domain utter-
ance types: H = human-directed, C = computer-directed, M =
mixed.

Train Test
Utterances 2577 2889
Recognized words 7026 7874
H utterances 40.8% 31.0%
C-noncommand utterances 31.9% 32.8%
C-command utterances 24.5% 32.0%
M utterances 3.7% 4.2%

Type Example
H Do you want to watch a movie?
C-noncommand How is the weather today?
C-command Scroll down, Go back.
M Show me sandwich shops. oh, are you vegan?

Figure 1:The standard Neural Network Language Model. Pw,
the projection layer, is shared by w1 and w2. Word embeddings
from those words, v1, v2, are stacked into a single vector, which
serves as input to a multilayer perceptron. In this architecture,
the NNLM is predicting the next word, but can also predict other
labels, such as addressee labels.

however, were only available as human transcripts and used in
that form.

2.2. The Neural Network Language Model

The Neural Network Language Model (NNLM), first intro-
duced in [6], is the neural network alternative to the traditional
language model. In this model, inputs are one or more words
of language model history, encoded as one-hot|V |-dimensional
vectors (i.e., one component of the vector is1, while the rest are
0), where|V | is the size of the vocabulary. Input words share
a projection layer, which maps a word vectorwi into a word
embeddingvi ∈ Rn, via matrix multiplication:

vi = Pwwi

P ∈ Rn×|V |, wheren ≪ |V |; n is typically around 100-1000,
depending on the task. These words embeddings are concate-
nated into a single vector, which serve as input to a standard
multi-layer perceptron (MLP). The architecture of the NNLM
is shown in Figure 1. One important property of the NNLM is
its ability to learn word embeddingsvi. One can learn word
embeddings via standard language modeling techniques, such
as predicting the current word given the previous two, but one

can also learn embeddings using addressee labels. Moreover,
word embeddings from one task can improve performance on
another task.

2.3. Baseline Methods

There are a number of ways to apply the NNLM for addressee
detection. Perhaps the most straighforward is to adopt the ap-
proach used in standard language modeling for utterance clas-
sification: we train separate models for each class, denoted as
PH(w) andPC(w), for human- or computer-addressed speech,
respectively. At test time, we compute the length-normalized
log-likelihood ratio

S =
1

N
log

PC(w)

PH(w)
,

whereN is the utterance length in number of words. The score
S can be compared against a threshold to decide whether an
utterance is computer-directed (such a threshold would be ap-
plication dependent, chosen according to the desired trade-off
between false alarm and miss errors).

Our first model is obtained by simply estimating the class-
specific LMs using NNLMs. One model is trained on each sub-
set, and the score function is computed as above. We denote this
approachNNLM-ngram. We compare this against a baseline
system in whichPH(w) andPC(w) are estimated by a max-
imum entropy-smoothed trigram model [10], the same lexical
model as used in [1], and denoted here byword-ngram.

For the second baseline method, we note that since the neu-
ral net is fundamentally a classifier, it makes sense to train it
to predict the addressee labels directly. We consider each word
N-gram to be a sample to be classified. More formally, letwi,j

be thej-th N-gram for utterancei, Na(wi,j) ∈ R2 to be the ad-
dressee posterior probability of the NNLM, andai to be the la-
bel at utterancei. Then training involves minimizing the cross-
entropyCE =

∑N

i=1

∑Ni

j=1
− log[Na(wi,j)]ai

. At test time,
the word-level posterior probabilities are averaged to obtain the
utterance level detection score.

S =
1

N

Ni∑

j=1

[Na(wi,j)]C

where the subscriptC refers to the computer-directed utterance
class. We denote model this asNNLM-addressee.

Neither of the above NNLM-based methods, however,
leverage an important property observed by other researchers
[11, 12, 13] that word embeddings trained on one task can
improve performance on a different one. In the case of the
NNLM-ngram, these embeddings are only trained on human-
or computer-directed speech, but not both. In the NNLM-
addressee approach, word embeddings learned from a language
modeling task could improve performance on the addressee one.
With this in mind, we tested three different approaches, and
combinations thereof.

2.4. Joint Training

One method to improve performance is to jointly predict ad-
dressee and word labels, and learn better parameters through
back-propagation. Jointly predicting addressee and word labels
requires us to augment our NNLM slightly. There are two ways
to extend the NNLM. The first is to incorporate a second output
layer, as shown in the left pane of Figure 2. For this approach,
given addressee and word labelsai and ŵi respectively, and



Figure 2: Models for joint training. The left pane shows joint
training with separate output parameters for word and ad-
dressee labels, while the right pane shows joint structure with
separate word-vector to hidden weights.

addressee and word NNLM posteriors vectorsNa(wi,j) and
Nŵ(wi,j) for n-gramwi,j, respectively, the error criterion is a
weighted mix of cross-entropies:

CE =

N∑

i=1

Ni∑

j=1

−α log[Na(wi,j)]ai
−(1−α) log[Nŵ(wi,j)]ŵi

whereα is a user-defined constant (empirically, we have ob-
served that0.6 yields the best performance). This is denoted as
NNLM-multicriterion.

Another method to jointly predict labels is to split the joint
hidden layer into separate ones. This leads to a second struc-
ture, in which both the output layer and the word embedding
to hidden layer parameters are separate, as shown in the right
pane of Figure 2. The error criterion is identical to the NNLM-
multicriterion is denoted asNNLM-shared projection.

2.5. Two-Phase and Out-of-Domain Training

Another way to learn potentially better models is to train on
different criteria serially. In this approach, we decouple the
training into two phases, one for learning word embeddings,
and a one for learning utterance classificiation. In Phase 1,
we train the NNLM to predict word labels; in Phase 2, using
Phase 1 weights as initialization and replacing the output layer
to predict addressee labels, we update the NNLM parameters
on the error signal from the addressee labels. This is denoted as
NNLM-two phase-addressee. Moreover, we can perform joint
optimization as described above, denotingNNLM-two phase-
multicriterion andNNLM-two phase-shared projection for
models referenced in the left and right panes of Figure 2, re-
spectively.

Training on word prediction and addressee labels serially
also allows us to train on out-of-domain corpora. Given that
better word embeddings can improve performance across tasks,
a natural question to ask is whether Phase 1 training on a larger
corpus can improve results on the addressee task. To investigate
this question, we included ASR output from three corpora in
addition to the CB multi-user data: Fisher, ICSI meeting corpus,
and the CB sessions recorded with a single user. For one set of
experiments, we included all corpora for Phase 1 training, while
for a second set, we used only Fisher.

For out-of-domain training, one must take particular care
in selecting the vocabulary, as the vocabulary size changes be-
tween corpora. For Phase 1 training that includes all corpora,
we include the 8,000, 5,000, and 2,000 most frequent words

from the Fisher, ICSI meeting corpus, and CB single-user re-
spectively. Any word that was not found within the vocabu-
lary is mapped to a special “out of vocabulary” token. Frequent
words from CB multi-user were not included in the list so that
the “out of vocabulary” token occurred in Phase 2 training. The
vocabulary comprises 10,808 words, including start and stop
tags, and the “out of vocabulary” token. Systems using all out-
of-domain corpora in Phase 1 are denoted withtwo phase-A
instead oftwo phase.

For Fisher-only Phase 1 training, applying this same vo-
cabulary would result in words which only occurred in Phase
2 training, or occurred only in test. In the first case, the word
embeddings would be suboptimal, while in the latter case, word
embedding would be completely random as they are unlearned.
For Phase 1 training with the Fisher corpus, we mapped unseen
and once-seen words in Phase 1 training to the “out of vocab-
ulary” token. The vocabulary size decreased slightly to 10,500
words. Systems using only Fisher in Phase 1 are denoted with
two phase-F.

2.6. Experimental Setup

All neural network language models use as input a bigram, en-
coded as two one-hot|V |-dimensional vectors. The projection
layer embeds each word vector into a 500-dimensional space,
as empirically, this dimensionality seems to give the best re-
sults. For the standard NNLM and the NNLM-multicriterion
models, the number of hidden units is 1000, while for NNLM-
sharedprojection, there are two 1000 hidden unit layers. The
NNLMs are trained with stochastic gradient descent, with batch
size 256. For single-phase NNLMs, training ran for 90 epochs,
with 30 each at learning rates 0.008, 0.004, and 0.002.

For NNLMs trained with two phases, Phase 2 training uses
the identical optimization as the single-phase NNLMs. For
Phase 1, the batch size was 256 for CB-Multi and 16384 for
out-of-domain corpora, and the NNLM is trained for 5 epochs
at learning rate 0.08. Finally, the baseline NNLM-gram sys-
tems share the same architecture as the standard NNLM, and is
trained for 40 epochs, with 20 each at learning rates 0.008 and
0.004.

For model combination and evaluation, we use linear logis-
tic regression (LLR) to calibrate all model scores or to combine
multiple scores where applicable [14]. To estimate LLR param-
eters, we jack-knife over all sessions in the test data, training
on all but one session in turn, and cycling through all sessions.
Scores are then pooled over the entire test set and evaluated us-
ing equal error rate (EER). The EER is obtained by choosing a
decision threshold that equates false alarm and miss error prob-
abilities. EER is thus independent of class priors. The behav-
ior of the various systems is also more fully characterized by
a detection error tradeoff (DET) curve, showing how a moving
decision threshold changes the two error type rates.

3. Results and Discussion
3.1. Results

Results for the different Neural Network Language Models is
shown in Table 2. Neither of the NNLM baseline approaches
performs as well as the standard word-ngram. NNLMs trained
on addressee labels is over 3% worse, while the NNLM-ngram
is 2.46% worse. Jointly training on word and addressee la-
bels improves performance over the Neural Network Language
Model baseline approaches, with the NNLM-sharedprojection
system about .62% better than the multicriterion one. Neither



of the joint training approaches, however, beats the maximum
entropy language model baseline.

Two-phase training improves upon the NNLM-addressee
baseline by 3.25%, and improves upon the word-ngram base-
line by 0.24%, with an EER of 26.76%.1 Including the Fisher
corpus and all corpora in Phase 1 improves EER by 0.35% and
0.22%, respectively. When performing joint training in Phase 2,
multicriterion models far outperform shared projection systems,
even though shared projection systems are better for single-
phase training. In fact, shared projection systems are worse than
simple addressee detection in two-phase systems.

We surmise that Phase 1 already optimizes word embed-
dings for the word prediction task, and any extra training that
effectively learns poorer word embeddings on a smaller cor-
pus (we don’t necessarily care about the other parameters of the
word prediction part of the shared projection system, since only
the addressee prediction is used after Phase 2) in fact hurts per-
formance. Multicriteria training, which jointly updates both the
word embedding and the parameters from the word embedding
to the hidden layer, improve upon the addressee baseline, and
give us the best single system at 26.23% EER, which is 0.77%
better than the baseline.

The real contribution of the NNLM systems to addressee
detection comes when combining the two approaches. Com-
bining the standard maximum entropy language model with a
single two-phase system improves upon the LM baseline by
over 2% in the best case (two-phase system trained on Fisher
in Phase 1 and multicriterion training in Phase 2). Including the
two-phase multicriterion system trained on Fisher, ICSI meet-
ing corpus, and CB single user gave us our best result at 24.75%.
Figure 3 shows the DET plot for baseline and better performing
systems.

System EER
Baseline Systems
1. word-ngram 27.00%
2. NNLM-ngram 29.46%
3. NNLM-addressee 30.01%
Joint Systems
4. NNLM-multicriterion 28.98%
5. NNLM-sharedprojection 28.32%
Two-Phase Systems
6. NNLM-two phase-addressee 26.76%
7. NNLM-two phase-F-addressee 26.41%
8. NNLM-two phase-F-multicriterion 26.33%
9. NNLM-two phase-F-sharedprojection 26.65%
10. NNLM-two phase-A-addressee 26.54%
11. NNLM-two phase-A-multicriterion 26.23%
12. NNLM-two phase-A-sharedprojection 26.76%
Combination Systems
13. System 1. + System 10. 25.64%
14. System 1. + System 11. 25.41%
15. System 1. + System 7. 25.22%
16. System 1. + System 8. 24.96%
17. System 1. + System 8. + System 11. 24.75%

Table 2: Equal Error Rate Performance for Neural Network
Language Modeling systems for addressee detection. The EERs
of notable systems are highlighted.

1All two-phase systems are trained for 5 epochs in Phase 1. As
shown in Figure 4, 5 epochs seems to produce the best results onad-
dressee detection.
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Figure 4: Effect of Phase 1 Training on Addressee Detection
Task. The x-axis denotes the number of Phase 1 training epochs
on Fisher, ICSI, and CB corpora, and y-axis is EER.

4. Conclusions
We have investigated whether neural networks can enhance the
lexical classification of addressees in a human-human-computer
dialog system, replacing the standard N-gram language models.
We found no improvement from a NNLM replacement of the
N-gram LM as class likelihood estimators (possibly due to the
small training corpus), but found gains from a modified NNLM
that learns distributed word representations in a first training
phase, and is trained on the utterance classification task in a
second phase. It is also advantageous to combine word predic-
tion and classification during the second phase. The single best
NNLM system reduced equal error rate only modestly (0.7%)
from the baseline (27.0%), but we obtained a substantial error
reduction (2.0%) by combining the N-gram model with three
NNLMs that employed diverse initialization data and training
criteria.

In future work we plan to explore other neural language
modeling architectures, in particular recurrent neural nets [15],
which have been shown superior to regular NNLMs in the lan-
guage modeling task.
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